
Future Generation Computer Systems 00 (2016) 1–10

FGCS

Network Measurement for 100Gbps Links Using Multicore Processors

Xiaoban Wu1, Peilong Li1, Yongyi Ran1, Yan Luo1

University of Massachusetts Lowell, One University Ave, Lowell, MA, USA, 01854

Abstract

Network measurement has been playing a crucial role in network operations, since it can not only detect the anomalies, but also facilitate
traffic engineering. With the fast development of high speed network of 100Gbps and beyond, how to efficiently monitor and measure the
network at flow granularity has become a challenging problem. Although there are dedicated network instrumentation appliances, the flexibility
of defining measurement network tasks on a programmable platform is very attractive. In this study, we mainly focus on the evaluation of sketch-
based network measurement using a multicore platform supported by Intel DPDK, a fast packet I/O library. We describe the versatile system
level design options available for implementing such a programmable measurement platform for 100Gbps network links. Through extensive
experiments, we investigate these design options and compare their trade-offs. Specifically, we evaluate the performance of the sketch-based
measurement in terms of packet drop rate, processing time per packet and delay per packet. Based on the evaluation over the collected data, we
propose the best practical measurement implementation to sustain the line rate while achieving the highest level of programmability.

© 2016 Published by Elsevier Ltd.

Keywords: Network Measurement, 100Gbps, DPDK

1. Introduction

Network measurement plays a key role in network manage-
ment and development, since it is essential for trouble shoot-
ing, detection of anomaly, traffic engineering and load balanc-
ing etc.[1, 2]. With the recent development of ultra high speed
networks, the line speed has reached 100Gbps and beyond [3].
To achieve scalable network measurement keeping up with the
line rate has become increasingly important.

The measurement of high speed links demands online and
low-cost designs that can support the counting of network met-
rics using streaming algorithms [4, 5]. In such a design, the net-
work measurement platform does not store any packet traces,
instead it strives to identify flows and use probabilistic “sketch”
methods to estimate the flow metrics (e.g. volume) with an
guaranteed error bound. These sketches include but not lim-
ited to Count-Min sketch [6], Reversible sketch [7], IBLT [8],
Bitmap [9] and HyperLogLog [10] etc. They yield basic met-
rics of a network flow, with which one can then perform ad-
vanced analysis such as identifying the heavy hitters or DDoS

Email addresses: Xiaoban_Wu@student.uml.edu (Xiaoban Wu),
Peilong_Li@uml.edu (Peilong Li), Yongyi_Ran@uml.edu (Yongyi Ran),
Yan_Luo@uml.edu (Yan Luo)

attacks [11]. The deployment of the measurement sketches can
be in either a single measurement device or a distributed envi-
ronment [12, 13].

The implementation of sketch based measurement requires
a modest amount of resources in particular memory space for
storing the sketch data structures. Although possible and pop-
ular, hardware based implementation of sketches has several
limitations: (a) the cost of memory components such as SRAM
and TCAM increases as the size of the sketch data structure be-
comes prohibitively large for high line rate and fine-granularity
measurement [12]; and (b) changing the built-in measurement
functions is not an online procedure therefore it cannot adapt to
run-time changes of requirements or new functionalities. As a
result, there is a strong call for measurement tools that support
the flexibility on measurement targets, metrics and granularity
since a conventional fixed appliance with preset measurement
capabilities often fall short to fulfill new measurement needs.
Recently, programmable measurement is proposed to facilitate
such flexibility leveraging programmable architectures such as
FPGAs and multicore processors [11].

In this paper, we focus on the design of a programmable,
high performance 100Gbps measurement platform using gen-
eral purpose multicore processors due to their scalable perfor-
mance and friendly programming environment. Modern mul-

1

X. Wu et al. / Future Generation Computer Systems 00 (2016) 1–10 2

ticore processors such as Intel Xeon can have 20+ cores on
a single CPU, and the platform could have two or four sock-
ets so the number of cores available for packet processing can
reach more than 80 with hyperthreading enabled. The avail-
ability of 100Gbps NICs (e.g. Mellanox) can turn a high end
x86 multicore server to a network measurement platform in-
stantly. The familiarity of the development environment (for C
or other high level languages) on a general purpose processor
is very attractive to developers and operators because new mea-
surement tasks can be programmed to the platform easily and
at run-time. Such platforms open a variety of opportunities for
extension and interaction with other frameworks. For example,
one can interface it with SDN controllers or port with P4 [14]
based protocol analyzers to examine new types of flows.

However, there exist a number of design challenges due to
the hardware and software architecture of a multicore platform.
(a) The packets arriving on a NIC needs to be brought over
the PCIe bus to the system memory (DRAM), thus incurring
bus transaction overhead. As the operating system manages the
hardware resources, it typically relies on kernel drivers to re-
ceive and transmit packets. Yet the performance of the kernel
drivers and protocol stack are shown to lag behind high line
rates [15]. It is very challenging to receive packets at 100Gbps
line rate on a Linux platform; (b) Without a dedicated queue
management unit, the system need to spend CPU cycles on
managing packet buffer and queues; (c) while the system mem-
ory is abundant on a multicore platform, the memory hierarchy
(L1-L2-L3 cache and DRAM) introduces variations on mem-
ory access delays, making it nontrivial to bound the packet/flow
processing latency; and (d) the multiple cores can be leveraged
to process flows in parallel or pipeline, and it takes considerable
effort to achieve an efficient design and keep fine tuning it.

