Advanced Data Algorithms & Architectures for Security Monitoring

Thomas M Kroeger, Cindy A Phillips, Eric D Thomas, Brian J Wright
Rutgers, Stony Brook University, VMWare RG
Too much data to use it effectively

Current systems don’t support querying historical data in a timely manner.

**Sensors** are collecting data at incredible rates.
Typically linearly logs with little to no organization for example: cyber connections or power grid state.

**Analytics** are starting to understand this data
- Typically overwhelmed w/ data
- Stay in RAM and respond quickly
- Use disk and respond in days

Responding at Machine Speed
- Systems that respond and prevent attacks requires analytics that work at machine speed.
- Current disk/log based tools take hours.
- Ram based systems loose data quickly
- Low and slow attackers exploit this
Data Architectures to Bridge this Gap

Bottom line up front (BLUF)

Use Write Optimized Data Structures (WODS) to build new architectures to bridge this gap and enable machine speed analytics

- Track data sets far larger than core memory
- Enable sustained long-term low-maintenance operations

Research Thrusts:

1. **New data architectures** to support our cyber missions
2. **Algorithm research** to address known limits, and
3. **Rethink** how we do **analytics** using these new capabilities
Memory and Disk access times

RAM: ~60 nanoseconds per access
Disks: ~6 milliseconds per access.

*disk is ~100,000 times slower*

**Analogy:**
- RAM = escape velocity from earth (25,000 mph)
- disk = walking speed of the giant tortoise (0.3 mph)

~83,333x slower
Current Approaches

No capability of timely reporting across data larger than RAM

- One disk write per insert takes ~6ms
- Best rates of 200 – 2000 inserts per second
- We see rates of 100K to millions

Clustering?

- Log processing tools and large scale parallel data stores (hadoop, Splunk and postgres)
- Cyber responders have long been fighting issues of ingestion rate, query response and data size.
  - They have many parallel machines and lots of experts to tune the system at some cost.
  - In the end they still do grep in parallel across large logs.
Standing Queries & Firehose

Database requirements:
- No false negatives
- Limited false positives
- Immediate response preferred
- Window of size N limits insights
- Rate of R typically means RAM

Firehose benchmark
- Captures essence of monitoring
- Sandia + DoD partners
- Input: stream of (key, value) pairs
- Report a key when seen 24th time.

http://firehose.sandia.gov/
Limits of Current RAM Based Analytics

- Tested state of the art analytic, waterslide with firehose
  https://github.com/waterslideLTS/waterslide
- Accuracy of cyber-analytics depends on window size
- As the monitored set grew beyond RAM accuracy fell quickly

<table>
<thead>
<tr>
<th>Analytic Size</th>
<th>Firehose Size</th>
<th>Ratio</th>
<th>Events Found</th>
</tr>
</thead>
<tbody>
<tr>
<td>1048576</td>
<td>1048576</td>
<td>1x</td>
<td>66.04%</td>
</tr>
<tr>
<td>1048576</td>
<td>2097152</td>
<td>2x</td>
<td>23.82%</td>
</tr>
<tr>
<td>1048576</td>
<td>4194304</td>
<td>4x</td>
<td>0.06%</td>
</tr>
</tbody>
</table>

It's clear we need more space.
How do we integrate storage without losing performance?
Write Optimized Data Structure

Optimal Insert / Query Tradeoff
[Brodal, Fagerberg 03]

I/O per Insert
I/O per Point Query

Logging

Write Optimized Data Structures (WODS)

B-Tree
B-Tree & \( B^\varepsilon \)-Tree

B-Tree is used to index keys.

Insert & Lookup take \( O(\log_B N) \)

\( B^\varepsilon \)-Tree buffers inserts at each layer in the tree to aggregate writes.

Lookup takes \( O(\log N) \)

Insert takes \( O\left(\frac{\log N}{B}\right) \)

Inserts up to 100x faster

Take Away: WODS offers a balance between RAM and Disk for fast ingestion and organized data.
Comparing WODS to Traditional B-Trees

BADGERS 2015 Paper
- Compared indexing IP connections with B-Tree and WODS - $B^\varepsilon$ Tree
- B-Tree initial better but
- Quickly reduced to unsustainable rates.
- $B^\varepsilon$ Tree able to sustain reasonable indexing throughput

![Insertion Rates $B^\varepsilon$ Tree v B-Tree](chart.png)
Tracking Network Connections at SCinet
Research Thrusts Going Forward

**Research Thrusts:**

1. **New data architectures** and prototype tools that use WODS to track real-world events to support our cyber missions
   - Our Demand query tool (DQT) & Standing query tool (SQT) serve as vehicles for researching advanced architectures and algorithms on real-world data.

2. **Algorithm research** to address infinite streams of data, including expiration, sustainability, and adaptability, and

3. **Rethink** how we do **analytics** using these new capabilities to support machine speed consequence mitigation
Did’t <Big Tech.com> Already Solve This?

NO.

- Our problem space needs to ingest millions of events per second and answer questions in seconds while maintaining a state space on secondary storage.

- Some indexes the data over night and doesn’t have to provide answers up to the second

- They work in standing queries are at thousands per second we’re at 100k--millions.
Use Write Optimized Data Structures (WODS) to build new architectures to bridge this gap and enable machine speed analytics

- Track data sets far larger than core memory
- Enable sustained long-term low-maintenance operations

Research Thrusts:
1. **New data architectures** to support our cyber missions
2. **Algorithm research** to address known limits, and
3. **Rethink** how we do **analytics** using these new capabilities
Write Optimized B-Tree

We used is a combination called BεTree (pronounce B to the epsilon tree) that balances branching and buffering at each node.

Aggregates writes with a buffer of size B at each at each node. ε slots are used as pivots and B-ε are used as buffers.

Flush costs O(1) and happens O(1/B). The result is inserts are now O((logN)/B)

For a large B ~1024 this can be 100x faster in practice. [Bender 2007]
Memory and Disk access times

Disks: ~6 milliseconds per access.
RAM: ~60 nanoseconds per access

Analogy:
• disk = distance from home to first base (90 feet)
• RAM = distance from AT&T Park to Kauffman Stadium (1500 miles)
What is Happening?

• Waterslide uses ‘d-left hashing’
  – Two rows of buckets
  – Constant-size
  – Fast
  – Waterslide adds LRU expiration per bucket

• 1/16 of all data is always subject to immediate expiration in steady state

• As active generator window grows, FIREHOSE accuracy quickly goes to zero


Even when window size is only 4x data structure size, most reportable data are lost before it is reported.