
High-Performance Virtualized SDN Switches
for Experimental Network Testbeds

Richard Czivaa,∗, Jerry Sobieskib, Yatish Kumarc

aUniversity of Glasgow / NORDUnet
bNORDUnet / GEANT
cCorsa Technologies

Abstract

Software-Defined Networking (SDN) has been in the spotlight of the networking
research community by promising programmability and centralized control over the
entire network infrastructure. During the recent years, SDN’s most wide-known real-
isation, the OpenFlow [1] protocol, has gained support from many software and hard-
ware switch vendors resulting in SDN deployments at campus networks and industry
systems. To support experimentation and research projects, experimental testbeds
have also started introducing SDN resources to support research and application de-
velopment in this new service model.

However, despite their widespread adoption, current SDN resources offered by
experimental testbeds do not support virtualization at the device level, resulting in
inefficient provisioning, as well as functional and performance limitations. To solve
the aforementioned problems, GEANT and Corsa have been working together to de-
liver fully virtualized OpenFlow resources as part of the GEANT Testbed Service, one
of Europe’s large-footprint experimental network testbed facilities. The proposed vir-
tual switches can be provisioned using a human-readable domain specific language
and provide high-performance (up to 100Gbit/s) packet forwarding with accurate re-
source isolation between multiple OpenFlow-compliant virtual switches.

Keywords: Software Defined Networking, OpenFlow, Corsa, Virtual Switch
Instances, Domain Specific Language, Experimental Network Testbeds

1. Introduction

Software-Defined Networking (SDN) is a promising approach to centralize the con-
trol plane of a network and decouple the control place from a data plane that only per-
forms basic packet processing and forwarding. The OpenFlow [1] protocol, as SDN’s

∗I am corresponding author
Email addresses: r.cziva.1@research.gla.ac.uk (Richard Cziva), jerry@nordu.net (Jerry

Sobieski), yatish@corsa.com (Yatish Kumar)

Preprint submitted to SI: SC16 - INDIS November 8, 2016



first and most popular realization, has been used in countless research and commer-
cial systems as an open protocol to communicate between between SDN controllers
(e.g., Ryu, ONOS, Open Daylight, Quagga, Faucet, etc.) and the data plane of the net-
work devices. Following the widespread adoption and the trending research around
SDN, OpenFlow resources have been introduced to experimental network testbeds.
OpenFlow switches can now be provisioned in testbeds such as the GENI, the GEANT
Testbeds Service, and numerous FIRE projects.

While in today’s experimental testbeds compute resources and transport resources
have been offered as virtualized resources such as Virtual Machines and VLANs
or other virtual circuits, this has not been the case for SDN/OpenFlow resources.
First, traditional OpenFlow switches lack virtualization support, resulting in Open-
Flow switches being treated as single physical boxes that work with a single con-
troller. This limits the sharing of the physical device, and often pushes excess com-
plexity into the controller and user applications in an effort to support secure sharing
of the hardware. Some vendors support multiple logical OpenFlow protocol instances
that allow ports to be mapped to each instance and allow a separate controller to
be linked to each instance. While this is an improvement, these partitioned sharing
models still require flows to match against physical port IDs - which violates virtual-
ization by exposing physical port information and tie the application (the controller in
this case) to specific physical port assignments. This means that migrating a logical
switch from one physical switch to an other can invalidate many flow entries that rely
on physical port numbers (it is the case for many L2 switching applications). Also, the
physical port delegation to specific OpenFlow instances does not allow port sharing -
a big problem if there are high capacity backbone links (10/40/100Gbps) terminated
on the switch.

Moreover, as most OpenFlow switches have not been designed for virtualization,
they lack flow space and performance isolation. While a viable solution is to virtualize
traditional switches using a transparent software layer (e.g., Flowvisor [2]) on top of
the physical devices, these solutions introduce substantial latency and complexity to
flow management since each OpenFlow interaction must transit the proxy controller,
and inserting and deletion of each flowspec must be inspected and authorized. These
software approaches further do not support fine-grained resource allocation between
virtual switches. We believe and advocate that virtualization should be supported by
the physical devices, the same way as CPUs today support virtualization as a hardware
feature (e.g., VT-X feature in Intel CPUs). Moreover, we believe that there should be
a common, platform-independent description language that can be used to describe
and provision OpenFlow resources in experimental research testbeds.