In this paper, we study the design of a programmable net-
work measurement platform for line rate of 100+Gbps using
x86 multicore processors and off-the-shelf 100Gbps NICs with
the support of DPDK [16], a high speed packet I/O library. We
propose several design options for the aforementioned sketch-
based heavy hitter detection methods (i.e. Count-Min, Re-
versible and Simple Hash Table). In particular, we optimize
the sketch algorithms with concurrent primitives for improved
parallelism on a multicore architecture. Then we compare and
analyze the performance of our proposed schemes in terms of
packet drop rate and packet processing delays. Finally we point
out the best practical implementation according to the direct ob-
servation. To the best of our knowledge, our work presents the
first x86 multicore based system for measuring network flows
at 100Gbps rate, and provides in-depth analysis on the impact
of system parameters on the performance. Our findings is in-
strumental to ultra high speed network processing using general
purpose multicore microprocessors.

This paper is organized as follows. Section 2 describes the
background of sketch-based measurement and DPDK. Section
3 introduces in detail several different parallel designs. The per-
formance evaluation results are presented in Section 4. Finally,
the paper is concluded in Section 5.

2. Background

In order to make it easy to understand our measurement
designs based upon DPDK and sketches, in this section, we
investigate the DPDK and three different sketches. First, we
briefly introduce the architecture of the DPDK, which provides
high throughput packet I/O in user space. Second, we intro-
duce streaming algorithms and the Count-Min Sketch (CMS)
[6], Reversible Sketch (RS) [7] and Simple Hash Table (SHT)
[17], which are used to provide the data structure for network
measurement.

2.1. DPDK
The Intel Data Plane Development Kit (DPDK) consists of

a set of libraries, which can be used to provide high throughput
packet I/O in user space, addressing the performance issues of
OS kernel device drivers and protocol stacks. The involvement
of the DPDK in our design is inspired by the recent develop-
ment of DPDK applications. In [18], the authors integrate the
DPDK with Cuckoo hash table to design the Cuckoo switch,
which can reach very high throughput. In [19], the author com-
pares the throughput of two different designs of OpenvSwitch
(OVS), OVS and OVS-DPDK. The OVS-DPDK has much bet-
ter throughput than the OVS. In [20], the authors propose a
high speed Statistical Traffic Analysis tool that combines the
Intel DPDK framework with Tstat, a passive traffic analyzer, to
achieve 40Gbps of line rate processing.

User App
0

User App
N

......

Mem Pool Manager

Ring Manager

......

Poll Mode Driver

DPDK Library

Environment Abstraction

Userland

Kernel

NIC 0 NIC k......

Hardware
PCI-e Bus

Port 0 Port k

Figure 1. DPDK Architecture

The general architecture of DPDK is presented in Figure 1
with more details in [21]. The following aspects of the DPDK
are mostly relevant to our designs: multicore framework, ring
buffers and poll-mode drivers (PMD).

2.1.1. Multicore Framework
Nowadays, modern high-performance servers usually em-

ploy non-uniform memory access (NUMA) architecture. The
2

X. Wu et al. / Future Generation Computer Systems 00 (2016) 1–10 3

DPDK supports the NUMA architecture and provides the mul-
ticore framework. In the Environment Abstract Layer (EAL),
according to the input parameters, it automatically detects the
usable cores and sets the threads affinity to certain cores. When-
ever the user’s application needs memory, each thread can al-
ways choose the closest socket to allocate memory. Besides,
the DPDK adopts huge page memory mechanism, all the key
memory usage will be mapped to huge pages, for example, the
memory of ring buffers and memory pools (mempools), hence
the translation lookaside buffer (TLB) misses are greatly re-
duced. The DPDK allows multiple RX queues and TX queues
at the same time, which can significantly increase packet I/O
performance.

2.1.2. Ring Buffers
The DPDK implements the ring buffers specifically for each

scenario, which includes single-producer, single-consumer,
multiple-producer and multiple-consumer. The multiple-
producer and multiple-consumer ring buffers are implemented
by atomically updating index and parallel reading, writing op-
erations. In default, all the RX and TX queues use multiple-
producer and multiple-consumer ring buffers. Due to this
fact, later in the evaluation section, we find that freeing time
per packet is relatively large. For single-producer and single-
consumer ring buffers, we use them to manage the packet tran-
sition in one of our designs.

2.1.3. Poll Mode Driver (PMD)
The DPDK provides a set of signed-off PMD for a set of net-

work interface controllers (NICs) (e.g. Intel ixgbe, Netronome
nfp and Mellanox mlx5, etc.) The DPDK provides 4 basic PMD
RX modes, which are NONE, RSS (Receive Side Scaling),
DCB (Data Center Bridging) and VMDQ (Virtual Machine De-
vice Queues). The NIC vendors determine if their product can
support each mode and provide the corresponding APIs. In our
measurement platform, we mainly consider NONE and RSS as
RX mode, since DCB and VMDQ are designed for the com-
munications between Virtual Machine (VM) and hosts while
our design does not involve any VMs. Moreover, the RX mode
NONE and RSS will result in different parallel designs, since
NONE implies only one RX queue and RSS implies multiple
RX queues.

2.2. Streaming Algorithms and Sketches

Streaming algorithms are algorithms for processing data
streams in which the input is presented as a sequence of items
and can be examined in only a few passes (typically just one).
Streaming algorithms fit in very well with network traffic anal-
ysis and monitoring, since there might be massive sequence
of data within certain period of time and those data can only
be processed once. In the following, we briefly present three
streaming algorithms which are Count-Min sketch, Reversible
sketch and Simple Hash Table. And, in our measurement de-
signs all these three sketches are used to find heavy hitters
which are defined as the flows that have the biggest number
of packets within certain period of time.

