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Reservoir Labs: Technology Expertise
Networking High-Performance Computing

Cybersecurity Algorithms

R-Core
Packet Path Accelerator

GradientGraph
Network Optimization

R-Stream
Automatic Parallelization and 
Mapping Through Polyhedral 

Model

LLVM
Customization for Advanced 

Supercomputers

R-Scope
Network Sensor Visibility 

Enterprise Security 

ENSIGN: Cyber
Spectral Hypergraph Analytics

Asymptotic Improvements to Physical Simulation and 
Inverse Problems
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We show how to scale 
bottleneck structure analysis to 
production networks.
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Motivating Bottleneck Analysis
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The Conventional View of Congestion Control
● Consider each flow individually
● Network conditions are a black box

Recent work from Google1:

“Regardless of how many links a connection traverses or what their individual 
speeds are, from TCP's viewpoint an arbitrarily complex path behaves as 
a single link with the same RTT [round-trip time] and bottleneck rate.

1 Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh, Van Jacobson, "BBR: 
Congestion-Based Congestion Control," ACM Queue, Dec 2016.
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What are we missing?
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Hidden 
interdependency

Single-bottleneck view
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The Theory of Bottleneck Structures 
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● Consider all the flows together
● Explain where the network conditions come from

○ “How does each element affect the performance of the other elements?”
● Model this latent dependency structure as a directed graph
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Simple Example
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L1

c1 = 1 Mbps

L2

c2 = 2 Mbps

F1 F2

F3

L1
fs = ½ 

F1
r = ½ 

F2
r = 1½ 

L2
fs = 1½  

F3
r = ½ 
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Insight from Bottleneck Structures
● Suppose there are six TCP flows in a network 

with the following rates (Mbps):

● Which is the elephant flow? Flow 5?
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L1
fs = 8⅓  

F1
r = 8⅓

F3
r = 8⅓

F6
r = 8⅓

L2
fs = 16 ⅔    

F2
r = 16 ⅔ 

F4
r = 16 ⅔ 

L3
fs = 75    

L4
fs = 75    

F5
r = 75 

r1 = 8 ⅓  r2 = 16 ⅔ r3 = 8 ⅓ 
r4 = 16 ⅔ r5 = 75 r6 = 8 ⅓ 
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r1 = 8 ⅓ 
r2 = 16 ⅔ 
r3 = 8 ⅓ 
r4 = 16 ⅔ 
r5 = 75
r6 = 8 ⅓ 
——————
T = 133 ⅓ 
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What if we artificially set r3 = 8?
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r1 = 8 ⅓ 
r2 = 16 ⅔ 
r3 = 8 ⅓ 
r4 = 16 ⅔ 
r5 = 75
r6 = 8 ⅓ 
——————
T = 133 ⅓ 
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r1 = 8 ½  
r2 = 16 ¾ 
r3 = 8
r4 = 16 ¾   
r5 = 74 ¾ 
r6 = 8 ½ 
——————
T = 133 ¼ 

What if we artificially set r3 = 8?
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Flow Derivatives
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Flow Derivatives
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Applications of 
Bottleneck 
Structure 
Analysis

14

Traffic Engineering

Flow control optimization 

Routing optimization

Multi-path optimization

Flow admission control

Bandwidth steering

Network design

Capacity planning

Topology design

Resiliency analysis

Robustness analysis

Bandwidth tapering

Intent-based networking 

Performance baselining

Multi-resource modeling

Performance troubleshooting

SLA management
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Use Case: Link Upgrades
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Chi-yao Hong, et al. “B4 and After: Managing Hierarchy, Partitioning, and Asymmetry for Availability and Scale in 
Google's Software-Defined WAN”, SIGCOMM'18 (2018).

60 flows use L1   40 use L2

45 bottlenecked at L1           15 bottlenecked at L2

dT / dc1 = 2   dT / dc2 = 10

https://research.google/people/ChiyaoHong/
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Algorithms
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Algorithms
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Construct the bottleneck structure graph (and 
calculate rate assignments) Calculate a flow or link derivative

INDIS 
2019

ComputeBS

● Modified Water-Filling Algorithm (Bertsekas & 
Gallager, 1992)

●

BruteGrad

● Change the rate, then recompute rate assignments from 
scratch

● Slow, numerical problems
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ESnet: A Practical Use Case 

High-performance data network that 
services 50 DOE research sites

As of 2013:

● 28 routers
● 78 links
● > 100K flows

Constantly changing conditions!
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Algorithms
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Construct the bottleneck structure graph (and 
calculate rate assignments) Calculate a flow or link derivative

INDIS 
2019

ComputeBS

● Modified Water-Filling Algorithm (CITE 
SIGMETRICS) 

●

BruteGrad

● Change the rate, then recompute rate assignments from 
scratch

● Slow, numerical problems

INDIS 
2020

FastComputeBS

● Improved Water-Filling Algorithm using a 
min-heap

●

ForwardGrad

● Based on forward prop automatic differentiation

● Propagate perturbations along the bottleneck structure 
graph

● Runtime is linear in number of affected elements
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ForwardGrad
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Use the bottleneck structure 
graph to speed calculation of 
the derivative

L1
fs = ½ 

F1
r = ½ 

F3
r = 1½ 

L2
fs = 1½  

F2
r = ½ 

+𝛅

+𝛅/2+𝛅/2

-𝛅/2

-𝛅/2
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ForwardGrad
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Use the bottleneck structure 
graph to speed calculation of 
the derivative

L1
fs = ½ 

F1
r = ½ 

F3
r = 1½ 

L2
fs = 1½  

F2
r = ½ 

-𝛅

+𝛅-𝛅

+𝛅

+𝛅
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Benchmarking
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Benchmarking: Dataset
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● NetFlow logs from ESnet
○ 28 routers

● Feb. 1st, 2013 – Feb. 7th, 
2013 (Friday – Saturday)

● Sampled every 5 minutes from 
8 am – 8 pm
○ 1008 logs per router
○ 28224 logs total

● 78 links
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Benchmarking: Software

Python Package (INDIS 2019)

● ConstructBS
● BruteGrad
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C++ Package (INDIS 2020)

● FastConstructBS
● BruteGrad
● ForwardGrad

Tasks:
1. Compute the bottleneck structure graph for each of the 1008 snapshots
2. Compute derivative of total throughput with respect to all 78 link derivatives 

for each of 12 snapshots
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Computing Bottleneck Structures: Runtime
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● 87x improvement
● Max: 0.44 s
● Avg: 0.21 s
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Computing Bottleneck Structures: C++ Runtime
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Computing Bottleneck Structures: Memory Usage (4x)
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Computing Link Derivatives: Runtime
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Python vs. C++: 66 x

New algorithm: 3.5 x

ForwardGrad avg: 0.09 s
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Computing Link Derivatives: BruteGrad++ Runtime
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✅ ��
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Computing Link Derivatives: ForwardGrad Runtime
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Computing Link Derivatives: ForwardGrad Memory
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Python vs. C++
10 x

BruteGrad vs. 
ForwardGrad

30 x
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Computing Link Derivatives: ForwardGrad Memory
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Our new algorithms and software… 

● Are fast enough to analyze changing networks in real time
● Have highly scalable asymptotic complexity curves in time 

and space
● Unlock myriad potential applications of bottleneck analysis
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Thank You!

34

Contact Us 

● Dr. Jordi Ros-Giralt: giralt@reservoir.com
● Noah Amsel (me): amsel@reservoir.com
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