
Advance Reservation Access Control Using Software-Defined Networking and Tokens

Joaquin Chunga,∗, Eun-Sung Jungc, Rajkumar Kettimuthud, Nageswara S. V. Raoe, Ian T. Fosterd, Russ Clarkb,
Henry Owena

aSchool of Electrical and Computer Engineering, Georgia Institute of Technology, USA
bCollege of Computing, Georgia Institute of Technology, USA

cHongik University, South Korea
dMath and Computer Science Division, Argonne National Laboratory, USA

eComputer Science and Mathematics Division, Oak Ridge National Laboratory, USA

Abstract

Advance reservation systems allow users to reserve dedicated bandwidth connection resources from an advanced high-
speed network. A common use case for such systems is data transfers in distributed science environments in which a
user wants exclusive access to the reservation. However, current advance network reservation methods cannot ensure
exclusive access of a network reservation to the specific flow for which the user made the reservation. We present here
a novel network architecture that addresses this limitation and ensures that a reservation is used only by the intended
flow. We achieve this by leveraging software-defined networking (SDN) and token-based authorization. We use SDN
to orchestrate and automate the reservation of networking resources, end-to-end and across multiple administrative
domains, and tokens to create a strong binding between the user or application that requested the reservation and the
flows provisioned by SDN.

Keywords: Advance reservation system, admission control, software-defined networking, tokens

1. Introduction

Research and education networks (RENs) are charac-
terized by high-speed backbone networks that support the
needs of research and education communities within a ge-
ographic region. RENs often provide dedicated connec-
tions for individual research projects, and experimenters
can establish and manage these connections through ad-
vance reservation systems [1] such as the Internet2 ad-
vanced layer 2 service (AL2S) [2] and the Energy Science
Network (ESNet) on-demand secure circuits and advance
reservation system (OSCARS) [3]. Advance network reser-
vation systems identify each connection by coarse-grained
attributes such as endpoints (e.g., an IP address or an in-
terface of a WAN border router), requested bandwidth, the
start time, and the end time [4]. However, a major prob-
lem with using such coarse-grained attributes to identify
a network reservation is that an unauthorized user or ap-
plication behind the point of ingress could consume the
reservation, affecting the performance of legitimate users
or applications. Moreover, setting up these reservations
is a manual process that involves many network operators

∗Corresponding author
Email addresses: joaquin.chung@gatech.edu (Joaquin Chung),

ejung@hongik.ac.kr (Eun-Sung Jung), kettimut@anl.gov
(Rajkumar Kettimuthu), raons@ornl.gov (Nageswara S. V. Rao),
foster@mcs.anl.gov (Ian T. Foster), russ.clark@gatech.edu
(Russ Clark), henry.owen@ece.gatech.edu (Henry Owen)

and can take from five to 45 days depending on the number
of domains involved, as noted by Ibarra et al. [5].

Software-defined networking (SDN) is a novel network-
ing paradigm that enables global network programmability
and rapid innovation by decoupling the control and data
planes of network devices. An additional benefit of SDN
is a fine-grained flow definition that allows for firewall-like
services on network switches. SDN is widely used in data
centers for network policy enforcement, traffic engineer-
ing, and tenant isolation. However, SDN is not enough
to ensure network access control when user identification
is required. Token-based authentication/authorization is
widely used in web service architectures today. For in-
stance, whenever one accesses a third-party site with a
Facebook credential, the OAuth 2.0 protocol (RFC 6749),
which uses tokens, is invoked to authorize the third-party
site access to some resources in that individual’s Facebook
profile. Furthermore, OpenStack, a popular cloud orches-
tration open source project, uses tokens to authorize nu-
merous application program interfaces (APIs) that require
access to its services.

We present here a novel network architecture that pro-
vides advance reservation access control by leveraging SDN
and token-based authorization. Our architecture is com-
posed of three main elements: (1) an orchestrator that
receives requests from users or applications and manages
networking resources between sites, (2) a WAN controller
that represents an advance reservation system connecting
sites involved in a specific data transfer, and (3) site SDN

Preprint submitted to INDIS 2016 Workshop November 4, 2016



controllers that manage the installation of flow rules on
site switches so as to extend a reservation from the bor-
der router all the way to the data transfer node in each
site. The full workflow is automated, and no involvement
from a network operator is required, thus reducing the
provisioning time from several days to a few minutes. Our
contributions are the following:

1. A system that automates the advance reservation
provisioning process using multidomain SDN orches-
tration.

2. A system that uses tokens to strongly bind an end-
to-end flow to the user or application that requested
the reservation.

The reminder of this paper is as follows. Section 2
presents background material and Section 3 presents re-
lated work. Section 4 defines our system architecture.
Section 5 describes our implementation and evaluation ex-
periments. Section 6 discusses our results, and Section 7
presents our conclusions and future work.