In this paper, we will introduce Virtual Switch Instances (VSI)s. VSIs are the result
of collaboration between the academic network research community (GEANT network
consortium, and the Nordic Universities Network NORDUnet), and an SDN switch
vendor (Corsa Technologies). The contribution of this work is twofold:

2



1. First, we present the Virtual Switch Instances and a hardware appliance de-
signed with full OpenFlow switch virtualization in the focus.

2. Also, we present a platform-independent description language that is used to
define virtual OpenFlow switch resources. We evaluate the proposed system in
a European experimental network testbed (GEANT’s GTS project).

The remained of this paper is organized as follows. In Section 2 we introduce the
Virtual Switch Instances with their benefits for users and providers. In Sections 3
and 4 we introduce the advances we made to implement VSIs in hardware and soft-
ware, respectively. In Section 5 we provide evaluation results using high traffic load
and multiple virtual switches created on a single physical device. In Section 6 we
compare various experimental testbeds by their SDN/OpenFlow resource offerings.
In Section 7 we conclude the paper.

2. Virtual Switch Instances

In this Section, we are introducing virtualized OpenFlow switches, called Virtual
Switch Instances (VSI)s. VSIs, if implemented rigorously, allow hardware switching
infrastructure to be shared by multiple independent SDN applications (controllers)
- each perceiving their own SDN fabric. The two key contributions of VSIs are the
following:

• Each VSI provides its own OpenFlow protocol model context, such as a controller
protocol stack, flow space with separate flow entries, meters, flow groups and
counters.

• The switch virtualizes the port mapping in the fast path. This port mapping
allows each VSI to be virtualized and separated from physical port specifications.

The following two subsections detail how traffic is mapped to VSIs and how providers
and users benefit from VSIs.

2.1. Mapping traffic to VSIs

Mapping traffic to VSIs is one of the key aspects of the proposed system. In our
case, each packet is inspected upon arrival and the port/outer VLAN tag is swapped to
a VSI instance identifier and a virtual port identifier. From this point, the user’s flow
specifications match against the virtual port identifier and not the physical one where
the packet entered the device. As shown for example in Figure 1 at physical port 5, all
packets arriving with VLAN id 10 will be directed without the VLAN tag to VSI 2 on
virtual port 1. While we use outer VLAN tags (applied by an edge router connecting
hypervisors and external connections to the switch) to allow multiple users sharing
the same physical links, one could assign untagged physical ports directly to VSIs, as

3



VL
AN

	1
0

6
(10G)

VL
AN

	1
2

VL
AN

	1
1

U
N
TA
G
G
ED

4
(10G)

VL
AN

	2
0

VL
AN

	1
0

Virtual	Switch	Instance	2
(Customer	C)

1
(10G)

2
(10G)

Virtual	Switch	Instance	1
(Customer	A)

421 3

User	
Controller

1 43 56 2

User	
Controller

U
N
TA
G
G
ED

3
(10G)

VL
AN

	3
0

VL
AN

	2
0

OPENFLOW	1.5OPENFLOW	1.4

VL
AN

	1
0

5
(10G)

VL
AN

	1
2

VL
AN

	1
1

VL
AN

	1
0

7
(10G)

VL
AN

	1
2

VL
AN

	1
1

VL
AN

	1
0

8
(10G)

VL
AN

	1
2

VL
AN

	1
1

VL
AN

	1
0

9
(100G)

VL
AN

	1
2

VL
AN

	1
1

VL
AN

	1
4

VL
AN

	1
3

VL
AN

	1
5

5

Figure 1: Mapping traffic to different VSI contexts.

shown at port 1 and 2 in Figure 1, packets can also arrive untagged and mapped to
VSIs directly without VLAN tag removal.

Mapping traffic to VSIs is supported in high speed, equivalent to an MPLS swap
function, where frames can be remapped at line rate, exceeding 100Gbps. When
packets leave the device (outbound frames), the port mapping is reversed, where the
VSI identifier and the output port are remapped to physical port and an outer tag.
The push or pop of the outer tag is configurable and can be disabled - in this case port
sharing is still supported, but VSIs will see the native frame information.