2.2.1. Count-Min Sketch
The Count-Min sketch was first proposed by Graham Cor-

mode and S. Muthukrishnan in 2003 [6]. The Count-Min uses
a two dimensional matrix (d rows and w columns) to store and
update the necessary flow information whenever a new packet
arrives, and meanwhile it compares d counter values from each
row and find the minimum as its appropriate estimate. The
Count-Min sketch can be used in a streaming fashion to find
the heavy hitter. In order to do so, a temporary global heavy
hitter is maintained. Whenever each new packet comes in, the
Count-Min sketch is used to find the estimated counter value
for this new packet and then update the temporary global heavy
hitter if the counter value is more than that of the temporary
global heavy hitter. The main disadvantage of this sketch is that
it cannot be used alone to find the heavy hitter in the distributed
case, if the packets in the same flow are scattered into multiple
different Count-Min sketches, which may result in the unreli-
able estimation.

2.2.2. Reversible Sketch
The Reversible sketch was first introduced by Schweller

et al. in 2004 [7], and originally designed together with k-
ary Sketch (similar to Count-Min sketch in the updating stage,
but different from Count-Min in the finalizing stage) to detect
the heavy change. Later Yu et al. integrated the Count-Min
sketch with the Reversible sketch to find heavy hitters [11]. The
“Reversible” means it can automatically find the corresponding
flow information for the heavy hitters in the finalizing stage. To
achieve this, the Reversible sketch adopts modular hashing, IP
mangling and set intersection to store and update the flow in-
formation, and in the finalizing stage it uses set intersection to
find the true heavy hitter among all the potential heavy hitters.
The main disadvantage of Reversible sketch is that it consumes
too much memory. In [7], Schweller et al. only consider the
IP address which is only 4 bytes with 4 modular hashing func-
tions. Even in this case, for each counter in the matrix, there are
at most 512 (4 × 4 × 32) extra bytes associated with it, which
can become even costly if we have to store additional informa-
tion such as 5-tuples. Not surprisingly, some work such as [11]
choose to sample and measure only a few source-destination
pairs to reduce memory usage. In contrast to the disadvan-
tage of the Count-Min sketch, Reversible sketch can work in
distributed case, since the information of each flow has been
recorded.

2.2.3. Simple Hash Table
The Simple Hash Table was studied by Alipourfard et al.

in [17]. The authors emphasize that the Simple Hash Table has
better performance in terms of throughput and latency than heap
and sampling based solutions under 10Gbps network. The Sim-
ple Hash Table is similar to a mini version of the Count-Min
sketch, since it has only 1 row in the matrix. The big differ-
ence between Simple Hash Table and Count-Min sketch is that
in addition to a single counter contained in each bucket, each
bucket of the Simple Hash Table contains a 5-tuple which is
used to record the flow information. It comes no surprise that
the Simple Hash Table is faster than the Count-Min sketch in

3

X. Wu et al. / Future Generation Computer Systems 00 (2016) 1–10 4

the updating stage, but in the finalizing stage the estimate could
go worse if the hash collision of the traffic occurs frequently.
This sketch can be used in the distributed case, since the infor-
mation of each flow would be recorded.

We summarize the key feature of each sketch in the table 1.

3. Measurement Design

In this section, we present our measurement design options
in detail. Based on the selected DPDK RX modes (i.e. NONE
and RSS) and the way each CPU core updates a sketch data
structure, we propose several design options for the aforemen-
tioned sketch-based heavy hitter detection methods (i.e. Count-
Min, Reversible and Simple Hash Table). The details of the
proposed design options are presented in the following subsec-
tions.

3.1. Parallel Designs

In a multicore environment, a parallel design dictates the in-
teraction among the CPU cores and how the measurement func-
tion is implemented. The two DPDK RX modes (i.e. NONE
and RSS) influence our parallel designs. In the NONE mode,
only one DPDK RX queue is present, hence only one core needs
to be assigned to listen on the DPDK RX queue. Without loss
of generality, we treat this listening core as the master core, and
all the other cores as the slave cores. In contrast, using the RSS
mode, multiple DPDK RX queues can be enabled at the same
time, and all the cores can receive the packets independently in
parallel.

We first study the design options in NONE mode, in which
the interaction between the master core and a slave core can be
either synchronous or asynchronous, as explained in Sections
3.1.1 and 3.1.2, respectively.

3.1.1. SYNC Design
“SYNC” means that all cores work together in a syn-

chronous way. As shown in figure 2, when the master core
receives a batch of packets, it informs the slave cores to fetch
and start working on their corresponding packets, and then it
keeps waiting until all the slave cores finish their work. After
each slave core completes their work, it sends a feedback to the
master core and then waits for a new round of notification from
the master core. When the master core receives a feedback from
all the slave cores, it can move on and receive the next batch of
packets. More detailed procedures can be found in Algorithm
1.

3.1.2. ASYNC Design
Different from the SYNC design, “ASYNC” means that the

master core and all the slave cores are working in an asyn-
chronous way and do not wait for each other. To achieve this, as
illustrated in figure 3, the master core needs to maintain a global
ring buffer for each slave core. Whenever the master core re-
ceives a batch of packets, it splits all the packets into several
groups first and then pushes each group into the correspond-
ing ring buffer of the slave core. For each slave core, it keeps

Master
Core

Core 0 Core 1 Core N

0/1 0/1 0/1

......

Sync Flags

CPU Cores

RX
Queue

NIC

Packets
Packet Partitioning

Flag Checking
......

......

Figure 2. SYNC Design

Algorithm 1 SYNC Design
1: Global Data: slave start f lag[], slave end f lag[], received pkts[]
2: DPDK API: rx burst()
3: function Master Core Subroutine()
4: while True do
5: rx burst(received pkts[]);
6: for each f lag in slave start f lag[] do
7: f lag = 1;
8: while At least one f lag in slave end f lag[] is 0 do
9: continue;

10: for each f lag in slave end f lag[] do
11: f lag = 0;
12: function Slave Core Subroutine()
13: while True do
14: while my f lag in slave start f lag[] is 0 do
15: continue;
16: Set my f lag in slave start f lag[] equal to 0;
17: Work on my part of the received pkts[];
18: Set my f lag in slave end f lag[] equal to 1;

polling on its corresponding ring buffer and begins to work on
the packets if there exists any. For the ring buffers, we take the
advantage of the DPDK ring buffers and their associated APIs.
The details are shown in the Algorithm 2.