2. Background and Motivation

We provide background on advance reservation sys-
tems, software-defined networking, and tokens.

2.1. Advance Reservation Systems

Advance reservation systems allow users to request and
manage connections over a high-speed wide area network
(WAN) [1]. Advance reservation connections are defined
by the endpoints they connect, the requested bandwidth,
the start time, and the end time. Generally, an advance
reservation ends at the border router that connects a site
to the WAN and is identified by a VLAN ID. If a site
does not have a high-speed Science DMZ [6], science flows
have to compete with campus LAN traffic before reach-
ing the advance reservation in the border router. Users
can extend an advance reservations to the end host by
manually extending VLANs on each site, but this man-
ual provisioning of VLANs on site can take several days.
For instance, the coordination of the provisioning process
without automation is reported to take between five and
45 days[5]. Analysis of the durations of active OSCARS
reservations on one day in 2016 shows that all are for a
year or longer, and 40% (28 out of 68) are for 3.60 to 6.20
years: see Figure 1. Automating the advance reservation
process reduces the provisioning time, as demonstrated in
[5]. We hypothesize that automation of provisioning may
provide a more flexible and dynamic system, with shorter
reservation duration.

A novel internetworking paradigm, software-defined ex-
change (SDX), allows multiple independent administrative
domains to share computing, storage, and networking re-
sources. This effort is promoted mainly by REN users and
operators. Currently, networking researchers use SDX to

Figure 1: Histogram of OSCARS reservations duration. Data from
https://my.es.net/oscars on August 1, 2016

incorporate SDN technologies into the networking infras-
tructure of Internet exchange points (IXPs) [7] and aca-
demic exchange points [8]. An SDX can be regarded as
a next-generation advance reservation systems, because it
seeks to manage and allocate not only networking, but also
computing and storage resources over multiple domains.

2.2. Software-Defined Networking

The SDN paradigm [9] decouples the control and data
planes of network devices. This separation enables global
network programmability, rapid innovation, and indepen-
dent evolution of control and data planes. The SDN ar-
chitecture is divided into three layers: the infrastructure
layer, which represents the data plane; the control layer,
which represents the control plane; and the application
layer, which represents network applications. The data
plane comprises potentially many forwarding devices or
SDN-enabled switches. The control plane is a logically
centralized entity, generally known as an SDN controller,
which can be composed of a single server or several dis-
tributed SDN controllers. The SDN controller communi-
cates with SDN switches through the southbound interface
(OpenFlow[10] being the most widely deployed) and with
the network applications through the northbound inter-
face. For distributed SDN controllers, a west-east interface
can be added to enable communication between SDN con-
trollers within the same administrative domain. If these
controllers belong to independent administrative domains,
a multidomain SDN [4] can be used to automate the pro-
visioning of advance reservations.

SDN applications define the behavior of the network
(e.g., switching, routing, load-balancing). The SDN con-
troller translate this behavior into flow rules and install
these rules in the data plane. An SDN flow rule typically
comprises a match (matching field of the TCP/IP header)
and an action (e.g., forward, drop, or send to controller).
SDN is important because it allows finer and more flexi-
ble segmentation than that achievable with conventional
methods (e.g., only VLANs or subnets), because a match

2

https://my.es.net/oscars


rule can match any permitted combination of fields from
the TCP/IP header.

2.3. Tokens

A token authorization scheme can be implemented via
either self-contained tokens or opaque tokens. In the first
approach, the token contains all the information to be ver-
ified by an enforcement point. Typically, this approach
requires a public key infrastructure (PKI) for signing and
verifying tokens. In the second approach, an enforcement
point has to validate the token against a centralized secure
token service (STS). This approach may not need a PKI
because all token information is stored in the STS.

3. Related Work

An early approach to defining a system architecture for
advance reservation of bandwidth channels on research and
education networks was UltraScience Net[11, 12]. More
than a decade ago, this architecture defined a separate
control and data plane and a bandwidth scheduler. The
southbound interface of UltraScience Net was based on a
transaction language communicated over a command line
interface. The use of OpenFlow is a significant improve-
ment on that work, because OpenFlow provides an open
interface for data plane configuration, freeing the architec-
ture from vendor-specific solutions.

Ibarra et al. [5] described the deployment of SDN and
OpenFlow on the AmLight international research and ed-
ucation network, which promotes collaboration research
between the US and Latin America, with the goals of im-
proving operations efficiency and providing network pro-
grammability. Network programmability was provided by
using Internet2’s FlowSpace Firewall (FSF) and the Open
Exchange Software Suite (OESS) SDN controller. With
the new SDN AmLight, the provisioning time for a layer 2
circuit that involves up to three domains was reduced from
five days and 10 emails to less than two minutes and no
emails. Although SDN Amlight also automates provision-
ing of multidomain network reservations, its definition of a
domain is a countrywide network (e.g., Internet2 and ES-
Net in the United Stated and RNP in Brazil). In contrast,
our focus is on smaller domains such as national laborato-
ries and university campuses and end-to-end reservations,
as we are more concerned with automating provisioning for
the last mile between the border router and the endpoint.

