Enhancing Distributed Computing with Programmable and Open Optical Networks

Andrea Fumagalli
The University of Texas at Dallas

7th Annual International Workshop on Innovating the Network for Data-Intensive Science (INDIS 2020)
November 12, 2020
Contributors (UT Dallas)

- Behzad Mirkhanzadeh
- Tianliang Zhang
- Chencheng Shao
- Ali Shakeri
- Shunmugapriya (Priya) Ramanathan
- Joseph White-Swift
- GI Vania
- Miguel Razo
- Marco Tacca
Outline

• Optical Networks: What is Unique?
• PROnet I: Using a Proprietary Solution
• Open Optical Network (OON) Efforts
• PROnet II: Embedding GNPy Modeling in Open Line Systems (OLS)
• PROnet III: OpenROADM with Six Optical Vendors
• Enhancing Distributed Computing
• Summary
Outline

• Optical Networks: What is Unique?
• PROnet I: Using a Proprietary Solution
• Open Optical Network (OON) Efforts
• PROnet II: Embedding GNPy Modeling in Open Line Systems (OLS)
• PROnet III: OpenROADM with Six Optical Vendors
• Enhancing Distributed Computing
• Summary
• Wavelength Switched Optical Network (WSON) layer makes use of Dense Wavelength Division Multiplexing (DWDM) technology to create multiple orthogonal channels in a single fiber forming a composite wavelength signal.

• Each wavelength channel can be assigned to form a direct link between two client nodes (e.g., routers).
Reconfigurable Optical Add/Drop Multiplexer (ROADM)

- ROADMs can individually route wavelength channels across intermediate optical nodes
- End-to-end optical circuits (lightpaths) can be provisioned

Router link = Lightpath
What is Different

• Connecting two Ethernet switches directly: cable length is known and must meet standards (e.g., 300m)
• Radio Link: it is single hop, between two radio heads (the base station and the user equipment)
• WDM circuits: analog signal traversing multiple devices which cause various transmission impairments -> Signal integrity is affected
 • Difficult to detect what is the cause of high BER at the receiver unless all devices closely work together (network control)
 • FEC are used to reduce BER (e.g., from 10^{-2} to 10^{-15})
Optical Signals and Devices

- Photons (from laser) are modulated
 - Non-coherent signals (legacy)
 - Coherent signals (new generation)

Colorless (Grey) Signal
- Fiber Optics
- Optical Splitter
- Optical Switch

Loss of Signal Power
- Optical Amplifier

Colored Signal
- Mux/Demux
- Wavelength Selective Switch (WSS)
Physical Layer Impairment (PLI) Factors

- **Traffic Independent PLIs (TI-PLIs)**
 - ✓ power loss
 - ✓ amplified spontaneous emission (ASE) noise
 - ✓ chromatic dispersion (CD)
 - ✓ self-phase modulation (SPM)
 - ✓ polarization mode dispersion (PMD)

- **Traffic Dependent PLI (TD-PLI)**
 - ✓ four wave mixing (FWM)

Table:

<table>
<thead>
<tr>
<th>Modulation Format</th>
<th>Compensation for Linear Impairments</th>
<th>Complexity</th>
<th>Using Phase Information</th>
<th>Bandwidth Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>OOK, ASK, FSK</td>
<td>Hard</td>
<td>Low</td>
<td>No</td>
<td>Low</td>
</tr>
<tr>
<td>DPSK, PM-QPSK</td>
<td>Easy</td>
<td>High</td>
<td>Yes</td>
<td>High</td>
</tr>
</tbody>
</table>

Notes:
- Intensity of FWM products is higher from close neighbors
- +/-k neighbors are considered (k=3), capturing major interference and reducing the complexity
- XTm threshold to ensure signal quality due to TD-PLI
Optical Signal to Noise Ratio (OSNR) and Automatic Signal Power Control (APC) Strategies

