

(Proprietary)

Computing Bottleneck Structures at Scale for
High-Precision Network Performance Analysis

Noah Amsel, Jordi Ros-Giralt, Sruthi Yellamraju,
James Ezick, Brendan von Hofe, Alison Ryan, Richard Lethin

Reservoir Labs
7th Annual International Workshop on Innovating the Network for Data-Intensive Science

November 2020

(Proprietary) 2

Reservoir Labs: Technology Expertise
Networking High-Performance Computing

Cybersecurity Algorithms

R-Core
Packet Path Accelerator

GradientGraph
Network Optimization

R-Stream
Automatic Parallelization and
Mapping Through Polyhedral

Model

LLVM
Customization for Advanced

Supercomputers

R-Scope
Network Sensor Visibility

Enterprise Security

ENSIGN: Cyber
Spectral Hypergraph Analytics

Asymptotic Improvements to Physical Simulation and
Inverse Problems

(Proprietary)

We show how to scale
bottleneck structure analysis to
production networks.

3

(Proprietary)

Motivating Bottleneck Analysis

4

(Proprietary)

The Conventional View of Congestion Control
● Consider each flow individually
● Network conditions are a black box

Recent work from Google1:

“Regardless of how many links a connection traverses or what their individual
speeds are, from TCP's viewpoint an arbitrarily complex path behaves as
a single link with the same RTT [round-trip time] and bottleneck rate.

1 Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh, Van Jacobson, "BBR:
Congestion-Based Congestion Control," ACM Queue, Dec 2016.

5

(Proprietary)

What are we missing?

6

Hidden
interdependency

Single-bottleneck view

(Proprietary)

The Theory of Bottleneck Structures

7

● Consider all the flows together
● Explain where the network conditions come from

○ “How does each element affect the performance of the other elements?”
● Model this latent dependency structure as a directed graph

(Proprietary)

Simple Example

8

L1

c1 = 1 Mbps

L2

c2 = 2 Mbps

F1 F2

F3

L1
fs = ½

F1
r = ½

F2
r = 1½

L2
fs = 1½

F3
r = ½

(Proprietary)

Insight from Bottleneck Structures
● Suppose there are six TCP flows in a network

with the following rates (Mbps):

● Which is the elephant flow? Flow 5?

9

L1
fs = 8⅓

F1
r = 8⅓

F3
r = 8⅓

F6
r = 8⅓

L2
fs = 16 ⅔

F2
r = 16 ⅔

F4
r = 16 ⅔

L3
fs = 75

L4
fs = 75

F5
r = 75

r1 = 8 ⅓ r2 = 16 ⅔ r3 = 8 ⅓
r4 = 16 ⅔ r5 = 75 r6 = 8 ⅓

(Proprietary)

r1 = 8 ⅓
r2 = 16 ⅔
r3 = 8 ⅓
r4 = 16 ⅔
r5 = 75
r6 = 8 ⅓
——————
T = 133 ⅓

10

What if we artificially set r3 = 8?

(Proprietary)

r1 = 8 ⅓
r2 = 16 ⅔
r3 = 8 ⅓
r4 = 16 ⅔
r5 = 75
r6 = 8 ⅓
——————
T = 133 ⅓

11

r1 = 8 ½
r2 = 16 ¾
r3 = 8
r4 = 16 ¾
r5 = 74 ¾
r6 = 8 ½
——————
T = 133 ¼

What if we artificially set r3 = 8?

(Proprietary)

Flow Derivatives

12

(Proprietary)

Flow Derivatives

13

(Proprietary)

Applications of
Bottleneck
Structure
Analysis

14

Traffic Engineering

Flow control optimization

Routing optimization

Multi-path optimization

Flow admission control

Bandwidth steering

Network design

Capacity planning

Topology design

Resiliency analysis

Robustness analysis

Bandwidth tapering

Intent-based networking

Performance baselining

Multi-resource modeling

Performance troubleshooting

SLA management

(Proprietary)

Use Case: Link Upgrades

15

Chi-yao Hong, et al. “B4 and After: Managing Hierarchy, Partitioning, and Asymmetry for Availability and Scale in
Google's Software-Defined WAN”, SIGCOMM'18 (2018).