Tepsuporn et al. [4] tested the use of end-to-end layer
2 paths for large dataset transfers over an existing deploy-
ment called DYNES (Dynamic Network System) [13]. The
DYNES system uses OESS and OSCARS in multiple do-
mains to establish dedicated layer 2 circuits. OESS is an
intra-domain SDN controller that controls switches using
OpenFlow [10], while OSCARS supports inter-domain ser-
vice. The authors identified limitations with configuration
overhead, scalability, path provisioning, and testing. For
instance, a failed path setup attempt in OSCARS forces a
user to wait 15 minutes before issuing a new request.

Lark [14] enables network resource management with
per-job granularity for high-throughput computing (HTC)
systems such as HTCondor, using Linux containers, vir-
tual Ethernet devices, and SDN. In this architecture, each
job is assigned to a separate network namespace [15], and
each HTCondor node has a virtual switch (e.g., Open
vSwitch (OVS) [16] or Linux bridge) that interconnects
network namespaces to physical interfaces. This scheme
allows users to change the network layer of a single Lark
node when they submit batch jobs. To demonstrate these
capabilities, the developers of Lark created a bandwidth
management system and a job-aware OpenFlow controller,
measuring performance overhead for both implementations.
The authors reported one second overhead per job, to cre-
ate and configure network namespaces—a negligible delay
since a typical HTC job duration is measured in hours.
However, their work considers only jobs running on a sin-
gle node, whereas our work focuses on the orchestration
of network resources in multiple sites. Attaching a Lark
node to a system running our architecture will enable job-
level granularity in our advance reservation access control
system. Lark and our proposed system are thus comple-
mentary.

The Developing Applications with Networking Capa-
bilities via End-to-end SDN (DANCES) [17] project seeks
to enhance the performance of cyberinfrastructure appli-
cations (e.g., GridFTP [18] data transfers, SLASH2 [19]
distributed file system data transfers, and SCP) by adding
network bandwidth scheduling via SDN. The project de-
veloped a bandwidth manager, the Centralized OpenFlow
and Network Governing Authority (CONGA), whose main
function is to receive bandwidth requests from a resource
manager or scheduling system and determine if the re-
quest can be fulfilled. CONGA accepted a request if: (1)
resources are available on the network and (2) the user is
authorized to request this amount of bandwidth.

Network access control (NAC), standardized as IEEE
802.1X [20], is a common computer security approach to
authenticate endpoints and grant them access to a com-
puter network. NAC was an early SDN application, with
the main focus being policy enforcement. Casado et al. [21]
proposed a Secure Architecture for the Networked Enter-
prise (SANE), which defines a single protection layer that
governs all routing and access control decisions in the net-
work. Similarly, Nayak et al. [22] proposed Resonance, a
system for securing enterprise networks by using dynamic
access control policies and network devices as enforcement
points. FlowNAC [23] and FlowIdentity [24] adapt IEEE
802.1X by using SDN principles. FlowNAC performs au-
thorization by a set of predefined flow rules per network
service, whereas FlowIdentity enforces a policy through a
stateful role-based firewall that is updated dynamically at
the SDN controller. These studies were all conducted in a
single domain, such as a campus or enterprise network.

Gommans et al. [25] proposed a token-based access
control mechanism for multidomain lightpath (i.e., a fiber
optics path) REN reservations. They identified and demon-

3



strated three ways to enforce access control policies by
using tokens: at the IP packet layer, by using a token-
base switch; at the control plane, by including a token in
a specific field of the resource reservation protocol - traf-
fic engineering (RSVP-TE) signaling protocol for networks
based on generalized multiprotocol label switching (GM-
PLS); and at the service layer signaling, by implementing
an authentication, authorization, and accounting server,
a token enforcement point, and a lightpath resource al-
location system. However, while this work extended to
multiple domains, it did not consider SDN. The original-
ity of our study lies in its integration of SDN access control
and token-based multidomain authorization.

4. System Architecture

We leverage SDN and token-based authorization to de-
velop a network architecture that supports extending an
advance reservation from a WAN border router to an end-
point, programmatically (i.e., without intervention of a
network operator), and across multiple domains. Our ar-
chitecture comprises an orchestrator that handles user re-
quests and manages networking resources, a WAN con-
troller representing an advance reservation system that
connects sites involved in a specific data transfer, and a
site SDN controller that manages the installation of flow
rules on site switches.

