
Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary

of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. SAND2020-11253 C

Advanced Data Algorithms & Architectures for
Security Monitoring

Thomas M Kroeger, Cindy A Phillips, Eric D Thomas, Brian J Wright
Rutgers, Stony Brook University, VMWare RG

WODS

Too much data to use it effectively

Analytics are starting to
understand this data

2

Sensors are collecting data at
incredible rates.
Typically linearly logs with little to no
organization for example: cyber
connections or power grid state.

 Typically overwhelmed w/ data

 Stay in RAM and respond quickly

 Use disk and respond in days

Current systems don’t support querying historical data in a timely manner.

Responding at Machine Speed
 Systems that respond and prevent attacks requires

analytics that work at machine speed.

 Current disk/log based tools take hours.

 Ram based systems loose data quickly

 Low and slow attackers exploit this

Data Architectures to Bridge this Gap
Bottom line up front (BLUF)

Use Write Optimized Data Structures (WODS) to build new
architectures to bridge this gap and enable machine speed analytics
 Track data sets far larger than core memory

 Enable sustained long-term low-maintenance operations

3

Research Thrusts:

1. New data architectures to support our cyber missions

2. Algorithm research to address known limits, and

3. Rethink how we do analytics using these new capabilities

Sensor
Data

Architecture

WODS etc…

Analytic

Data
Timely

Reporting

seconds

instead of

hours

RAM: ~60 nanoseconds per access

Disks: ~6 milliseconds per access.

disk is ~100,000 times slower

Analogy:

• RAM = escape velocity from earth (25,000 mph)

• disk = walking speed of the giant tortoise (0.3mph)

~83,333x slower

Memory and Disk access times

Current Approaches

No capability of timely reporting across data larger than RAM
 One disk write per insert takes ~6ms

 Best rates of 200 – 2000 inserts per second

 We see rates of 100K to millions

Clustering?

 Log processing tools and large scale parallel data stores
(hadoop, Splunk and postgres)

 Cyber responders have long been fighting issues of ingestion
rate, query response and data size.

5

• They have many parallel machines and lots

of experts to tune the system at some cost.

• In the end they still do grep in parallel across

large logs.

6

Standing Queries & Firehose

Database requirements:

 No false negatives

 Limited false positives

 Immediate response preferred

 Window of size N limits insights

 Rate of R typically means RAM

Window Size: N

Event Rate: R

Firehose benchmark

 Captures essence of monitoring

 Sandia + DoD partners

 Input: stream of (key, value) pairs

 Report a key when seen 24th time.

http://firehose.sandia.gov/

7

Limits of Current RAM Based Analytics
 Tested state of the art analytic, waterslide with firehose

https://github.com/waterslideLTS/waterslide

 Accuracy of cyber-analytics depends on window size

 As the monitored set grew beyond RAM accuracy fell quickly

Analytic

Size

Firehose

Size

Ratio Events

Found

1048576 1048576 1x 66.04%

1048576 2097152 2x 23.82%

1048576 4194304 4x 0.06%

Its clear we need more space.

How do we integrate storage without loosing performance?

Write Optimized Data Structure

0

2

4

6

8

10

0 0.5 1 1.5 2 2.5 3

I/O per Insert

I/
O

 p
e

r
P

o
in

t
Q

u
e

ry

Fast Slow

S
lo

w
F

a
s
t

Optimal Insert / Query Tradeoff

[Brodal, Fagerberg 03]

Logging

B-Tree

Write Optimized

Data Structures

(WODS)

B-Tree & Bε-Tree

B-Tree is used to index keys.

Insert & Lookup take O(logB N)

Take Away: WODS offers a balance between RAM

and Disk for fast ingestion and organized data.

O(log1+B
ε N)

9

Bε -Tree buffers inserts at

each layer in the tree to

aggregate writes.

Lookup takes O(log N)

Insert takes O
logN

B

Inserts upto 100x faster

Comparing WODS to Traditional B-Trees

10

Traditional B-Tree vs B✏Tree

20 / 25

Total Inserts (millions)

In
s
e

rt
io

n
 R

a
te

Bε Tree (WODS)

B-Tree

1
0
E

4
1
0
E

5
1
0
E

3

Insertion Rates Bε Tree v B-Tree

BADGERS 2015 Paper

 Compared indexing IP
connections with B-Tree
and WODS - Bε Tree

 B-Tree initial better but

 Quickly reduced to
unsustainable rates.

 Bε Tree able to sustain
reasonable indexing
throughput

Tracking Network Connections at SCinet

11

Research Thrusts Going Forward

12

Research Thrusts:

1. New data architectures and prototype tools that use WODS to track
real-world events to support our cyber missions
 Our Demand query tool (DQT) & Standing query tool (SQT) serve as vehicles for

researching advanced architectures and algorithms on real-world data.

2. Algorithm research to address infinite streams of data, including
expiration, sustainability, and adaptability, and

3. Rethink how we do analytics using these new capabilities to support
machine speed consequence mitigation

Sensor

Data

Architecture

WODS etc…

Analytic
Data

Timely

Reporting

seconds

instead of

hours

Didn’t <Big Tech.com> Already Solve This?

13

NO.

 Our problem space needs to ingest millions of events
per second and answer questions in seconds while
maintaining a state space on secondary storage.

 Some indexes the data over night and doesn’t have
to provide answers up to the second

 They work in standing queries are at thousands per
second we’re at 100k--millions.

Conclusion

Use Write Optimized Data Structures (WODS) to build new
architectures to bridge this gap and enable machine speed analytics
 Track data sets far larger than core memory

 Enable sustained long-term low-maintenance operations

14

Research Thrusts:

1. New data architectures to support our cyber missions

2. Algorithm research to address known limits, and

3. Rethink how we do analytics using these new capabilities

Sensor
Data

Architecture

WODS etc…

Analytic

Data
Timely

Reporting

seconds

instead of

hours

Backup Slides

15

Write Optimized B-Tree

We used is a combination called BeTree

(pronounce B to the epsilon tree) that

balances branching and buffering at

each node.

Aggregates writes with a buffer of size B

at each at each node. e slots are used

as pivots and B-e are used as buffers.

Flush costs O(1) and happens O(1/B).

The result is inserts are now O((logN)/B)

For a large B ~1024 this can be 100x

faster in practice. [Bender 2007]

Memory and Disk access times
Disks: ~6 milliseconds per access.

RAM: ~60 nanoseconds per access

Analogy:

• disk = distance from home to first base (90 feet)

• RAM = distance from AT&T Park to Kauffman Stadium

(1500 miles)

18

What is Happening?

• Waterslide uses ‘d-left hashing’

– Two rows of buckets

– Constant-size

– Fast

– Waterslide adds LRU

expiration per bucket

• 1/16 of all data is always subject

to immediate expiration in

steady state

• As active generator window

grows, FIREHOSE accuracy

quickly goes to zero

Even when window size is only

4x data structure size, most

reportable data are lost before

It is reported.

Broder, Andrei, and Michael Mitzenmacher. "Using

multiple hash functions to improve IP lookups."

INFOCOM 2001

