Bridging Network and Parallel I/O Research for Improving Data-Intensive Distributed Applications

Debasmita Biswas*, Sarah Neuwirth‡, Arnab K. Paul†, Ali R. Butt*

*Virginia Tech, ‡Goethe-University Frankfurt, †Oak Ridge National Laboratory
{debasmita17, butta}@vt.edu, s.neuwirth@em.uni-frankfurt.de, akpaul@vt.edu

Presented by:
Debasmita Biswas,
Virginia Tech
Overview

- Could Storage and Network Research be Related?
- Is there enough work that address this gap?
- Survey Technique
- Network And I/O Research
- Network Types
- Network Components
- Network Architecture
- Network Services
- Network Properties
- Network Performance Evaluation
- Key Insights And Research Challenges
- Conclusion
Could Storage and Network Research be Related?

- I/O capability is a major factor deciding an HPC storage system’s merit.
- Networking— one of the main components in a distributed storage system in HPC—transmissions, internode communications, client to server communications
- **Modern Workloads are data intensive**
- Traditional methods of boosting I/O in HPC storage systems by scaling up resources may fall short.
- Is there a direct relationship between network and HPC storage optimization research?
- Let’s investigate!
Is there enough work that address this gap?

- Emerging workloads exhibit different I/O patterns.
- Large scale data intensive stresses the underlying network component.
- Coffee File System - network parameters for I/O optimization
- Fine grained routing for to pair Lustre clients to their closest routers
- Research on accelerating network communication & I/O does not address any direct relationship between Networking optimization and Storage Optimization
Survey Technique

- **Focus:** Research on Network Optimization that can also contribute towards HPC Storage optimization
- **Years:** 2015 to 2021
- **Classification Tree:** ACM Computing Classification System
- **Sources:** ACM Digital Library, Google Scholar
- **Keywords:** Network Optimization, HPC Storage Systems, Datacenters, Storage Area Network, IoT network, Edge, I/O optimization and, Data-intensive applications/workloads
Network And I/O Research

● A subset of the ACM network classification is used to group publications on network optimization.

● We describe the optimization techniques borrowing from the research pertaining to each network classification

● Argue how they can possibly be applied to I/O optimization research.

● Categories being:
 ➢ Network Types
 ➢ Network Components
 ➢ Network Architecture
 ➢ Network Services
 ➢ Network Properties
 ➢ Network Performance Evaluation
Network Types

- **Data Center Networks:**
 - **CliqueMap:** A hybrid RMA/RPC caching system
 - Highlights the I/O benefits from careful distribution of work between RPC and RMA
 - Can be applied in data streaming applications where the number of read operations supersede write operations

- **Storage Area Networks**
 - **BlueDBM:** use distributed flash storage - a low cost and energy efficient alternative to DRAM
 - Can boost storage I/O for complex big data applications
 - May find application in local data centers

More in the paper
Network Components

- **Argo**: a user space distributed shared memory system
- Can *lower latency* produced due to communications between distant nodes
- Facilitates *faster synchronization between nodes*

- **NICE** (network-integrated cluster-efficient): *reduces network latency during request routing*
- Implemets of *a ring of virtual storage nodes* in a Network Oblivious (NOOB) Storage system architecture.
- Leverages *SDN* (Software Defined Network)

✓ May find application HPC centers embracing SDNs like in *data centers and IoT*
Network Architecture

- Network Design Principles:
 - Proposes, implements and evaluates two *Integer Linear Programming* (ILP) models on star and ring fog topologies
 - *Star topology* outperforms fully connected mesh topology
 - *Ring topology* costs can theoretically increase with increasing system complexity

✓ The ILP models can be used to determine the optimal fog topology between HPC systems and IoT devices for data intensive workloads

More in the paper
Network Services

● Network Management:
 o Bandwidth-Delay-Product to predict the optimal TCP socket buffer size and the number of TCP streams for data transmission
 o $\text{BDP} \leq \text{buffer} \times \text{streams}$
 ✓ Will be helpful once SDN becomes a common practice for faster data transmission

● Location Based Services:
 o BeeGFS: streaming 834GB, best data transmission performance with 4-8 nodes, connected by InfiniBand over GridFTP, at least 5 parallel TCP streams, 16 MiB TCP socket buffer size.
 ✓ Can help storage facilities using BeeGFS for very large file transfers

More in the paper
Network Properties

- Network Structure:
 - **BlueDBM**: each storage device in the cluster *connected with serial links*
 - Forming a *separate network among themselves*
 - Each storage device has multiple network ports
 - *Removes overhead* of going to the host software to access individual storage devices, *boosts I/O*

 ✓ Can be adapted in large scale storage centers that need *superfast data access*

More in the paper
Network Performance Evaluation

- Addresses the challenges imposed by the three popular in **NTC** (Network Traffic Control)
- **Deep learning** based method to classify the network traffic in **communication systems and networks**
- Outputs generate a final prediction - **Average accuracy of 98%** on the Cambridge Internet Traffic dataset

✓ May be applied to *data-intensive applications generating erratic network traffic patterns* like in IoT, shared high performance computing facilities for scientific research

✓ Evolving workloads that rely on **SDNs** to boost storage system performance by **efficiently analyzing the network utilization and dynamically adjusting the networking parameters** for maximum I/O.
Key Insights And Research Challenges

• Software Defined Networks
 • Configuring the network based on the relationship between BDP, number of TCP streams and TCP socket buffer size to optimize throughput for large data transmission in geo-distributed data centers
• Network Load Balancing

• Challenges:
 ▪ Complexity
 ▪ Monetary cost
 ▪ Temporal cost
 ▪ Determining the best design approach for non-homogeneous workloads hosted on a single HPC storage cluster.
Conclusion

● We present a brief snapshot of the recent network research landscape targeting data-intensive science applications from a network perspective.

● We have tried to identify possible synergy effects between network and parallel file and storage system research.

● A relationship between Network optimization and Storage optimization research does exist.

● It is worth exploring how these two research areas can work together towards boosting I/O performance in an HPC facility.
Thank you!

debasmita17@vt.edu, s.neuwirth@em.uni-frankfurt.de,
akpaul@vt.edu, butta@vt.edu

Questions?