In order to compensate for the power loss, optical amplifiers are periodically placed along the fiber.

\[
\text{OSNR} = \frac{P_{ch}}{P_{ASE}} = \frac{P_{ch}}{NF(G-1)h\nu\Delta f}
\]

- **EDFA gain**
- **Noise bandwidth**
- **Noise figure**
- **h**: Planck constant
- **v**: channel frequency

ASE noise, together with optical signal, is amplified by erbium-doped fiber amplifiers (EDFAs)

\[
\text{OSNR}_{\text{end-to-end}} = \frac{1}{\sum_{i=1}^{N} \frac{1}{\text{OSNR}_i}}
\]

Non-flat gain of amplifier

EDFA gain

Noise bandwidth

Noise figure
Are Optical Networks Becoming (SDN) Programmable?

- “Taking a cue from IT’s separation of hardware, operating systems and applications software and, more recently, the separation of compute, storage and networking in data centers, the trend toward disaggregation and open optical networking is starting to impact the broader communications equipment market.”
- “Approaches to optical networking based on disaggregation and software-defined networking control are set to dominate – while key questions still remain.”
- “This impact is already being felt with the shift to SDN, disaggregating the control plane from the forwarding plane, and the shift to network functions virtualization (NFV), disaggregating network hardware from software functions.”
Outline

- Optical Networks: What is Unique?
- PROnet I: Using a Proprietary Solution
- Open Optical Network (OON) Efforts
- PROnet II: Embedding GNPy Modeling in Open Line Systems (OLS)
- PROnet III: OpenROADM with Six Optical Vendors
- Enhancing Distributed Computing
- Summary
History of PROnet

• PROnet stands for Programmable Optical network, invoking the use of Software Defined Networking (SDN) principles applied to the optical network physical layer

• The concept of implementing and deploying PROnet as both a REN and test-bed originated during a number of meetings held by the PIs of a former JUNO project titled “ACTION” in June of 2014 (NSF-NICT JUNO workshop at UC Davis)
 • Malathi Veeraraghavan (UVA)
 • Naoaki Yamanaka (Keio University)
 • Eiji Oki (Kyoto University)
 • Andrea Fumagalli (UT Dallas)

• The PROnet concept was driven by the PIs’ interest in experimentally testing technologies and expected advantages to the applications that may result from automatically reconfiguring the optical network on-demand and through well-defined APIs

• Funding for implementing PROnet as a multi-layer optical network was provided by NSF CC*DNI grant #1541461 in September of 2015

• PROnet main collaborative milestones are described in the next slides
PROnet as a REN at and Around the UT Dallas Campus
(PROnet I: A Single Vendor Solution)

- 4 Cisco NCS 2k ROADM nodes
- CDC capable
- Flex Grid capable
- Transponders supporting 100 and 200 Gbps line transmission rates
- Muxponders can adapt to 10 x 10 Gbps ports of Ethernet switches
- One ROADM is co-located with
 - Adva ROADM of LEARN (Texas REN)
 - GENI rack hosted by UT Dallas
 - Other compute and storage resources

UT Dallas OIT deployed PROnet in Spring/Summer of 2017
The PROnet I: Ethernet-over-WDM SDN Orchestrator

- Interfaces to work with
 - RYU
 - Floodlight
 - OpenDaylight
 - Cisco RESTCONF Optical Plug-in
 - TL1
 - CORBA

- Offered services
 - Unprotected end-to-end flow
 - Protected 1:1 (fiber disjoint) end-to-end flow
 - Highly reliable protection/restoration 1:1+R mechanism, to automatically reconfigure (redesign) the optical network to pre-failure condition

UT Dallas researchers started to develop the PROnet SDN Orchestrator in January of 2016
Lightpath Restoration Procedure and Time

Procedure
• Generalized Multiprotocol Label Switching (GMPLS) is responsible for computing and establishing restoration lightpaths upon link failure
• IEEE RFC 6163 and 6566 describe standards and requirements