2.2. Benefits

2.2.1. Benefits for Providers

The key benefit for providers is that VSI are "well bounded" service objects. Providers
can allocate VSIs to arbitrary users and can securely constrain the range of traffic
those VSIs can see or manipulate and can efficiently manage the switching capacity
and performance allocated to each VSI. Just as Virtual Machines present an effective
means for cloud service providers to allocate computational resource securely, so Vir-
tual Switch Instances allow network service providers to allocate switching capability
inside their network securely. The user sees their own customized dedicated switch
fabric and a full network flowspace, the provider sees a bounded manageable and
secure service object they can offer to arbitrary users.

4



Further, as VSIs are fully virtualized resources that, by merit of virtual port map-
ping, have flowspecs that match against virtual ports - not physical ports. Thus re-
locating the VSI to reflect network events or management requirements can be per-
formed by copying the VSI context and simply remapping the virtual ports. The VSI
virtual ports do not change, and thus the user controller/application does not need
to rediscover its topology and rewrite all of its flow rules. The user application may
see a brief interruption (on the order of a few milliseconds such as for a protection
switch) but this capability allows providers to migrate and groom VSIs across physi-
cal platforms without changing the logical topology of the user network or otherwise
breaking the SDN application. This supports maintenance windows, efficient infras-
tructure management, and fault tolerance.

The virtual port mapping to VSIs also enables port sharing, as a single backbone
port can carry virtual transport links to/from multiple VSIs, i.e. entire physical ports
are not delegated to VSIs, but rather the flows or virtual circuits (VLAN, MPLS) can
be multiplexed across a single physical backbone link and mapped to their respective
VSIs and virtual ports.

2.2.2. Benefits for Users

Each VSI is perceived by the user as a complete and dedicated switch fabric. Each
VSI has its own control link and protocol stack, thus allowing the user to employ any
controller software they wish independent of any other VSIs. The configuration of the
Virtual Switch fabric instance itself can be defined by the user (such as number of
ports, version of the OpenFlow protocol used at the VSI, flowspec memory require-
ments, etc.) The GEANT Testbeds Service (GTS) uses a Groovy based domain specific
language to describe these virtual switch objects and their attributes. This switch
description is then sent to GTS via the GTS API Reserve() primitive and a VSI is allo-
cated in the desired location with the specified attributes. Apart from great functional
convenience of this service model and the VSI capabilities, VSIs operate at line-rate
(up to 100Gbit/s) - thus allowing true high performance SDN applications to be easily
provisioned across multiple provider domains globally.

The VSI allows user networks (SDN application domains) to span multiple provider
infrastructure networks without complex intervening provider control proxies that
would otherwise be needed to inspect, authorize, and arbitrate every flow rule before
installing it. Users can request VSIs in any infrastructure domain, and terminate
virtual circuits or other inter-domain transport links on those virtual ports. Providers
need only authorize and provision the initial VSI configuration, then the user has
direct control of that VSI.

An interesting side benefit of virtual port mapping means that VSIs can be sized as
necessary to an application’s requirements - small pipelined virtual network functions
such as firewall filters or traffic shapers can make use of VSIs with only a few virtual
ports, or a larger network aggregation VSI may be defined to have 100 [virtual] ports.

5



Multiple	 SDN	
applications	
controlling	 VFCs

Virtual	Switch	
Instances

Hardware	
Resource	Pool

Single	piece	
of	hardware

OpenFlow	SDN	App L3	Routing	App

VSI1
OpenFlow Switch

Any	OpenFlow	Match	
Any	Rate
Any	Port
Any	Protocol

VSI2
Optimized	L3	Router

Figure 2: Corsa DP2400 high level architecture presenting two VSIs

The virtual port mapping allows the VSIs to establish as many ports as they require
- possibly even exceeding the number of physical ports on the switch. The total ag-
gregate capacity of the switch is the theoretical limiting factor on port and switching
allocations.

3. Hardware Design

The proposed system relies on Corsa 2000 series SDN switches with a pre-production
firmware that has been developed for this project. The firmware will be available for
public later this year. The DP2000 devices provide 100G non-blocking throughput
with a capacity for over a million of OpenFlow flow entries. The devices support the
latest versions of OpenFlow (1.5) and have a massive packet buffers. Moreover, a
state-of-the-art traffic metering, policing and shaping have been introduced in order
to support multiple virtual switch instances with different bandwidth requirements.