Master
Core

Core 0 Core 1 Core N

......

CPU
Cores

RX
Queue

NIC

Packets
Packet Partitioning

Ring
Buffer 0

Ring
Buffer 1

Ring
Buffer NEnqueue

Dequeue Dequeue Dequeue

Ring
Buffers

Figure 3. ASYNC Design

3.1.3. RSS Design
As shown in the Figure 4, the following steps are used to im-

plement the RSS feature of the NIC. (1) Specify which fields of
the received packet are chosen to be hashed. (2) Specify which
hash function is going to be used to hash the chosen fields. (3)
Choose the last 7 bits of the hash value to form the final hash
value, since the redirection table has only 128 entries. (4) Find
the core ID stored in the redirection table according to the final
hash value. (5) By following the core ID, the received packet is
directed to the corresponding DPDK RX queue.

4

X. Wu et al. / Future Generation Computer Systems 00 (2016) 1–10 5

Table 1. The key Feature of Sketches
Sketch Data Structure Pros Cons
CMS (1) Matrix with several rows

(2) Each entry of the matrix consists of a counter
Ensure certain accuracy Can not work alone in distributed measurement

RS (1) Matrix with several rows
(2) Each entry of the matrix consists of a counter and several sets

(1) Ensure certain accuracy
(2) Can work in distributed measurement

Memory consumption is high

SHT (1) Matrix with only one row
(2) Each entry of the matrix consists of a counter and a 5-tuple

(1) Can work in distributed measurement
(2) Low memory consumption

Accuracy is not guaranteed

Algorithm 2 ASYNC Design
1: Global Data: slave ring bu f f er[]
2: DPDK API: rx burst(), enqueue(), dequeue()
3: function Master Core Subroutine()
4: while True do
5: rx burst(received pkts[]);
6: for each bu f f er in slave ring bu f f er[] do
7: enqueue(some portions of the received pkts[] into bu f f er);
8: function Slave Core Subroutine()
9: while True do

10: while my bu f f er in slave ring bu f f er[] has packets do
11: dequeue(the packets out of my bu f f er);
12: Work on those dequeued packets;

After all these setup, as shown in Figure 5 and Algorithm 3,
multiple DPDK RX queues can be kept at the same time, and
each core can receive and handle the packets from each DPDK
RX queue in parallel.

Since the NIC transfers each packet to its corresponding
DPDK RX queue by applying the same hash function, packets
within the same flow would be steered to the same DPDK RX
queue. Earlier in section 2.2.1, we mentioned that the Count-
Min sketch cannot be used alone to find the heavy hitter in the
distributed case, if the packets in the same flow are scattered
into multiple different Count-Min sketches. But, with the ben-
efit from RSS, the disadvantage of Count-Min sketch can be
remedied.

Hash Function

Network

Packet

Fields to be hashed

Hash

Value
Index

Redirection Table

Core 3

Core 0

Core 2

........

Core 1

........

Core

0

Core

1

Core

2

........

CPU

Packet to core

Figure 4. Principle of RSS

Algorithm 3 RSS Design
1: DPDK API: rx burst()
2: function All Core Subroutine()
3: while True do
4: rx burst(received pkts[]);
5: Work on the received pkts[];

3.2. Separate and Shared Design
Generally, there are two ways to store the sketch data struc-

tures accessed by multiple cores: i.e. “shared” or “separate”
copies. For the case of separate copies, each core maintains and

Core 0 Core 1 Core 2 Core N

RX

Queue

0

RX

Queue

1

RX

Queue

2

RX

Queue

N

......

......

Packet

Stream

RSS

.......
NIC

Port

Figure 5. RSS Design

updates its own local sketch independently and safely, which is
adopted in [6, 7, 17]. Using a shared copy can conserve mem-
ory space and take advantage of cache locality. However all the
cores share the same global sketch, and care should be take to
avoid conflicts when two or more cores are updating the same
field.

In this work we identify and address three key issues out of
the concurrent update of the sketches (CMS, RS and SHT), i.e.
updating a counter, updating a set, and updating a critical sec-
tion. It is simple to implement concurrent update by using spin-
lock, but spinlock usually consumes many CPU cycles, which
is our major concern under the 100 Gbps network environment.
Instead, we implement the concurrent update by atomic opera-
tion, which takes fewer CPU cycles. The details are as follows.

3.2.1. Update a Counter Concurrently
In order to update a counter concurrently, we take advantage

of the DPDK API: static inline int rte atomic32 cmpset(volatile
uint32 t *dst, uint32 t exp, uint32 t src). This API uses the
assembly instruction cmpxchgl to implement the CAS (compare
and swap) atomic operation. It compares dst with exp, if dst
equals exp, it updates dst with src and return 1. Otherwise, it
returns 0. The details are presented in Algorithm 4.

Algorithm 4 Update a Counter Concurrently
1: function Update Counter(&counter, increment)
2: success = 0;
3: while success == 0 do
4: current = counter;
5: next = current + increment;
6: success = rte atomic32 cmpset(&counter, current, next);

5

X. Wu et al. / Future Generation Computer Systems 00 (2016) 1–10 6

3.2.2. Update a Set Concurrently
For the Reversible sketch in section 2.2.2, we need to up-

date several associated sets when we update a counter. In our
measurement design options, we implement these sets by the
traditional hash table with a linked list. Therefore this issue is
transformed into updating a hash table concurrently. Different
from earlier work in [22, 23], for sketch based measurement,
we do not need to delete an element from the hash table and do
not need to resize the hash table, we can simply use atomic op-
eration to concurrently update a hash table. The major problem
happens at when multiple cores insert their local elements into
the same linked list concurrently. We have to make sure that
the size of the linked list grows serially. To achieve this, we use
the following data structure for each bucket of the linked list.
Among the fields, data is used to store the flow information,

1: struct Bucket {
2: unsigned char* data;
3: struct Bucket* next;
4: uint32 t filled flag;
5: uint32 t finish flag;
6: };

the next is used to form the linked list, the f illed f lag indi-
cates the bucket is filled when it equals 1, and the f inish f lag
denotes the insertion is complete when it equals 1.