How does it work?
• Automatically switches circuits away from failed or impaired paths
• Can use any available wavelength, but requires ROADMs and tunable TXPs

Completion time depends on
• Failure detection and signaling to inform lightpath end-nodes
• Procedure to compute route and wavelength assignment (RWA)
• Procedure to configure optical devices, provision lightpath, and ensure desirable circuit bit error rate (BER)
Multi-Layer Restoration – 1:1+R

- Virtual Network is back to pre-fault state and FRR tunnel can be used to recover from a subsequent second network failure
- Race conditions between the two recovery mechanisms is avoided thanks to the different time scales
 - FRR protection mechanism responds in milliseconds
 - Lightpath restoration mechanism responds in seconds
Outline

• Optical Networks: What is Unique?
• PROnet I: Using a Proprietary Solution
• Open Optical Network (OON) Efforts
 • PROnet II: Embedding GNPy Modeling in Open Line Systems (OLS)
 • PROnet III: OpenROADM with Six Optical Vendors
• Enhancing Distributed Computing
• Summary
What is an Open Optical Network (OON)

• “We define a fully open optical network as one that includes open hardware (transponders and line system equipment) supporting open application programming interfaces (APIs) that can interact with and be managed by open source software” [Heidi Adams]

• **Disaggregation of optical components** to avoid/alleviate proprietary or customer lock-in problem (high cost to switch to another equipment vendor)

• OON Efforts
 • Open Networking Foundation (ONF)
 • Optical Interworking Forum (OIF)
 • Telecom Infra Project (TIP)’s Open Optical Packet Transport Group
 • Open ROADM Multi-Source Agreement (MSA)
“Demand for bandwidth – the main driver behind optical market growth – has been given a boost by the recent pandemic.”

“This market – largely comprised of DWDM systems – is expected to expand in 2020 and for the next five years reaching nearly US$18 billion.”

“Demand for optical transport gears for data center interconnect is expected to take a turn in the near future, with disaggregated WDN transponder unit sales annually growing at a double-digit percentage rate.”
Two Missions

• Make optical equipment use standards procedures and APIs
• Define mechanisms to ensure optical signal integrity in the presence of multiple players in “a world of analog signals”

Two Interesting Approaches

• TIP’s Open Optical Packet Transport Group
 • Open Disaggregated Transport (ODTN) stressing high performance in WAN deployment
• OpenROADM MSA
 • Stressing full hardware disaggregation in MAN deployment
Open and Disaggregated Transport (ODTN) Architecture

Objective: to disaggregate transponders from (open) line systems

Objective: to achieve full disaggregation of optical components

http://OpenROADM.org
OpenROADM TransportPCE

• Open source OpenROADM control platform
• Implemented by AT&T, Orange, and other groups as a plugin on OpenDaylight controller

OLM = Optical Line Manager
Comparison of Architectures

(a) Proprietary Single Vendor

(b) Open Disaggregated Transport (ODTN)

(c) Open ROADM

Single Vendor

High performance through proprietary coherent DSP capabilities and FEC

Multi Vendor

Open and interoperable optical transponders and line system equipment
Outline

• Optical Networks: What is Unique?
• PROnet I: Using a Proprietary Solution
• Open Optical Network (OON) Efforts
• PROnet II: Embedding GNPy Modeling in Open Line Systems (OLS)
• PROnet III: OpenROADM with Six Optical Vendors
• Enhancing Distributed Computing
• Summary
PROnet II: GNPy-based Quality of Transmission Estimator (QoT-E) Module

- Cisco provided optical line amplifiers
- PoliTo team provided the QoT-E software module for estimating lightpath OSNR while accounting for both linear and non-linear transmission effects
- QoT-E module makes use of models defined by TIP OOPT-PSE Technical Working Group
- Models were validated using 4 test-beds:
 - Orange Labs
 - Facebook Labs
 - Microsoft Labs
 - UTD Lab