A high-level architecture of the DP2400 device can be seen in Figure 2. As shown,
the device provides a pool of hardware resources (also called as "underlay virtualiza-
tion") for VSIs - such as Packet Processing Units (PPU)s, Ternary Content-Addressable
Memory (TCAM) units and DDR3 memory. Depending on the configuration of the de-
vice, VSIs can allocate resources from this pool.

3.1. Hardware challenges with Virtualization

Virtualization can pose significant challenges on hardware. In this Section, we
present the top three challenges that have been solved by Corsa: the flexibility of
OpenFlow tables and advances in virtual QoS, metering and statistics.

6



3.1.1. Number of OpenFlow tables

A non-virtualized OpenFlow switch tends to define an upper limit on the number
of OpenFlow tables it can support based on a number of factors, including total state
storage in TCAM and other look up memories for all the active tables, as well as total
internal program memory and register storage allocated to hold the match action
structure for each of the provisioned tables [3]. Typical numbers for such limits range
from 8 tables to 32 tables per hardware switch. In order to virtualize and multiply
the number of active pipelines both the program memory space, as well as the active
table state storage need to be scaled by a factor of NxT where N is the number of
virtual switches, and T is the number of tables per switch.

By implementing true hardware virtualization, Corsa uses innovative techniques
for collapsing the program memory space required for NxT tables. This involves the
use of common code for tables that are the same or similar across different VSIs. As
well, a hardware based context switching capability allows packets to be processed
in different VSIs through a shared program memory space with zero performance
overhead for context switching. This is essential to maintaining line rate packet pro-
cessing in the presence of virtualization.

3.1.2. Size of OpenFlow tables

In order to multiply the amount of active state by NxT for large tables such as a 1
Million entry FIB, Corsa implemented a novel algorithmic lookup solution in hardware
for longest prefix match (LPM). This allows the hardware switches to virtualize up to
8 full Internet routers holding a total of 8 Million unique addresses, rather than the
naive assumption that a single 1Million entry TCAM would be reduced to 1Million/8
= 125 thousand LPM entries per VSI. If this were the case, despite the benefits of
virtualization, the final solution would not be usable for simple Internet routing use
cases.

3.1.3. Virtualization of QoS, metering and statistics

A non virtualized OpenFlow switch provides QoS facilities that scale with the num-
ber of physical ports. Traffic shaping, policing and queueing is typically performed
on a per port basis, where typical port counts might range from 8 to 64 ports per
hardware switch [4]. Logical OpenFlow switches on the other hand can have a large
number of logical ports, as well the total number of ports that need to be traffic en-
gineered is of the order NxP , where N is the number of logical switches, and P is
the number of logical ports per logical switch. This product can easily reach numbers
as large as 10,000, which is two orders of magnitude larger than in a non virtualized
scenario.

In support of true hardware virtualization, the Corsa implementations use special-
ized ASIC based traffic engineering that can support the scale needed for implement-
ing hierarchical QoS, metering and accurate statistics collection for each VSI.

7



Figure 3: GTS high level architecture

4. Software Integration

To compliment the hardware advances presented in the previous Section, we also
propose a platform-independent Domain Specific Language (DSL) that can be used
to describe VSIs. The DSL is designed to be minimal and human-readable, yet it
contains all necessary information for a virtual OpenFlow instance. In Figure 3, we
are presenting a high-level view of the GTS system. As shown, users can request
resources by uploading their DSL file on the GUI or by calling the GTS API with the
DSL file.

The proposed description language specifies the number of ports required for the
virtual switch along with their dataplane port identifiers as shown in lines #13 and
#17. As presented in the port objects, the type of the ports attached to a virtual switch
(control or data plane port) can be specified with the "mode" parameter - as show in
line #22, where the port with id "CTRL" is specified to be a control port. This port will
then be available using the IP address and subnet defined in lines #4 and #5. The
controllers (primary and secondary), the DPID and the OpenFlow version of the switch
are also clearly listed in lines #6 to #11. Apart from these compulsory parameters,
one could add additional fields to this structure depending on the testbed. As shown
in line #3 for instance, we have a location parameter in the DSL to select a virtual
switch at a specified physical location. The "id" parameters for the VSI object and
port objects are used to specify links between various objects in a broader resource
description.