For fast checking if an element has already existed in the
linked list, define a function called int find element(linked list,
element, &element location). If this function finds the element
in the linked list, it returns 1. Otherwise, it returns 0 and up-
dates element location with the last location of the marching
pointer of the linked list. To search the element, for the sake of
safety, we only march the marching pointer if both f illed f lag
and f inish f lag equal 1.

Another important operation is to insert an element into the
set concurrently. To do this, first we need to find the corre-
sponding linked list in the hash table. Second, we need to find
if the element has already existed in the linked list. Third, if
the element has not existed in the linked list, we can now insert
the element into the linked list by atomic operation. The details
are Algorithm 5, where lines 5-7 indicate that the element has

Algorithm 5 Update a Set Concurrently
1: function Update Set(hashtable, element)
2: Find the linked list for the element;
3: success = 0;
4: while success == 0 do
5: status=find element(linked list, element, &element location);
6: if status == 1 then
7: return;
8: start = element location;
9: success = rte atomic32 cmpset(&(start → f illed f lag), 0, 1);

10: if success == 1 then
11: Allocate memory for start → data;
12: Update start → data with the data from element;
13: Allocate memory for start → next;
14: start → f inish f lag = 1;
15: return;
16: else
17: while start → f inish f lag == 0 do
18: continue;

already existed in the set, line 9 uses atomic operation to make
sure that only one core can have success = 1 and grant this

core the privilege to insert the element, lines 10-15 insert the
element into the set and allocates one more bucket memory as
the tail of the linked list, and lines 16-18 make sure all the other
potential cores are waiting for the privileged core to finish the
update of the linked list. All the cores can never jump out of
the outmost while loop until it either finds that the element has
already existed in the set or it successfully inserts the element
into the set.

3.2.3. Update a Critical Section Concurrently
For the Count-Min Sketch (CMS) mentioned in section

2.2.1, a global heavy hitter (5-tuple) should be maintained and
updated whenever the counter value of another flow exceeds the
current heavy hitter. Since the atomic operation can only work
up to 8 bytes, we cannot use a single atomic operation to finish
a 17-bytes update (a 13-bytes 5-tuple and a 4-bytes counter).
Hence, we would better resort to a critical section. The detailed
implementation of a critical section is presented in Algorithm 6,
where lines 4, 5, 9 ensure that only one core can change the flag

Algorithm 6 Update a Critical Section Concurrently
1: Global Data: f lag initialized with 0
2: function Update Critical Section()
3: while True do
4: success = rte atomic32 cmpset(& f lag, 0, 1);
5: if success == 1 then
6: Execute the critical section;
7: rte atomic32 cmpset(& f lag, 1, 0);
8: break;
9: else

10: while f lag == 1 do
11: continue;

so that only this core can execute the critical section. Mean-
while all the other cores have to wait in the inner while loop
until the f lag turns 0 again, only after that they can start next
round of competition.

4. Evaluation

With all design options discussed in section 3, we evaluate
the performance of each design. The evaluation metrics we ap-
ply in this section include packet drop rate (PDR), packet pro-
cessing time (PPT) of sketch update and total packet delay (the
sum of RX time, processing time and freeing time).

4.1. Experiment Platform and Methodology

We employ two identical Dell Power Edge R730 servers in
the experiments as depicted in Figure 6. Each server contains
two 6-core CPUs that reside separately on 2 sockets (socket
#0 and #1) connected with Intel QuickPath Interconnect (QPI).
Both servers are equipped with a single 100GbE card on the
server socket #1 over a PCIe x16 slot. The aforementioned two
NICs are connected back-to-back via a QSFP-28 cable for test-
ing purpose. We set one server as the RX end and the other
server as the TX client. The detailed hardware and software
specifications are listed in Table 2.

6

X. Wu et al. / Future Generation Computer Systems 00 (2016) 1–10 7

Core
0

L1

L2

LLC 0

Core
1

L1

L2

Core
5

L1

L2

NUMA Node 0

Core
6

L1

L2

LLC 1

Core
7

L1

L2

Core
11

L1

L2

NUMA Node 1

NUMA Memory 0 NUMA Memory 1

QPI 0

I/O Hub 0 I/O Hub 1

QPI 1 QPI 1
PCI-e 3.0

Core
0

L1

L2

LLC 0

Core
1

L1

L2

Core
5

L1

L2

NUMA Node 0

Core
6

L1

L2

LLC 1

Core
7

L1

L2

Core
11

L1

L2

NUMA Node 1

NUMA Memory 0 NUMA Memory 1

QPI 0

I/O Hub 0 I/O Hub 1

QPI 1 QPI 1
PCI-e 3.0

Packet Generator

Measurement Platform

Figure 6. Experiment Platform and Test Methodology

Table 2. Experiment Platform Specification
Item Specification

CPU 0 and 1 Intel Xeon E5-2643 6 cores @ 3.4GHz
L1i Cache 32 KB
L1d Cache 32 KB
L2 Cache 256 KB

Last Level Cache 0 and 1 20 MB
Memory 0 8 GB DDR3 @ 1.6 GHz
Memory 1 16 GB DDR3 @ 1.6 GHz

NIC 0 and 1 Mellanox ConnectX-4 EDR 100GbE
Host OS Ubuntu 16.04 Desktop
DPDK Version 16.04

4.2. Packet Generator and Packet Size Study
We adopt Intel’s pktgen-dpdk [24] as a template packet gen-

erator, and extend it with the flexibility of generating packets
with random L2/L3/L4 headers and random sized payload. This
design intends to increase the packet diversity to serve for the
hashing step in the aforementioned sketch algorithms.