60 flows use L1 40 use L2

45 bottlenecked at L1 15 bottlenecked at L2

dT / dc1 = 2 dT / dc2 = 10

https://research.google/people/ChiyaoHong/

(Proprietary)

Algorithms

16

(Proprietary)

Algorithms

17

Construct the bottleneck structure graph (and
calculate rate assignments) Calculate a flow or link derivative

INDIS
2019

ComputeBS

● Modified Water-Filling Algorithm (Bertsekas &
Gallager, 1992)

●

BruteGrad

● Change the rate, then recompute rate assignments from
scratch

● Slow, numerical problems

(Proprietary)

ESnet: A Practical Use Case

High-performance data network that
services 50 DOE research sites

As of 2013:

● 28 routers
● 78 links
● > 100K flows

Constantly changing conditions!

18

(Proprietary)

Algorithms

19

Construct the bottleneck structure graph (and
calculate rate assignments) Calculate a flow or link derivative

INDIS
2019

ComputeBS

● Modified Water-Filling Algorithm (CITE
SIGMETRICS)

●

BruteGrad

● Change the rate, then recompute rate assignments from
scratch

● Slow, numerical problems

INDIS
2020

FastComputeBS

● Improved Water-Filling Algorithm using a
min-heap

●

ForwardGrad

● Based on forward prop automatic differentiation

● Propagate perturbations along the bottleneck structure
graph

● Runtime is linear in number of affected elements

(Proprietary)

ForwardGrad

20

Use the bottleneck structure
graph to speed calculation of
the derivative

L1
fs = ½

F1
r = ½

F3
r = 1½

L2
fs = 1½

F2
r = ½

+𝛅

+𝛅/2+𝛅/2

-𝛅/2

-𝛅/2

(Proprietary)

ForwardGrad

21

Use the bottleneck structure
graph to speed calculation of
the derivative

L1
fs = ½

F1
r = ½

F3
r = 1½

L2
fs = 1½

F2
r = ½

-𝛅

+𝛅-𝛅

+𝛅

+𝛅

(Proprietary)

Benchmarking

22

(Proprietary)

Benchmarking: Dataset

23

● NetFlow logs from ESnet
○ 28 routers

● Feb. 1st, 2013 – Feb. 7th,
2013 (Friday – Saturday)

● Sampled every 5 minutes from
8 am – 8 pm
○ 1008 logs per router
○ 28224 logs total

● 78 links

(Proprietary)

Benchmarking: Software

Python Package (INDIS 2019)

● ConstructBS
● BruteGrad

24

C++ Package (INDIS 2020)

● FastConstructBS
● BruteGrad
● ForwardGrad

Tasks:
1. Compute the bottleneck structure graph for each of the 1008 snapshots
2. Compute derivative of total throughput with respect to all 78 link derivatives

for each of 12 snapshots

(Proprietary)

Computing Bottleneck Structures: Runtime

25

● 87x improvement
● Max: 0.44 s
● Avg: 0.21 s

(Proprietary)

Computing Bottleneck Structures: C++ Runtime

26

(Proprietary)

Computing Bottleneck Structures: Memory Usage (4x)

27

(Proprietary)

Computing Link Derivatives: Runtime

28

Python vs. C++: 66 x

New algorithm: 3.5 x

ForwardGrad avg: 0.09 s

(Proprietary)

Computing Link Derivatives: BruteGrad++ Runtime

29

✅ ��

(Proprietary)

Computing Link Derivatives: ForwardGrad Runtime

30

✅��

(Proprietary)

Computing Link Derivatives: ForwardGrad Memory

31

Python vs. C++
10 x

BruteGrad vs.
ForwardGrad

30 x

(Proprietary)

Computing Link Derivatives: ForwardGrad Memory

32

(Proprietary) 33

Our new algorithms and software…

● Are fast enough to analyze changing networks in real time
● Have highly scalable asymptotic complexity curves in time

and space
● Unlock myriad potential applications of bottleneck analysis

(Proprietary)

Thank You!

34

Contact Us

● Dr. Jordi Ros-Giralt: giralt@reservoir.com
● Noah Amsel (me): amsel@reservoir.com

Related Publications

● Giralt et. al., “On the Bottleneck Structure of Congestion-Controlled Networks,” ACM SIGMETRICS,
Boston, June 2020.

● Giralt et. al., “G2: A Network Optimization Framework for High-Precision Analysis of Bottleneck and
Flow Performance,” INDIS, Nov. 2019.

● Gudibanda, et al., “Fast Detection of Elephant Flows with Dirichlet-Categorical Inference,” INDIS
November, 2018.

mailto:Giralt@Reservoir.com