Two Ph.D. students from PoliTo visited the UT Dallas lab in 2017 to design and develop the QoT-E module, and validated results from the module against experimental results obtained with PROnet equipment.
Outline

• Optical Networks: What is Unique?
• PROnet I: Using a Proprietary Solution
• Open Optical Network (OON) Efforts
• PROnet II: Embedding GNPy Modeling in Open Line Systems (OLS)
• PROnet III: OpenROADM with Six Optical Vendors
• Enhancing Distributed Computing
• Summary
UT Dallas researchers added RESTCONF APIs to interface PROnet Orchestrator with OpenROADM Transport PCE module provided by AT&T

- Interoperate six vendors’ ROADMs and transponders (100 Gbps) to demonstrate open interfaces at the wavelength and multi-wavelength layer

http://OpenROADM.org
Live Demonstrations
- SC 2019
- OFC 2020
Outline

• Optical Networks: What is Unique?
• PROnet I: Using a Proprietary Solution
• Open Optical Network (OON) Efforts
• PROnet II: Embedding GNPy Modeling in Open Line Systems (OLS)
• PROnet III: OpenROADM with Six Optical Vendors
• Enhancing Distributed Computing
• Summary
Edge Computing

- Efficiently provides compute resources to applications with special QoS requirements
 - Time sensitive applications require tight network latency
 - Avoids applications’ data transmission over the WAN to reach a remote cloud site

![Diagram of Edge Computing]

Relatively small cluster of compute resources
Challenge
Spikes of application-driven computation load require:
- Overprovisioning of edge resources -> costly
- Load sharing with other cloudlets -> QoS must be satisfied
 - Low network latency
 - High data rate
Distributed Super-Cloudlet (Simple Example)

(a) Two cloudlets operating independently, each hosting a single cluster of workers
(b) A super-cloudlet consisting of two cloudlets connected by low-latency and high-data rate optical circuits

- Worker cluster C_i makes use of compute resources that are provided by cloudlet S_j to cope with a sudden surge in its applications’ load
Dynamically created and dedicated optical circuit(s)

With OON cloudlets do not need to make use of the same transponder vendor!
PROnet IV: Orchestrator Updated to Handled Three Domains

1. Optical Domain
 - TransportPCE
 - Cisco Plugin
2. Ethernet Domain
 - OpenFlow Controllers
3. Compute Domain
 - OpenStack
 - Kubernetes
Management and Tenant Networks

Management Network - Red:
• Migration of VMs (between cloudlets)

Tenant Network(s) - Purple:
• Supporting application’s data traffic (between cloudlets)
Time Required to Create a Super-Cloudlet

<table>
<thead>
<tr>
<th>Node Type</th>
<th>Mean Scale Up</th>
<th>Scale Up Variance</th>
<th>Mean Scale Down</th>
<th>Scale Down Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1G nodes</td>
<td>420.58s</td>
<td>217.22s</td>
<td>70.90s</td>
<td>13.91s</td>
</tr>
<tr>
<td>30G nodes</td>
<td>420.13s</td>
<td>184.13s</td>
<td>68.17s</td>
<td>15.90s</td>
</tr>
</tbody>
</table>

Note: Time to create a super-cloudlet is comparable to scaling up worker cluster in a single cloudlet.
Tenant Application: Distributed Training of ML

Experiment Description:
- Training of RexNet56 (object classification)
- CIFAR10 Dataset (50,000 samples)
- Samples are evenly split over two containers
- Each container splits its own samples to form data batches of size $m = 32, 128$ samples
- During one epoch each container processes one data batch at a time, for a total # of steps:
 - $781 = 50,000/32/2$ (when $m = 32$)
 - $195 = 50,000/128/2$ (when $m = 128$)
- Data checkpoint: containers must periodically exchange their data with one another at the end of each step