The orchestrator assigns a token to each successful
reservation requested by a user, effectively creating a strong
binding between the user who requested the reservation
and the flows provisioned by SDN on each site and the
WAN controller. Then, an authorized user can present this
token to a site controller and gain access to the network
reservation. After a reservation expires, all configurations
are removed from the network, and the token cannot be
reused. The full workflow is automated, and no involve-
ment from a network operator is required. Our approach
does not require any changes to current advance reserva-
tion systems such as AL2S and OSCARS.

Figure 2 illustrates our architecture and the workflow
for requesting an end-to-end circuit for a data transfer,
which we describe in detail below. The detailed workflow
for requesting, provisioning, and consuming a protected
advance reservation is as follows:

1. A user requests an advance reservation through an
orchestrator. The user provides reservation informa-
tion: identifiers for the endpoints (e.g., hostname or
IP address) involved in the transfer, the start time,
the end time, and bandwidth requirement.

2. The orchestrator polls each site’s SDN controller and
a WAN controller to verify whether the bandwidth
requested between the two endpoints is available dur-
ing the specified time frame, i.e., from start to end.

(a) If resources are available in every domain, each
controller provisions a layer-2 circuit within its

domain and reports a VLAN ID to the orches-
trator. (Our approach will also work for layer
3 circuits.)

i. The orchestrator creates a token for the
reservation and associates it with the set
of VLANs.

(b) The orchestrator replies to the user with the
reservation token.

(c) If any controller does not have enough resources,
the orchestrator replies to the user with a reser-
vation failure message.

3. When it is time to start the data transfer, the user
contacts the data mover on the receiver site and con-
figures it as a receiver. The communication message
includes the reservation token.
(a) The data receiver replies with the IP address

and port on which it is listening.
(b) The data receiver request the site’s SDN con-

troller to add a flow rule matching 3-tuple [ip addr,
port, proto]. (The IP address and port of the
sender site are not known at this point.)

(c) The SDN controller validates the token against
the orchestrator, which replies with reservation
VLAN if valid.

i. If valid, the controller installs the flow rule
with an action send to VLAN ID of the
reservation on the site’s OVS and installs
the flow rule on the border switch to replace
the site’s VLAN with the WAN’s VLAN for
outgoing traffic, and vice versa for incom-
ing traffic.

ii. Else, it rejects the request.

4. After the IP address and port are known, the user
sends a request including the token, destination IP
address, and destination port to the data sender.
(a) The data sender then sends a request to the

site’s SDN controller to add a flow rule match-
ing the 5-tuple [src ip, dst ip, src port, dst port,
proto]. The user can then send a request to the
receiver site to modify the 3-tuple to a 5-tuple
flow rule.

(b) The SDN controller validates the token against
the orchestrator, which replies with a reserva-
tion VLAN if valid.

i. If valid, the controller installs a flow rule
with an action of tagging packets with a
reservation VLAN on the site’s OVS and
installs a flow rule on the border router for
replacing the VLAN ID of the site with the
VLAN ID of the WAN for outgoing traffic,
and vice versa for incoming traffic.

ii. Else, it rejects the request.

5. Implementation and Evaluation

We conducted experiments on the ESNet infrastruc-
ture testbed. As shown in Figure 3, we used two sites,

4



Figure 2: Block diagram of advance reservation access control using SDN and tokens. Only positive outcomes are shown

Washington DC and CERN in Geneva, Switzerland, which
have an average inter-site RTT of 90 ms and up to 10 Gbps
best effort for bandwidth capacity. Each site has two OVS
switches [16], one container endpoint, and one Ryu SDN
controller [26]. The orchestrator runs on another container
hosted at CERN. All containers run Ubuntu 14.04.

As shown in Figure 2, our architecture implementation
is composed of a WAN controller, one site controller per
site, one data mover node per site, an orchestrator, and a
user interface. Each component was coded in Python and
communicates over TCP sockets sending JSON data. To
communicate with the Ryu controller, we used the REST
API that comes with the controller. The data transfers
used iperf. The system handles three types of messages:
(1) REQ for advance reservation requests, (2) RCV for
data mover receiver configuration, and (3) SND for data
mover sender configuration. We next provide a brief de-
scription of each component.

5.1. WAN Controller

The WAN controller emulates an advance reservation
system such as OSCARS (ESNet) or AL2S (Internet2).
Its northbound interface talks to the Orchestrator, while
its southbound interface interacts with WAN switches. Its

main functionality is to manage a pool of VLANs, assign
VLANs to circuit reservation requests, and provision the
circuit on the WAN infrastructure (switches). A message
request from the Orchestrator has the following format:

• Message Type: REQ

• Format: site1, site2, start time, end time, bandwidth

The actions performed by the WAN controller after receiv-
ing a request are assign VLAN to the reservation, allocate
bandwidth requested, and configure switches. It may re-
spond with the reservation VLAN ID or a failure message.