To understand the impact of packet size on the experiment
system, we study the system throughput and packet drop rate
with three different packet sizes - small (64 bytes), medium
(754 bytes), and large (1514 bytes). As shown in Figure 7,
with this modified packet generator, we are able to generate
random UDP packets with small size at 72 Mpps (or 34 Gbps)
and large size at 8 Mpps (or 90 Gbps). The packet drop rate,
however, increases dramatically when the packet size becomes
small. This is because the very high packet rate saturates the
receiving capability at the RX end with small packets. There-
fore, to pressure-test the RX end and augment the difference in
the evaluation results, we will employ 64-byte small packets in
all the following experiments if not specified otherwise.

4.3. DPDK Mempool Size
Another important configuration in the experiments is the

mempool size of each RX queue. In a DPDK application, each
RX queue is configured with a predefined mempool size for

Figure 7. Performance Evaluation with Different Packet Sizes

packet buffering. To figure out an optimal mempool size for our
evaluation, we study the effect of the mempool size for a DPDK
application in terms of packet drop rate. As shown in the Figure
8, the x-axis denotes the mempool size with the unit of “number
of packet slots” and the y-axis stands for the PDR in percentage.
While with the difference less than 5%, we can observe that
16K mempool size renders the optimal PDR performance with
the only exception for 1514-byte packets. These results indicate
that it is performance-optimized and space-efficient to choose
the 16K mempool size. We therefore define mempool size as
16K in the following experiments if not specified otherwise.

Figure 8. Mempool Size Effect on Packet Drop Rate

4.4. Architecture Parameter Exploration
We explore the performance effect of various architecture

parameters such as number of cores, and memory hierarchy
in this subsection. For annotation purpose, we use the format
of “X-Y-Z” for experiment configurations, where “X” denotes
for SYNC, ASYNC or RSS, “Y” being Separate or Shared, and
“Z” means Count-Min Sketch (CMS), Reversible sketch (RS)
or Simple Hash Table (SHT). For example, “SYNC-Shared-
RS” stands for the synchronous design with shared Reversible
Sketch data structure. The total number of evaluation subjects
is therefore the combination of “X, Y, Z”, with the exception
that CMS cannot have SYNC and ASYNC design as explained
in Section 2.2.1.

4.4.1. NUMA and Cores
As NUMA architecture becomes the mainstream hardware

configuration in commodity multi-CPU servers and datacen-
7

X. Wu et al. / Future Generation Computer Systems 00 (2016) 1–10 8

ters, it is critical to understand how NUMA settings and the
number of cores can significantly affect the performance of
network measurement. We employ two test cases - “SYNC-
Separate-SHT” and “RSS-Separate-SHT” in this evaluation,
and study the PDR and packet delay changes with different
cores and NUMA configurations.

As shown in the Figure 9, the packet drop rate decreases by
up to 50% when changing the number of processing cores from
2 to 6, regardless of the socket settings. Besides, the place-
ment of running measurement tasks with regard to the NUMA
sockets makes a huge difference (up to 20%) on the PDR. This
is because if a running process has to access the remote de-
vice and memory on a different NUMA socket, it will trigger
tremendous cache misses on the local memory hierarchy and
thus increase the packet processing delay.

Then we study the latency performance with the “SYNC-
Separate-SHT” case. As shown in the Figure 10, where “sX-
cY” on the x-axis denotes number of Y cores on socket X, both
RX latency and processing latency (updating SHT) can reduce
by up to 50% if the measurement task is running on the NUMA
socket with NIC (socket #1). However, in this case increasing
the number of cores does not contribute too much on decreasing
the total latency.

Figure 9. Packet Drop Rate with Different Socket and Core Configurations

Figure 10. How Socket Effects Latency Performance

4.4.2. Memory and Cache
Memory and cache performance is critical in high speed

network application since a single last level cache miss will

normally bring more than 100 ns of delay in packet processing.
In this experiment, we still use SYNC-Separate-SHT and RSS-
Separate-SHT cases to evaluate the cache performance impact
on the system. We use 1K, 256K, and 8M as the size of the
simple hash table, where each bucket size is 17 bytes (5-tuple
and a 4-byte counter). Since the experiment CPU contains 256
KB L2 Cache and 20 MB L3 cache, if using the “Separate” data
structure with 6 cores, then 1K SHT can fit into both the L2 and
L3 cache; 256K SHT can only fit into L3 cache; and 8M SHT
is out of the capacity of L3 cache. Therefore, we would ex-
pect to see a huge performance degradation with the 8M SHT
in the evaluation. However, as we can observe from Figure 11,
an over-sized separate data structure maintained by CPU core
cache can hardly affect the performance of the PDR. The expla-
nation is as follows.

Firstly, since the mempool size is 16K and each mempool
slot consumes 2 KB of aligned memory space to accommodate
the largest possible packet (1514 bytes), the total amount of the
memory of a single mempool is 32M. This mempool therefore
becomes the largest memory space comparing with the SHT
data structure. Thus, cache accesses are almost dominated and
overwhelmed by the mempool instead of the simple hash table.
Secondly, the actual processing time only contributes around
40% of the overall packet processing delay according to our ex-
periments. This means even we manage to lower the cache miss
rate and the packet processing time, the overall performance
will not be greatly improved because of the percentage. These
two reasons together explain why the size of the hash table only
lays limited effect on the PDR.

