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We show how to scale
bottleneck structure analysis to
production networks.
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Motivating Bottleneck Analysis
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The Conventional View of Congestion Control

e Consider each flow individually
e Network conditions are a black box

Recent work from Google':

‘Regardless of how many links a connection traverses or what their individual
speeds are, from TCP's viewpoint an arbitrarily complex path behaves as
a single link with the same RTT [round-trip time] and bottleneck rate.

' Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh, Van Jacobson, "BBR:
Congestion-Based Congestion Control," ACM Queue, Dec 2016.
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What are we missing?

} Single-bottleneck view

\

> Hidden
interdependency
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The Theory of Bottleneck Structures

e Consider all the flows together
e Explain where the network conditions come from

o “How does each element affect the performance of the other elements?”
e Model this latent dependency structure as a directed graph
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Insight from Bottleneck Structures

e Suppose there are six TCP flows in a network
with the following rates (Mbps):
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r,=16%  1,=75 r,=87%
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What if we artificia
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What if we artificially setr, = 87
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Flow Derivatives
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Flow Derivatives
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Applications of
Bottleneck
Structure
Analysis

Traffic Engineering

Flow control optimization

Routing optimization

Multi-path optimization

Flow admission control

Bandwidth steering

Network design

Capacity planning

Topology design

Resiliency analysis

Robustness analysis

Bandwidth tapering

Intent-based networking

Performance baselining

Multi-resource modeling

Performance troubleshooting

SLA management
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Use Case: Link Upgrades

aaaaaa

China  SoutyfKorea

Indonesia cuader

vvvvv
GGGGG

v

Ubys

40use L2 =

orocco
Asurmans

] ~
e

15-bottlenecked at L-2

aaaaa

dT/dc1 =2

.........

nnnnn

‘“dT Idc2=10 -~ —

Argentina

Chi-yao Hong, et al. “B4 and After: Managing Hierarchy, Partitioning, and Asymmetry for Availability and Scale in

Google's Software-Defined WAN”, SIGCOMM'18 (2018).
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Algorithms

INDIS
2019

Construct the bottleneck structure graph (and
calculate rate assignments)

Calculate a flow or link derivative

ComputeBS

e Modified Water-Filling Algorithm (Bertsekas &
Gallager, 1992)

* O(lE[- L))

BruteGrad

Change the rate, then recompute rate assignments from
scratch

Slow, numerical problems

Reservoir Labs
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ESnet: A Practical Use Case

H |g h' pe rfo rm a n Ce d ata n etWO rk that ESnet5 Routed Network November 2012

DRAFT

services 50 DOE research sites
As of 2013: )

e 28 routers
e 7/8Ilinks
e > 100K flows

SUNN ESnet PoP/hub locations
j09) ESnet managed 100G routers. o
@@ ESnet managed 10G router \ Routed IP 100 Gbls —
(100) Site managed routers \ \ Routed IP 4 X 10 Gb/s —
LOSA ESnet optical node locations (only some are shown) " 3 party 105b/s  o—
© ESnet optical transport nodes (only some are shown) Express / metro 100 Gbis
. . Express / metro 10G
commercial peering points
R&E network peering locations Expruse multi palli 100
pesree Lab supplied links

LBNL® Major Office of Science (SC) sites Other links
LLNL @ Major non. -SC DOE sites Geography is Tail circuits e

Constantly changing conditions!
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Algorithms

INDIS
2019

INDIS
2020

Construct the bottleneck structure graph (and

calculate rate assignments)

Calculate a flow or link derivative

ComputeBS

e Modified Water-Filling Algorithm (CITE
SIGMETRICS)

*  O(E]-|£])

FastComputeBS

e Improved Water-Filling Algorithm using a
min-heap

o O(|E|log|L])

BruteGrad

e Change the rate, then recompute rate assignments from
scratch

e Slow, numerical problems

ForwardGrad
e Based on forward prop automatic differentiation

e Propagate perturbations along the bottleneck structure
graph

e Runtime is linear in number of affected elements

Reservoir Labs
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ForwardGrad +6

Use the bottleneck structure
graph to speed calculation of @ +8/2

the derivative +0/2
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ForwardGrad

Use the bottleneck structure
graph to speed calculation of
the derivative

-0

+0

()

drs _ 40 _q
d’l“l_—|—5— +6

+0

Reservoir Labs (Proprietary)

21



Benchmarking
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Benchmarking: Dataset

e NetFlow logs from ESnet
o 28 routers
e Feb. 1st, 2013 — Feb. 7th,
2013 (Friday — Saturday)
e Sampled every 5 minutes from
8 am -8 pm
o 1008 logs per router

o 28224 logs total
e 78links

Flows vs. Snapshot
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Benchmarking: Software

Tasks:

1. Compute the bottleneck structure graph for each of the 1008 snapshots

2. Compute derivative of total throughput with respect to all 78 link derivatives
for each of 12 snapshots

Python Package (INDIS 2019) C++ Package (INDIS 2020)
e ConstructBS e FastConstructBS
e BruteGrad e BruteGrad

e ForwardGrad
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Computing Bottleneck Structures: Runtime

Runtimes vs. Snapshot
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Computing Bottleneck Structures: C++ Runtime
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Computing Bottleneck Structures: Memory Usage (4x)

Memory Usage vs. Snapshot

C++: Memory Usage (MB) vs. edges
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Computing Link Derivatives: Runtime

Runtimes Across All Trials
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Computing Link Derivatives: BruteGrad++ Runtime

BruteGrad++: Run time (s) vs. flows
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BruteGrad++: Run time (s) vs. Size of Region of Influence
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Computing Link Derivatives: ForwardGrad Runtime

ForwardGrad: Run time (s) vs. flows ForwardGrad: Run time (s) vs. Size of Region of Influence
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Computing Link Derivatives: ForwardGrad Memory

Memory Usage Across All Trials
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Computing Link Derivatives: ForwardGrad Memory

ForwardGrad Memory Usage vs. Region of Influence
(Middle 99% of Data)
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* A
Our new algorithms and software... . /l ‘
u w algori Y, @ -®-

e Are fast enough to analyze changing networks in real time

e Have highly scalable asymptotic complexity curves in time
and space

e Unlock myriad potential applications of bottleneck analysis
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Thank Youl!

Contact Us

Reservoir Labs

e Dr. Jordi Ros-Giralt: giralt@reservoir.com
e Noah Amsel (me): amsel@reservoir.com

Related Publications

e Giralt et. al., “On the Bottleneck Structure of Congestion-Controlled Networks,” ACM SIGMETRICS,
Boston, June 2020.

e Giralt et. al., “G2: A Network Optimization Framework for High-Precision Analysis of Bottleneck and
Flow Performance,” INDIS, Nov. 2019.

e (Gudibanda, et al., “Fast Detection of Elephant Flows with Dirichlet-Categorical Inference,” INDIS
November, 2018.
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