1 VSI {
2 id="OFX1"
3 location="COPENHAGEN"
4 switchIP="10.10.10.2"
5 switchSubnetMask="255.255.255.0"
6 switchDPID="0000000000000001"
7 controllerIP="10.10.10.100"

8



8 controllerPort="6633"
9 controllerIPSecondary="10.10.10.101"

10 controllerPortSecondary="6633"
11 OpenFlowVersion="OpenFlow13"
12 port {
13 ofport=1
14 id="P1"
15 }
16 port {
17 ofport=2
18 id="P2"
19 }
20 port {
21 id="CTRL"
22 mode="CONTROL"
23 }
24 }

5. Evaluation

In this Section we provide measurement results focusing on performance avail-
able through a single VSI and the performance isolation between multiple virtual
OpenFlow switches created on the switch. The hardware and software components
introduced in this paper have been set up at a lab environment at NORDUnet in
Copenhagen. For all experiments we used a beta software/firmware version on the
Corsa devices (version 1.4.0 build 18) that supports the VSI features, and a develop-
ment version of GTS that integrates VSI support and the associated DSL extensions.
On the Corsa device, we used the "Software-Defined Exchange" pipeline during the
experiments, which is a multi-table OpenFlow 1.3 pipeline with 6 flow tables.

To generate traffic, we have utilized Dell PowerEdge R430 servers with Intel E5-
2650L CPUs, 64GBs of RAM and a dual-port Intel x520 10Gbit/s network card. We
ran DPDK-pktgen and used the Network Function Performance Analyser tool [5] for
plotting results. The results presented here represent the performance that can be
observed by GTS end users when using VSIs.

5.1. Throughput of a single VSI

We evaluated the throughput achievable through a single VSI. For these experi-
ments, a single VSI with two virtual ports mapped to separate physical ports have
been created. The two ports are connected to the DPDK traffic generator, where one
is used to generate and one is used to receive traffic.

9



 0

 2

 4

 6

 8

 10

64128 256 512 1024 1280 1500

G
b
it

/s

Packet size

Sent-L3-100flows

Recv-L3-100flows

Sent-simple

Recv-simple

Figure 4: Result in Gbit/s

 0

 2

 4

 6

 8

 10

 12

 14

 16

64128 256 512 1024 1280 1500

M
P

a
c
k

e
t/

s

Packet size

10Gbit/s line-rate (theoretical max)

Sent-L3-100flows

Recv-L3-100flows

Sent-simple

Recv-simple

Figure 5: Result in MPacket/s

Two experiments were performed. First in the ’simple’ experiment, we measured
the throughput with different-sized packets and simple flow entries that match on
input ports and forward on output ports. As for a second, more realistic ’100flows’
test, the L3 matching abilities of the device have been evaluated by using packets with
randomly generated destination IPs (within a range of 100 IPs). In this case, we set the
corresponding match entries on the device before the measurements using multiple
flow tables and flow entries that match on the 100 destination IPs and forward traffic
towards the receiver end of the packet generator.

As shown in Figure 4, VSIs produced line-rate performance during both ’simple’
and ’100flows’ experiment with 10Gbit/s traffic. As presented from a different angle
in Figure 5, the number of packets sent and received through the switch are close to
the theoretical, line-rate limit, which is limited by the speed of the interfaces used.

5.2. Multiple VSIs sharing a physical port

We were also interested in the performance isolation properties of the VSIs, where
multiple VSIs shared the same physical switch substrate. The generated traffic used
two different VLAN tags that were set to direct traffic to the two different VSIs. The
test setup is shown in Figure 6.

As expected, by not setting any restrictions or QoS features on the VSIs, both VSIs
forwarded their 5Gbit/s traffic without any loss. This can be seen in Figure 7. In
an other case, we set a limiter that drops packets at 3Gbit/s, but allows for a 5Mb
burst. We set this limiter on the meter that is assigned to every packet arriving to
VSI1. As a result, we could observer a drop in the received traffic to 3Gbit/s with
larger packets and a slightly higher rate with small packets (due to burst allowed), as
shown in Figure 7. Apart from simple limits and bursts, VSIs are equipped with more
sophisticated packet coloring mechanisms to perform fine-grained policing.

