Towards a quantum internet

Andreas Reiserer

Quantum Networks Group Max-Planck-Institute of Quantum Optics Garching, Germany

Why? How? When?

What are the unique applications that are enabled by quantum networks?

What do we need to build a quantum internet?

How long will it take?

Quantum information processing

Next decade: Exponential growth of classical information processing capacity will break down:

Transistors approach the size of single atoms

New computing paradigms will become important

Zuse Z4, first commercial computer (2200 relays)

What is the quantum advantage?

"Hilbert space is a big place." (Carlton Caves)

What does not exist cannot be copied.

From classical bits to quantum bits

qubit example: magnetic moment of single atoms

n qubits: Hilbert space with 2ⁿ states $a_{00}|00\rangle + a_{01}|01\rangle + a_{10}|10\rangle + a_{11}|11\rangle$

When *digitized*, n qubits can hold 2ⁿ bits *i.e.* the a's can only be 0 or 1

Two bits: 00 or 01 or 10 or 11 n bits: in one out of 2ⁿ states

Many qubits

170 qubits can then hold $2^{170} = 10^{51}$ bits That's more than the number of atoms on earth. "Hilbert space is a big place." (Carlton Caves)

- Quantum computers and quantum simulators can have unique power.
- Quantum information cannot be sent via a classical network. We need quantum networks.

Still, when measuring an n-qubit state, you only get n bits of classical information

- Quantum states don't facilitate increased classical data rates
- Accessing the power of quantum states requires quantum algorithms

Richard Feynman

What is the quantum advantage?

"Hilbert space is a big place." (Carlton Caves)

What does not exist cannot be copied.

Assumptions of classical physics

Locality: No signal can travel faster than the speed of light. (Einstein)

Realism: Physical objects are defined independent of measurement *"I like to think the moon is there even if I am not looking at it." (Einstein)*

Non-local correlations as a resource

THE NEW YORK TIMES, SATURDAY, MAY 4, 1935. EINSTEIN ATTACKS Find It is Not 'Complete Even Though 'Correct.' yaical Reality' Can Be

John Bell invented an experimental test of locality & realism (1964)

Numerous tests. First ones without "loopholes":

Hensen, AR et al, Nature 526 (2015), Shalm et al., Giustina et al.: PRL 2015

Entangled quantum states violate the assumptions of classical physics: results are random but correlated, even for distant entangled particles

Non-local correlations as a resource

10

Results of measurements performed on quantum systems only come into existence when the measurement is performed.

What does not exist cannot be copied (or eavesdropped)!

If two parties send information encoded in quantum states, they can proof that no eavesdropper is present!

Ekert and Renner: "The Ultimate Physical Limits of Privacy," Nature **507**, 443 (2014)

Tittel, Ribordy, Gisin: "Quantum cryptography" Physics World (1998)

What is the quantum advantage?

"Hilbert space is a big place." (Carlton Caves)

What does not exist cannot be copied.

Quantum network applications

Provably secure communication (also: voting, quantum money...)

Quantum networks: A cornerstone in the "second quantum revolution"

Simulation of complex quantum systems

Many unforeseeable applications once large-scale quantum networks become available!

Reduce the latency and increase the resilience of classical networks

Distributed and blind quantum computing

Precision sensing (e.g. world clock, gravity, starlight)

Why? How? When?

What are the unique applications that are enabled by quantum networks?

What do we need to build a quantum internet?

How long will it take?

What does it take?

14

Electromagnetic fields are ideal for distributing information Energy of the field E = hf needs to be much larger than temperature $kT \rightarrow at$ room Temperature, you need high frequency

Light in optical fibers allows for quantum state transmission.

- technically "easy"
- known since the 90's
- has severe limitations

What does it take?

15

Electromagnetic fields are ideal for distributing information Energy of the field E = hf needs to be much larger than temperature $kT \rightarrow at$ room Temperature, you need high frequency

Light in optical fibers allows for quantum state transmission.

- technically "easy"
- known since the 90's
- has severe limitations

Efficient (>1%) fiber optical channels only for < 100 km distance

No improvement expected in terms of fiber transmission.

Lines: "The Search for Very Low Loss Fiber-Optic Materials," Science 226, 663 (1984)

Photonic networks: State-of-the-art

Yin et al., Science **356**, 1140 (2017)

Chen et al., Nature **589**, 214 (2021)

- Secure communication: ~ 100 km via fiber, ~ 1200 km via satellite
- Similar efforts in US & EU. Practical implementations (soon) available

Slow (~1 MB/s) but secure over global distances if you trust the provider

- "Quantum" security only up to ~100 km (non-local correlations)
- Does not allow to connect quantum computers (large Hilbert space)

What does it take?

Increasing the distance and qubit number requires efficient connections to matter qubits.

New capacities:

Long-term memory and processing of quantum states

Quantum Networks with matter qubits

Atoms in vacuum

Spins in diamond

Distance: 1.3 km

Distance: 21 m Success probability: 2 % Fidelity: 98 %

S. Ritter, AR et al., Nature **484** (2012) AR & G. Rempe Rev., Mod. Phys. **87** (2015) Success probability 10⁻⁸ Fidelity > 83 % *B. Hensen, AR et al., Nature* **526** (2015) Four qubits in three nodes *Pompili et al, Science* **372**, 259 (2021).

Other experiments with trapped ions, atomic ensembles, quantum dots, superconducting circuits, molecules...

Deterministic spin-photon interaction

- Low interaction probability between stationary qubits and single photons
- Can be enhanced by trapping both in a small volume, i.e. an optical resonator

Experimental requirements

- precise high-power lasers
- free-space optical components in a temperature- and vibration-stabilized lab
- ultra-high vacuum or ultra-low temperatures
- high-power electronic control signals
- PhD students
- public funding

Rempe lab @ MPQ Garching

Hanson lab @ Qutech Delft

Experimental requirements

- precise high-power lasers
- free space optical components in a temperature and vibration stabilized lab
- ultra high vacuum or ultra-low temperatures
- high-power electronic control signals
- PhD students
- public funding

Bundesministerium für Bildung und Forschung

project TransQnode:

Entanglement at kHz rate between rack-integrated, transportable quantum network nodes over 100 km of optical fiber (until 2024)

Weiss*, Gritsch*, Merkel, Reiserer; Optica **8**(1) 40 (2021) Gritsch* et al. arXiv:2108.05120 (2021); Patent pending

Outlook

"I don't make any predictions, and in particular not about the future." – Karl Valentin

Quantum network applications

23

100 erbium qubits in a single resonator: *Ulanowski, Merkel, Reiserer: Spectral Multiplexing* of Telecom Emitters with Stable Transition Frequency. arXiv:2110.09409 (2021)

Wehner, et al: "Quantum Internet: A Vision for the Road Ahead," Science 362 (2018)

Fabry-Perot resonators: A. Ulanowski, F. Salamon, F. Wintersberger Silicon nanophotonics: L. Weiß, A. Gritsch, F. Burger, S. Rinner, J. Früh, J. Ebel

Collaborators: T. Boeck (LKZ Berlin), EU Quantum Flagship Project: Quantum Internet Alliance

Bundesministerium für Bildung und Forschung

www.mpq.mpg.de/quantum-networks