Figure 11. Packet Drop Rate with Different Hash Table Size

4.5. Shared/Separate Design Evaluation
As discussed in Section 3, every measurement sketch, i.e.

SHT, CMS, and RS, can be shared across CPU cores or each
CPU core can maintain a private local copy of the sketch. The
difference between these shared and separate designs is two-
fold. Firstly, a shared measurement sketch is efficient in cache
space utilization. For a commodity x86 machine which only
contains 20 to 30 MB of last level cache, a separate data struc-
ture may easily exceed the cache limit, and therefore degrades
the cache performance. However, as demonstrated in the last
subsection 4.4.2, cache efficiency may not contribute too much
to the overall system performance. Hence, we wan to evaluate

8

X. Wu et al. / Future Generation Computer Systems 00 (2016) 1–10 9

Table 3. RSS: Performance of Shared and Separate
PDR PPT

RSS-Separate-SHT 1.66E-001 3.80E-008
RSS-Shared-SHT 2.02E-001 4.95E-008
RSS-Separate-CMS 3.86E-001 8.29E-008
RSS-Shared-CMS 9.44E-001 1.48E-006
RSS-Separate-RS 9.61E-001 2.14E-006
RSS-Shared-RS 9.91E-001 9.15E-006

to what extent can a separate data structure affect the perfor-
mance results. Secondly, to guarantee mutual exclusive oper-
ations on the shared sketch, the design requires atomic control
on the shared space accesses. The atomic operations may be-
come very expensive especially in the 100 Gbps network envi-
ronment.

We study the trade-off of applying shared or separate design
within two different categories as follows.

4.5.1. If Using RSS Feature
If we leverage the RSS feature with the NIC, we want to

compare the performance of shared versus separate design for
all 3 sketches - SHT, CMS, and RS. In this case, we have 6
test scenarios annotated as RSS-Separate-SHT, RSS-Shared-
SHT, RSS-Separate-CMS, RSS-Shared-CMS, RSS-Separate-
RS, and RSS-Shared-RS. As we can observe from the Table
3, PDR is always lower if applying the separate design, and the
PDR difference can reach up to 60% for the CMS case. Packet
processing time is also much lower for the separate design. For
the CMS measurement sketch, the separate design gains 17.8x
packet processing speedup.

4.5.2. If Not Using RSS
If not using the RSS feature, we want to explore the other

two parallel design - SYNC and ASYNC with shared or sep-
arate data structure for SHT and RS. We therefore have 8 test
scenarios which are annotated as SYNC-Separate-SHT, SYNC-
Shared-SHT, ASYNC-Separate-SHT, ASYNC-Shared-SHT,
SYNC-Separate-RS, SYNC-Shared-RS, ASYNC-Separate-RS,
and ASYNC-Shared-RS. As the data shown in the table 4 sug-
gests, the only difference being less than 1%, shared/separate
designs do not impact too much on the PDR. On the contrary,
PPT is almost always better if with the separate design, with the
only exception for synchronous RS.

4.6. Which Design to Choose?

With all possible different design options we discus thus far,
it is beneficial to summarize a protocol to follow as a reference
for the future implementation of a network measurement sys-
tem. We therefore present a summary of performance data in
terms of PDR, PPT, and total packet delay in Figure 12, 13 and
14, respectively.

Table 4. NONE: Performance of Shared and Separate
PDR PPT

SYNC-Separate-SHT 8.06E-001 7.90E-008
SYNC-Shared-SHT 8.04E-001 1.04E-007
ASYNC-Separate-SHT 8.03E-001 6.66E-008
ASYNC-Shared-SHT 8.02E-001 9.72E-008
SYNC-Separate-RS 9.93E-001 7.83E-006
SYNC-Shared-RS 9.92E-001 7.70E-006
ASYNC-Separate-RS 9.93E-001 7.19E-006
ASYNC-Shared-RS 9.92E-001 8.54E-006

4.6.1. Which Sketch to Choose?
If not considering the measurement accuracy boundary

guarantee, SHT shows the minimum packet drop rate, packet
processing time and total packet delay across all three perfor-
mance figures. This is due to the simplicity of the data structure
and data access pattern. However, if the system has to guarantee
the measurement accuracy, then CMS and RS are the only two
options as revealed in Table 1. The trade-off has to be made
between a) measurement accuracy + space efficiency, and b)
packet drop rate + packet delay.

4.6.2. Which Parallel Design to Choose?
For all three parallel designs - SYNC, ASYNC, and RSS,

we can conclude from Figure 12, 13 and 14 that the RSS design
is always the first option, especially for simple measurement
primitives such as SHT. In addition, we can observe that RSS
design works much better with the separate sketch data struc-
ture maintained by each core. The “RSS-Separate” combina-
tion ensures the optimal throughput at both the packet receiving
stage and the packet processing stage.

However, if unfortunately a NIC does not provide RSS
functionality, e.g. the COMBO-100G [25] NIC, then we should
opt for the ASYNC design. This is because both SYNC and
ASYNC design render similar PDR, but ASYNC design can
increase packet processing speed by up to 8%.

4.6.3. Shared or Separate Data Structure?
As discussed in subsection 4.5, for both RSS-capable and

RSS-incapable NIC, we should almost always opt for separate
data structure for the optimal PDR and PPT.

Figure 12. Packet Drop Rate Evaluation

9

X. Wu et al. / Future Generation Computer Systems 00 (2016) 1–10 10

Figure 13. Packet Processing Time Evaluation

Figure 14. Total Packet Delay Evaluation

5. Conclusion and Future Work

In this paper, we focus on the design of a highly pro-
grammable network measurement platform for 100Gbps links
using multicore processors. We compare DPDK RX modes
and propose parallel designs using separate or shared copies of
sketch data structures. With our system prototypes we compare
and analyze the performances of these design options in terms
of packet drop rate, packet processing time and total packet de-
lay. Finally, we provide insights on the best practical imple-
mentation under each different DPDK RX mode. In the near
future, we plan to investigate the measurement accuracy of the
different sketches in such a multicore environment.