5.2. Site Controller

A site controller manages reservation configurations at
its site. The site switch in Figure 2 represents the site’s
topology (which could involve one or more switches) and
the border router represents a connection to the WAN.
The controller’s northbound interface talks to the orches-
trator and a data mover that requests access to a reser-
vation, while its southbound interface interacts with site
switches through OpenFlow. The controller’s main func-
tions are to manage a pool of VLANs, assign VLANs to

5



Figure 3: ESNet infrastructure testbed configuration for experiments

circuit reservation requests from the orchestrator, provi-
sion the circuit on the site infrastructure (switches), vali-
date tokens against the orchestrator, and install flow rules
binding reservation VLAN to flow 5-tuple. A message re-
quest from the orchestrator has the following format:

• Message Type: REQ

• Format: site1, site2, start time, end time, bandwidth

A message request from a data mover is handled by the
Ryu controller’s REST API. We extended that API to
accept authorization tokens when adding new flow rules.

5.3. Data Mover

The data mover’s main function is to transfer data from
one site to another. It can work in either sender or receiver
mode. It accepts commands from a user interface and
sends add flow requests to a site controller with a reser-
vation token. In our experiments, we use iperf to perform
data transfers. To emulate GridFTP behavior [18], the
data mover receiver generates a random TCP port number
before starting the iperf server and returns the socket on
which it is listening. Likewise, the sender uses this socket
to establish a connection by using iperf. A user interface
can send two types of messages to a data mover:

• RCV: generates a random port number and starts an
iperf server on that port; returns the socket [IP:port]
to the user interface.

• SND: opens a connection to the socket provided by
the client.

Every request acquires a reservation token. After every
request, the data mover has to present the site controller
with the request’s token plus a flow to be added.

5.4. Orchestrator

The orchestrator is in charge of coordinating the reser-
vation of an end-to-end circuit between two (or more) sites
and validating the tokens presented by data movers to site
controllers (refer to messages 3c and 4b in Figure 2). Its
northbound interface talks to the user that requests ac-
cess to a reservation; its southbound interface interacts
with SDN controllers on the WAN and on each site. A
user request has the following format:

• Message Type: REQ

• Format: site1, site2, start time, end time, bandwidth

If the orchestrator finds a path between the two sites, it
will return a reservation token to the user; otherwise, a
failure message will be sent. A token validation request
from a data mover has the following format:

• Message Type: TKN

• Format: Universally Unique Identifier (UUID) v4, a
128-bit-long identifier standard defined in RFC 4122

The orchestrator will reply with a valid or invalid token
message depending on the existence of a token in its token
store.

5.5. Evaluation

We evaluated the system on the ESNet testbed by mea-
suring its latency in answering a request. We find that
a circuit reservation request takes 181.98 ms on average.
The time taken for sender and receiver configuration re-
quests to data movers depends on where the orchestrator
and data mover are located, around 33 ms if they are in
close proximity but 1.27 seconds when they are on opposite
sides of the WAN.

We find that the delay between orchestrator and par-
ticipants (i.e., WAN controller and site controllers) is the
main contributor to the latency of an answer. Addition-
ally, our communication protocol implementation contacts
each participant in sequence, and since we implemented
an opaque token approach, token validation happens for
each flow rule that has to be installed. Thus, we need
to install four flows per switch, per request—where two
flows represent the incoming and outgoing traffic for the
data transfer and the other two are for ARP requests—
for a total of 4N token validation messages for a site with
N OpenFlow switches. After installing all corresponding
flows on each switch, we were able to verify that only the
specific iperf connection was able to communicate between
the two endpoints.

We then reimplemented our system using self-contained
tokens and measured the latency of the system to answer a
request. We selected JSON web tokens (JWT) on Python
for our implementation. We used a preshared password
for testing purposes instead of a full PKI. Table 1 shows
the results compared with the opaque token approach.

We next evaluated the behavior of advance reservations
under three scenarios:

6



Table 1: Latency of the system for opaque and self-contained tokens.
All measurements are in msec.

Token
Request Opaque Self-contained
REQ 182.0 180.4
RCV 32.0 17.7
RCV over WAN 1,270.0 196.4
SND 34.7 17.7
SND over WAN 1,270.0 198.3

1. The reservation ends at the border router, and the
LAN is congested. Traffic in the LAN is not neces-
sarily going to the WAN, but it is affecting the per-
formance of a user who wants to reach the border
router. This is how most systems work currently.

2. The reservation is manually extended to the end-
point using VLANs. However, unauthorized users in
the same endpoint still have access the reservation.

3. The reservation is programmatically extended to the
endpoint, and access is controlled by using our sys-
tem. In this scenario only authorized users can ac-
cess the reservation.