10



Figure 6: Two VSIs sharing the same physical ports

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

64128 256 512 1024 1280 1500

G
b
it

/s

Packet size

Total traffic sent

Received at VSI1 with rate limiter set to VSI1

Received at VSI1 with no QoS

Figure 7: Results with multiple VSIs

6. Related work

In this section we are introducing other large-scale experimental networks and
testbeds offering OpenFlow resources. We identify some differences between those
and the VSI offerings introduced in this paper.

A prominent project, the Global Environment for Network Innovations (GENI) [6]
is a [predominantly US] infrastructure supporting "at scale" research in computer
networks, distributed systems and novel applications. The project is funded by the
US National Science Foundation. The OpenFlow core of the GENI network consists of
multiple interconnected OpenFlow-capable switches on both Internet2 and National
LambdaRail (NLR) networks. The testbed operates several OpenFlow-compliant switches
from various vendors located across the country. In their recent InstaGENI (An instant
worldwide GENI Network) project, they rely on FlowVisor and an aggregate manager
called the GENI Flowvisor OpenFlow Aggregate Manager (FOAM) [7] to provision
experimental networks instantly. FOAM is also designed to enforce safety and iso-
lation policies, such as limiting the switch CPU and memory resources available to
each slice. In comparison to GTS, by VSIs, we can now provide higher switching per-
formance and better isolation between switch slices than using software to perform
these functions.

As of October 2012, Internet2 provides a nationwide high-speed (100Gbit/s) soft-
ware defined network called the Advanced Layer2 Service (AL2S). The deployment
includes routers of the Brocade MLX family and related Brocade NetIron platforms
supporting OpenFlow, as well as Juniper Networks MX Series routers [8]. AL2S em-
ploys VLAN slicing across the SDN testbed to assign network subspaces to SDN ap-
plications or projects. VLAN slicing of this sort requires applications to know their
assigned space and to stay within it. This poses security issues that are addressed
by the Flowspace firewall proxy controller that inspects, authorizes, and updates the

11



backbone switches with each user flowspec. Flowspace firewall was an early innova-
tion developed to allow sharing of the SDN switch infrastructure. The VSI concept
described in this paper addresses many issues that have been exposed in the AL2S
early experimental infrastructure.

The Energy Science Network (ESnet) [9] has also deployed different OpenFlow
testbeds during the last few years. As stated on their website, their current 100G
testbed consists of a dedicated 100G wave and a 10G overlay between Denver, Wash-
ington DC, New York, Atlanta, Amsterdam, and Geneva. Their testbed also consists of
Corsa devices, as well as other, older OpenFlow 1.0 switches [10]. The ESnet Corsa
devices have not yet been equipped with the Virtual Switch Instance feature, but this
feature could easily be enabled in the near future. A supporting configuration and
resource management environment - such as the GTS software suite - will need to be
deployed to support efficient use of the VSIs.

A European program is the Future Internet Research and Experimentation (FIRE)
initiative that offers various experimental network testbeds and projects [11]. Many
of the research programs under FIRE offer access to SDN facilities, but these typi-
cally employ similar slicing processes - VLAN slicing, device scheduling, or promote
complementary virtualization concepts such as NFV or NSC, and are therefore do
not address the provisioning of global SDN-capable infrastructure environments The
VSI concept, if made available globally, will enable many higher level or finer-grained
experiments to be predicated on a truly global level.

A related, ongoing activity is the FED4FIRE [12] project that federates many
testbeds with various OpenFlow resource offerings that usually either apply a soft-
ware virtualization layer (FlowVisor) on top of physical devices or provide an entire
switch to a user. The resources in FED4FIRE are allocated using the GENIv3 API with
the RSpec data model. In comparison with GTS, we provide hardware virtualized
switches without a software proxy and allow users to describe an OpenFlow resource
using a human readable DSL. Efforts are underway to interwork the GTS Generalized
Virtualization Model API and the GENIv3 API, SFA, and other experimental provision-
ing protocols.

AARNet, Australia’s Academic and Research Network has also recently announced
their Australia Wide-Area SDN Testbed, established in collaboration with nine univer-
sities and CSIRA Data61 [13]. Their infrastructure consists of four interconnected
NoviFlow OpenFlow-enabled switches at AARNet backbone sites in Sydney, Melbourne,
Perth, Seattle, all controlled by an ONOS controller. In comparison to GTS, AARNet’s
testbed provides the ONOS platform for experimenters, while GTS provides VSIs that
can be used with any controller chosen by the users.