Epoch completion time depends on tenant network ability to transfer data quickly between cloudlets

<table>
<thead>
<tr>
<th>Batch Size m</th>
<th># of vCPUs per Container</th>
<th>Single Cloudlet</th>
<th>super-cloudlet Few Meters</th>
<th>super-cloudlet 25km</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>4</td>
<td>1075s</td>
<td>1092s</td>
<td>1095s</td>
</tr>
<tr>
<td>32</td>
<td>8</td>
<td>533s</td>
<td>527s</td>
<td>535s</td>
</tr>
<tr>
<td>128</td>
<td>4</td>
<td>1058s</td>
<td>1048s</td>
<td>1060s</td>
</tr>
<tr>
<td>128</td>
<td>8</td>
<td>501s</td>
<td>502s</td>
<td>504s</td>
</tr>
</tbody>
</table>
Migration of Containers over Management Network

Experiment Description:
• Training of RexNet56
• CIFAR10 Dataset (50,000 samples)
• Samples are evenly split over three or five containers
• While running the training procedure one of the container is migrated to the other cloudlet
• Migration is performed by using one of these options:
 • Pre-copy with auto-converge
 • Post-copy

For the Management Network Assume:
• 1G connection is available through the “hub and spokes” permanent network
• 30G connection is available through the dynamically created and dedicated optical circuit between cloudlets

<table>
<thead>
<tr>
<th>Live VM-migration Method</th>
<th>30G node in 3 containers task scenario</th>
<th>30G node in 5 containers task scenario</th>
<th>1G node in 3 containers task scenario</th>
<th>1G node in 5 containers task scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-copy with auto-converge</td>
<td>Mean: 75.4s</td>
<td>Mean: 79.37s</td>
<td>Mean: 351.61s</td>
<td>Mean: 362.22s</td>
</tr>
<tr>
<td></td>
<td>Variance: 3.75s</td>
<td>Variance: 4.2s</td>
<td>Variance: 651.83s</td>
<td>Variance: 583.82s</td>
</tr>
<tr>
<td>Post-copy</td>
<td>Mean: 83.49s</td>
<td>Mean: 85.66s</td>
<td>Failed</td>
<td>Failed</td>
</tr>
<tr>
<td></td>
<td>Variance: 6.86s</td>
<td>Variance: 7.11s</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Outline

• Optical Networks: What is Unique?
• PROnet I: Using a Proprietary Solution
• Open Optical Network (OON) Efforts
• PROnet II: Embedding GNPy Modeling in Open Line Systems (OLS)
• PROnet III: Going OpenROADM with Two Optical Vendors
• Next Steps
• Summary
Programmable (SDN) optical networks are here to stay!
• Single vendor and proprietary solutions
• Open Optical Network (OON) solutions with various degrees of optical component disaggregation

Edge computing can be enhanced by organizing cloudlets to form super-cloudlets thanks to the improved high-data rate and low latency connectivity offered by dedicated optical circuits

Distributed super-cloudlets and related dedicated optical circuits can be dynamically created in a few minutes to best adapt to changing load conditions originating from the applications with stringent QoS requirements

Distributed super-cloudlet performance similar to that of a single cloudlet, but the former offers more computation capacity (and dynamically)

Multi-vendor optical equipment deployment (enabled by OON) offers more flexibility compared to single-vendor one
Live Demonstration of OpenROADM Network at OFC 2020 Booth # 5701

Thank You!

Andrea Fumagalli
andreaf@utdallas.edu

This work is supported in part by NSF grants CNS-1405405, CNS-1409849, ACI-1541461, CNS-1531039, and CNS-1956357
Live Demonstration of OpenROADM Network at OFC 2020 Booth # 5701

Thank You!
Andrea Fumagalli
andreaf@utdallas.edu

This work is supported in part by NSF grants CNS-1405405, CNS-1409849, ACI-1541461, CNS-1531039, and CNS-1956357.