We did not present bandwidth graphs because the main
concern of our solution is access control. A bandwidth
graph for scenario 2 will show two flows sharing the cir-
cuit, while in scenario 3 the unauthorized flow will not
exist. Scenario 1 is more concerned with a quality of ser-
vice (QoS) solution that combines advance reservation and
application adaption [27]. Note that our solution protects
the performance of only those flows that made an advance
reservation. Hence, this solution should be paired with a
best-effort channel in order to avoid an unintentional de-
nial of service of flows between the same endpoints that
did not make a reservation.

6. Discussion

We have presented a first attempt to develop a sys-
tem for orchestrating the end-to-end provisioning of an
advance reservation using SDN and token-based autho-
rization. We demonstrated that our solution can reduce
the provisioning time of an end-to-end circuit from sev-
eral days (manual process) to a few minutes (automated
process). Additionally, we demonstrated that, by using
tokens, a specific flow can be strongly associated with the
owner of the reservation. For a real deployment, however,
many design decisions in this proof-of-concept should be
optimized. In the following subsections we provide more
details about possible improvements to our work.

6.1. Token Scheme

As we can observe in Table 1, a self-contained token
approach replies from 15 ms to 1 second faster to a client

request than does an opaque token approach, because val-
idation happens on the enforcement point. We note, how-
ever, that in this work we used a preshared password be-
tween the orchestrator and site controller, whereas a full
PKI should be used in a real deployment. Moreover, in
this work we assumed that a secure mechanism for token
distribution was in place, and we were not concerned with
token spoofing attacks.

6.2. SDN Site Controller

We chose to extend the RESTful API of the Ryu con-
troller to validate each add flow request with an authoriza-
tion token. However, this approach generates too many
messages between a site controller and the orchestrator,
because each add flow request needs to be validated. An
API that validates a single request but installs all required
flows at once would be more efficient. For instance, we
could use an intent-based networking [28] API extended
with token-based authorization.

7. Conclusion and Future Work

We have described a system that provides end-to-end
advance reservation access control. By using multidomain
SDN orchestration, our system automates the advance reser-
vation provisioning process. Furthermore, by using token-
based authorization, our system strongly binds an end-
to-end flow to the user or application that requested the
reservation. We have deployed this system in the ES-
Net testbed and demonstrated that the provisioning time
of an end-to-end reservation can be reduced from several
days (manually) to a few minutes (automated). This re-
sult opens new possibilities for future advance reservation
systems in which advance reservations can be more flex-
ible and short-lived (i.e., lasting hours instead of years),
allowing finer scheduling of network resources. In future
work, we want to explore how the addition of QoS in an
end-to-end advance reservation can improve utilization of
network resources.

Acknowledgments

This work was supported in part by the U.S. Depart-
ment of Energy under contract number DEAC02-06CH11357
and SDN-SF project, and the National Science Founda-
tion, under grant ACI-1440761. We thank Eric Pouyoul
from ESnet for his help in setting up the testbed. We also
thank Sean Donovan for his feedback.

References

[1] N. Charbonneau, V. M. Vokkarane, C. Guok, I. Monga, Ad-
vance reservation frameworks in hybrid IP-WDM networks,
IEEE Communications Magazine 49 (5) (2011) 132–139.

[2] Internet2, Layer 2 services, http://www.internet2.

edu/products-services/advanced-networking/

layer-2-services/, accessed: 2016-05-04.

7

http://www.internet2.edu/products-services/advanced-networking/layer-2-services/
http://www.internet2.edu/products-services/advanced-networking/layer-2-services/
http://www.internet2.edu/products-services/advanced-networking/layer-2-services/


[3] I. Monga, C. Guok, W. E. Johnston, B. Tierney, Hybrid net-
works: lessons learned and future challenges based on esnet4
experience, IEEE Communications Magazine 49 (5) (2011) 114–
121. doi:10.1109/MCOM.2011.5762807.

[4] S. Tepsuporn, F. Al-Ali, M. Veeraraghavan, X. Ji, B. Cashman,
A. J. Ragusa, L. Fowler, C. Guok, T. Lehman, X. Yang, A
multi-domain SDN for dynamic layer-2 path service, in: 5th
International Workshop on Network-Aware Data Management,
NDM ’15, ACM, New York, NY, USA, 2015, pp. 2:1–2:8, http:
//doi.acm.org/10.1145/2832099.2832101.

[5] J. Ibarra, J. Bezerra, H. Morgan, L. Fernandez Lopez, M. Stan-
ton, I. Machado, E. Grizendi, D. Cox, Benefits brought by
the use of OpenFlow/SDN on the AmLight intercontinental
research and education network, in: International Symposium
on Integrated Network Management, 2015, pp. 942–947. doi:

10.1109/INM.2015.7140415.
[6] E. Dart, L. Rotman, B. Tierney, M. Hester, J. Zurawski, The

Science DMZ: A network design pattern for data-intensive sci-
ence, Scientific Programming 22 (2) (2014) 173–185.