In the recent years, the GTS system has been deployed independently in networks
outside GEANT’s core. One of the prominent examples is the deployment of NOR-
DUnet, named the Global Virtualized Service (GVS). GVS consists of pods located in
Copenhagen (Denmark), Geneva (Switzerland), Miami (US) and Washington DC (US)

12



and it was the first network to test the VSI features. NORDUnet and GEANT are close
collaborators, so there is a smooth and open technology sharing and cooperation be-
tween these two service providers.

7. Conclusion

This paper introduced the Virtual Switch Instances (VSI)s that provide virtual, yet
high-performance OpenFlow switches for experimental network testbeds that allow
users to specify all aspects of an OpenFlow switch (OpenFlow version, DPID, port
identifiers, etc). The presented advances include software and hardware additions to
the GEANT Testbed Service (GTS) project. We highlighted a DSL that can be used to
describe virtual OpenFlow resources and presented an OpenFlow switch that allows
the creation of VSIs. The evaluation results show high forwarding performance and
isolation properties between VSIs.

Acknowledgements

NORDUnet1 is the network consortium binding the Nordic Research and Educa-
tion Networks of Sweden (SUNET), Norway (UNINETT), Finland (FUNET), Iceland
(RHnet), and Denmark (DeiC).

The GEANT Network Project 2 is a joint effort of the European Commission and 35
National Research and Education Networks throughout Europe.

Corsa Technologies is an SDN switch developer based in Ottawa, CA. Corsa is
focused on the service provider challenges and requirements for SDN in high perfor-
mance core networks.

Mr Cziva was partially funded by NORDUnet and the Scottish Informatics and
Computer Science Alliance (SICSA).

References

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker,
J. Turner, Openflow: enabling innovation in campus networks, ACM SIGCOMM Computer Com-
munication Review 38 (2) (2008) 69–74.

[2] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McKeown, G. Parulkar, Flowvisor:
A network virtualization layer, OpenFlow Switch Consortium, Tech. Rep (2009) 1–13.

[3] S. Jouet, R. Cziva, D. P. Pezaros, Arbitrary packet matching in openflow, in: 2015 IEEE 16th
International Conference on High Performance Switching and Routing (HPSR), IEEE, 2015, pp.
1–6.

[4] B. Sonkoly, A. Gulyas, F. Nemeth, J. Czentye, K. Kurucz, B. Novak, G. Vaszkun, On qos support to
ofelia and openflow, in: 2012 European Workshop on Software Defined Networking, IEEE, 2012,
pp. 109–113.

1www.nordu.net
2www.geant.net

13



[5] L. Csikor, M. Szalay, B. Sonkoly, L. Toka, NFPA: Network function performance analyzer,
in: IEEE Conference on Network Function Virtualization and Software Defined Networks
Demo Track (NFV-SDN), San Francisco, CA, USA, 2015, pp. 17–19, results are browsable at
http://ios.tmit.bme.hu/nfpa.

[6] C. Elliott, Geni: exploring networks of the future (2009).
[7] N. Bastin, A. Bavier, J. Blaine, J. Chen, N. Krishnan, J. Mambretti, R. McGeer, R. Ricci, N. Watts,

The instageni initiative: An architecture for distributed systems and advanced programmable
networks, Computer Networks 61 (2014) 24–38.

[8] Internet2 to include brocade and juniper technologies in first 100g open, national-scale, software-
defined network (2012).
URL https://lists.internet2.edu/sympa/arc/i2-news/2012-07/msg00002.html

[9] Energy science network.
URL http://es.net

[10] Energy science network - 100g testbed architecture.
URL http://www.es.net/assets/RD/Testbed/Testbed-Topology.pdf

[11] A. Gavras, A. Karila, S. Fdida, M. May, M. Potts, Future internet research and experimentation:
the fire initiative, ACM SIGCOMM Computer Communication Review 37 (3) (2007) 89–92.

[12] Fed4fire - federation for future internet research and experimentation.
URL http://www.fed4fire.eu/

[13] Aarnet launches sdn innovation platform for researchers (2016).
URL http://news.aarnet.edu.au/aarnet-launches-sdn-innovation-platform-for-researchers/

14