Acknowledgment

We acknowledge the technical assistance from Larry Wang,
Marc Pepin and John Morgan of Intel Corporation. This work
is supported in part by the National Science Foundation (No.
1547428, No. 1541434, No. 1440737 and No. 1450996) and a
grant from Intel Corporation.

References

[1] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, A. Vahdat,
Hedera: Dynamic flow scheduling for data center networks., in: NSDI,
Vol. 10, 2010, pp. 19–19.

[2] Y. Chen, R. Griffith, J. Liu, R. H. Katz, A. D. Joseph, Understanding tcp
incast throughput collapse in datacenter networks, in: Proceedings of the
1st ACM workshop on Research on enterprise networking, ACM, 2009,
pp. 73–82.

[3] M. Balman, E. Pouyoul, Y. Yao, E. Bethel, B. Loring, M. Prabhat, J. Shalf,
A. Sim, B. L. Tierney, Experiences with 100gbps network applications,
in: Proceedings of the fifth international workshop on Data-Intensive Dis-
tributed Computing Date, ACM, 2012, pp. 33–42.

[4] Y. Liu, L. Zhang, Y. Guan, Sketch-based streaming pca algorithm for
network-wide traffic anomaly detection, in: Distributed Computing Sys-
tems (ICDCS), 2010 IEEE 30th International Conference on, IEEE, 2010,
pp. 807–816.

[5] A. Kumar, M. Sung, J. J. Xu, J. Wang, Data streaming algorithms for effi-
cient and accurate estimation of flow size distribution, in: ACM SIGMET-
RICS Performance Evaluation Review, Vol. 32, ACM, 2004, pp. 177–188.

[6] G. Cormode, S. Muthukrishnan, An improved data stream summary: the
count-min sketch and its applications, Journal of Algorithms 55 (1) (2005)
58–75.

[7] R. Schweller, A. Gupta, E. Parsons, Y. Chen, Reversible sketches for ef-
ficient and accurate change detection over network data streams, in: Pro-
ceedings of the 4th ACM SIGCOMM conference on Internet measure-
ment, ACM, 2004, pp. 207–212.

[8] M. T. Goodrich, M. Mitzenmacher, Invertible bloom lookup tables, in:
Communication, Control, and Computing (Allerton), 2011 49th Annual
Allerton Conference on, IEEE, 2011, pp. 792–799.

[9] C. Estan, G. Varghese, M. Fisk, Bitmap algorithms for counting active
flows on high speed links, in: Proceedings of the 3rd ACM SIGCOMM
conference on Internet measurement, ACM, 2003, pp. 153–166.

[10] P. Flajolet, É. Fusy, O. Gandouet, F. Meunier, Hyperloglog: the analy-
sis of a near-optimal cardinality estimation algorithm, DMTCS Proceed-
ings (1).

[11] M. Yu, L. Jose, R. Miao, Software defined traffic measurement with
opensketch, in: Presented as part of the 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 13), 2013, pp.
29–42.

[12] M. Moshref, M. Yu, R. Govindan, A. Vahdat, Scream: Sketch resource
allocation for software-defined measurement, CoNEXT, Heidelberg, Ger-
many.

[13] M. Moshref, M. Yu, R. Govindan, A. Vahdat, Dream: dynamic resource
allocation for software-defined measurement, in: ACM SIGCOMM Com-
puter Communication Review, Vol. 44, ACM, 2014, pp. 419–430.

[14] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, et al., P4: Program-
ming protocol-independent packet processors, ACM SIGCOMM Com-
puter Communication Review 44 (3) (2014) 87–95.

[15] J. Ros-Giralt, A. Commike, D. Honey, R. Lethin, High-performance
many-core networking: design and implementation, in: Proceedings of
the Second Workshop on Innovating the Network for Data-Intensive Sci-
ence, ACM, 2015, p. 1.

[16] D. Intel, Data plane development kit, URL http://dpdk. org.
[17] O. Alipourfard, M. Moshref, M. Yu, Re-evaluating measurement algo-

rithms in software, in: Proceedings of the 14th ACM Workshop on Hot
Topics in Networks, ACM, 2015, p. 20.

[18] D. Zhou, B. Fan, H. Lim, M. Kaminsky, D. G. Andersen, Scalable, high
performance ethernet forwarding with cuckooswitch, in: Proceedings of
the ninth ACM conference on Emerging networking experiments and
technologies, ACM, 2013, pp. 97–108.

[19] OVS, Ovs-dpdk, URL https://software.intel.com/en-us/articles/using-
open-vswitch-with-dpdk-for-inter-vm-nfv-applications.

[20] M. Trevisan, M. Mellia, M. Munafò, D. Rossi, Dpdk-stat: 40gbps statis-
tical traffic analysis with off-the-shelf hardware, Tech. rep. (2016).

[21] W. R. Intel, High-performance multi-core networking software design op-
tions, White Paper 2011.

[22] Y. Liu, K. Zhang, M. Spear, Dynamic-sized nonblocking hash tables, in:
Proceedings of the 2014 ACM symposium on Principles of distributed
computing, ACM, 2014, pp. 242–251.

[23] J. Triplett, P. E. McKenney, J. Walpole, Resizable, scalable, concurrent
hash tables via relativistic programming., in: USENIX Annual Technical
Conference, 2011, p. 11.

[24] W. Keith, pktgen-dpdk, URL http://dpdk.org/browse/apps/pktgen-dpdk.
[25] Liberouter, Combo-100g, URL https://www.liberouter.org/combo-100g.

10