[7] A. Gupta, L. Vanbever, M. Shahbaz, S. P. Donovan,
B. Schlinker, N. Feamster, J. Rexford, S. Shenker, R. Clark,
E. Katz-Bassett, SDX: A software defined internet exchange,
in: ACM SIGCOMM, ACM, 2014, pp. 551–562.

[8] J. Mambretti, J. Chen, F. Yeh, Software-defined network ex-
changes (SDXs): Architecture, services, capabilities, and foun-
dation technologies, in: 26th International Teletraffic Congress,
IEEE, 2014, pp. 1–6.

[9] D. Kreutz, F. M. V. Ramos, P. E. Verssimo, C. E. Rothen-
berg, S. Azodolmolky, S. Uhlig, Software-defined networking: A
comprehensive survey, Proceedings of the IEEE 103 (1) (2015)
14–76. doi:10.1109/JPROC.2014.2371999.

[10] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, J. Turner, Openflow: en-
abling innovation in campus networks, ACM SIGCOMM Com-
puter Communication Review 38 (2) (2008) 69–74.

[11] N. S. V. Rao, W. R. Wing, S. M. Carter, Q. Wu, Ultrascience
net: network testbed for large-scale science applications, IEEE
Communications Magazine 43 (11) (2005) S12–S17. doi:10.

1109/MCOM.2005.1541694.
[12] N. S. V. Rao, Q. Wu, S. Ding, S. M. Carter, W. R. Wing,

A. Banerjee, D. Ghosal, B. Mukherjee, Control plane for ad-
vance bandwidth scheduling in ultra high-speed networks, in:
25TH IEEE International Conference on Computer Communi-
cations, 2006, pp. 1–5. doi:10.1109/INFOCOM.2006.35.

[13] J. Zurawski, R. Ball, A. Barczyk, M. Binkley, J. Boote, E. Boyd,
A. Brown, R. Brown, T. Lehman, S. McKee, B. Meekhof,
A. Mughal, H. Newman, S. Rozsa, P. Sheldon, A. Tackett,
R. Voicu, S. Wolff, X. Yang, The DYNES instrument: A de-
scription and overview, Journal of Physics: Conference Series
396 (4) (2012) 042065, http://stacks.iop.org/1742-6596/

396/i=4/a=042065.
[14] Z. Zhang, B. Bockelman, D. W. Carder, T. Tannenbaum, Lark:

Bringing network awareness to high throughput computing, in:
15th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing, 2015, pp. 382–391. doi:10.1109/CCGrid.
2015.116.

[15] ip-netns - process network namespace management,
http://man7.org/linux/man-pages/man8/ip-netns.8.html,
accessed: 2016-05-04.

[16] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Ra-
jahalme, J. Gross, A. Wang, J. Stringer, P. Shelar, K. Ami-
don, M. Casado, The design and implementation of Open
vSwitch, in: 12th USENIX Symposium on Networked Systems
Design and Implementation, USENIX Association, Oakland,
CA, 2015, pp. 117–130, https://www.usenix.org/conference/
nsdi15/technical-sessions/presentation/pfaff.

[17] V. Hazlewood, K. Benninger, G. Peterson, J. Charcalla,
B. Sparks, J. Hanley, A. Adams, B. Learn, R. Budden,
D. Simmel, J. Lappa, J. Yanovich, Developing Applications
with Networking Capabilities via End-to-End SDN (DANCES),
XSEDE16 (2016) 1–7.

[18] W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, L. Liming,
S. Tuecke, GridFTP: Protocol extensions to FTP for the grid,
Global Grid Forum, GFD-RP 20 (2003) 1–21.

[19] P. S. Center, SLASH2 file system, https://github.com/

pscedu/slash2.
[20] IEEE standard for local and metropolitan area networks–Port-

based network access control, IEEE Std 802.1X-2010 (Revision
of IEEE Std 802.1X-2004) (2010) 1–205doi:10.1109/IEEESTD.
2010.5409813.

[21] M. Casado, T. Garfinkel, A. Akella, M. J. Freedman, D. Boneh,
N. McKeown, S. Shenker, SANE: A protection architecture for
enterprise networks, in: Usenix Security, 2006.

[22] A. K. Nayak, A. Reimers, N. Feamster, R. Clark, Reso-
nance: Dynamic access control for enterprise networks, in:
1st ACM Workshop on Research on Enterprise Networking,
WREN ’09, ACM, New York, NY, USA, 2009, pp. 11–
18, http://doi.acm.org/10.1145/1592681.1592684. doi:10.

1145/1592681.1592684.
[23] J. Matias, J. Garay, A. Mendiola, N. Toledo, E. Jacob,

FlowNAC: Flow-based network access control, in: 2014 Third
European Workshop on Software Defined Networks, 2014, pp.
79–84. doi:10.1109/EWSDN.2014.39.

[24] S. T. Yakasai, C. G. Guy, FlowIdentity: Software-defined net-
work access control, in: IEEE Conference on Network Function
Virtualization and Software Defined Network, 2015, pp. 115–
120. doi:10.1109/NFV-SDN.2015.7387415.

[25] L. Gommans, L. Xu, Y. Demchenko, A. Wan, M. Cristea,
R. Meijer, C. de Laat, Multi-domain lightpath authorization,
using tokens, Future Generation Computer Systems 25 (2)
(2009) 153 – 160, http://www.sciencedirect.com/science/

article/pii/S0167739X08001179. doi:http://dx.doi.org/

10.1016/j.future.2008.07.013.
[26] Ryu SDN Framework, http://osrg.github.io/ryu. Visited

September 10, 2016.
[27] I. Foster, A. Roy, V. Sander, A quality of service architecture

that combines resource reservation and application adaptation,
in: 8th International Workshop on Quality of Service, IEEE,
2000, pp. 181–188.

[28] D. Lenrow, Intent-based networking seeks network ef-
fect, https://www.sdxcentral.com/articles/contributed/

intent-based-networking-seeks-network-effect-david-lenrow/

2015/09/.

Disclaimer

The submitted manuscript has been created by UChicago
Argonne, LLC, Operator of Argonne National Laboratory
(Argonne). Argonne, a U.S. Department of Energy Office
of Science laboratory, is operated under Contract No. DE-
AC02-06CH11357. The U.S. Government retains for itself,
and others acting on its behalf, a paid-up nonexclusive, ir-
revocable worldwide license in said article to reproduce,
prepare derivative works, distribute copies to the public,
and perform publicly and display publicly, by or on behalf
of the Government. The Department of Energy will pro-
vide public access to these results of federally sponsored
research in accordance with the DOE Public Access Plan.
http://energy.gov/downloads/doe-public-access-plan.

8

http://dx.doi.org/10.1109/MCOM.2011.5762807
http://doi.acm.org/10.1145/2832099.2832101
http://doi.acm.org/10.1145/2832099.2832101
http://dx.doi.org/10.1109/INM.2015.7140415
http://dx.doi.org/10.1109/INM.2015.7140415
http://dx.doi.org/10.1109/JPROC.2014.2371999
http://dx.doi.org/10.1109/MCOM.2005.1541694
http://dx.doi.org/10.1109/MCOM.2005.1541694
http://dx.doi.org/10.1109/INFOCOM.2006.35
http://stacks.iop.org/1742-6596/396/i=4/a=042065
http://stacks.iop.org/1742-6596/396/i=4/a=042065
http://dx.doi.org/10.1109/CCGrid.2015.116
http://dx.doi.org/10.1109/CCGrid.2015.116
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/pfaff
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/pfaff
https://github.com/pscedu/slash2
https://github.com/pscedu/slash2
http://dx.doi.org/10.1109/IEEESTD.2010.5409813
http://dx.doi.org/10.1109/IEEESTD.2010.5409813
http://doi.acm.org/10.1145/1592681.1592684
http://dx.doi.org/10.1145/1592681.1592684
http://dx.doi.org/10.1145/1592681.1592684
http://dx.doi.org/10.1109/EWSDN.2014.39
http://dx.doi.org/10.1109/NFV-SDN.2015.7387415
http://www.sciencedirect.com/science/article/pii/S0167739X08001179
http://www.sciencedirect.com/science/article/pii/S0167739X08001179
http://dx.doi.org/http://dx.doi.org/10.1016/j.future.2008.07.013
http://dx.doi.org/http://dx.doi.org/10.1016/j.future.2008.07.013
http://osrg.github.io/ryu
https://www.sdxcentral.com/articles/contributed/intent-based-networking-seeks-network-effect-david-lenrow/2015/09/
https://www.sdxcentral.com/articles/contributed/intent-based-networking-seeks-network-effect-david-lenrow/2015/09/
https://www.sdxcentral.com/articles/contributed/intent-based-networking-seeks-network-effect-david-lenrow/2015/09/

	Introduction
	Background and Motivation
	Advance Reservation Systems
	Software-Defined Networking
	Tokens

	Related Work
	System Architecture
	Implementation and Evaluation
	WAN Controller
	Site Controller
	Data Mover
	Orchestrator
	Evaluation

	Discussion
	Token Scheme
	SDN Site Controller

	Conclusion and Future Work

