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Why? How? When?

What are the unique applications that
are enabled by quantum networks?

What do we need to build
a guantum internet?

How long will it take?




Quantum information processing

Zuse Z4,
first commercial computer
(2200 relays)

Next decade:
Exponential growth of classical information
processing capacity will break down:

Transistors approach the size of single atoms

New computing paradigms will become important



What Is the guantum advantage?

"Hilbert space is a big place." (Carlton Caves)

What does not exist cannot be copied.




From classical bits to quantum bits
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qubit example: magnetic moment of single atoms
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n qubits: Hilbert space with 2" states
a00|00) + ay,|01) + a,,|10) + a,,]|11)

When digitized, n qubits can hold 2" bits
i.e. the a’s can only be 0 or 1




Many qubits
.6 4

170 qubits can then hold 2170 = 105 bits
That’s more than the number of atoms on earth.
"Hilbert space is a big place." (Carlton Caves)

» Quantum computers and gquantum simulators
can have unique power.

» Quantum information cannot be sent via a
classical network. We need quantum networks.

Still, when measuring an n-qubit state, you only get
n bits of classical information

» Quantum states don’t facilitate increased
classical data rates

» Accessing the power of quantum states requires
guantum algorithms

Richard Feynman



What Is the guantum advantage?

"Hilbert space is a big place." (Carlton Caves)

What does not exist cannot be copied.




Assumptions of classical physics
.84

Locality: No signal can travel faster than the speed of light. (Einstein)

Realism: Physical objects are defined independent of measurement
I like to think the moon is there even if | am not looking at it.“ (Einstein)




Non-local correlations as a resource

THE NEW YORK TIMES, SATURDAY, MAY 4, 1935
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John Bell invented an experimental test of locality & realism (1964)

Numerous tests. First ones without “loopholes”:
Hensen, AR et al, Nature 526 (2015), Shalm et al., Giustina et al.: PRL 2015

Entangled quantum states violate the assumptions of classical physics:
results are random but correlated, even for distant entangled particles



Non-local correlations as a resource

Results of measurements performed on quantum systems only come
Into existence when the measurement is performed.

What does not exist cannot be copied (or eavesdropped)!

If two parties send information encoded in quantum states, they can
proof that no eavesdropper is present!
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Ekert and Renner: “The
Ultimate Physical Limits
of Privacy,” Nature 507,
443 (2014)

Tittel, Ribordy, Gisin:
“Quantum cryptography
Physics World (1998)
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What Is the guantum advantage?

"Hilbert space is a big place." (Carlton Caves)

What does not exist cannot be copied.




Quantum network applications
I

Provably secure communication Distributed and blind
(also: voting, quantum money...) guantum computing
e Shors Algarttm
Quantum networks: * Titeder factorizatiof
) * in polynomial time
»second quantum revolution® int shor(int 1)

]

~100km

Many unforeseeable applications
once large-scale quantum
Simulation of complex networks become available! Precision sensing

quantum systems (e.g. world clock,

Reduce the latency and increase gravity, starlight)
the resilience of classical networks




Why? How? When?

What do we need to build
a guantum internet?




What does It take?
B

Electromagnetic fields are ideal for distributing information
Energy of the field E = hf needs to be much larger than temperature kT
— at room Temperature, you need high frequency

Light in optical fibers allows for quantum state transmission.

[
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 technically “easy”
 known since the 90’s
* has severe limitations




What does It take?

Electromagnetic fields are ideal for distributing information
Energy of the field E = hf needs to be much larger than temperature kT
— at room Temperature, you need high frequency

Light in optical fibers allows for quantum state transmission.
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No improvement expected in terms of fiber transmission.

Lines: “The Search for Very Low Loss Fiber-Optic Materials,” Science 226, 663 (1984)



Photonic networks: State-of-the-art

Yin et al.,
Science 356, 1140 (2017)

Chen et al.,
Nature 589, 214 (2021)

[ ] ggg{:&hg'em,e @ Trusted relay © User

Backbone All-pass optical =y Satellite
@ connaction node © swirches Ll station

« Secure communication: ~ 100 km via fiber, ~ 1200 km via satellite
« Similar efforts in US & EU. Practical implementations (soon) available

Slow (=1 MB/s) but secure over global distances if you trust the provider

« “Quantum” security only up to ~100 km (hen-local-correlations)
« Does not allow to connect quantum computers (large-Hilbertspace)



What does it take?

Increasing the distance and gqubit number requires
efficient connections to matter qubits.

New capacities:
Long-term memory and processing of quantum states
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Quantum Networks with matter qubits

Atoms in vacuum Spins in diamond
Distance: 21 m Distance: 1.3 km
Success probability: 2 % Success probability 108
Fidelity: 98 % Fidelity > 83 %

B. Hensen, AR et al., Nature 526 (2015)

Four qubits in three nodes
Pompili et al, Science 372, 259 (2021).

m Other experiments with trapped ions, atomic ensembles, o ch!
guantum dots, superconducting circuits, molecules...

Quantum Networks Group

S. Ritter, AR et al., Nature 484 (2012)
AR & G. Rempe Rev., Mod. Phys. 87 (2015)




Deterministic spin-photon interaction

* Low interaction probability between stationary qubits and single photons
* Can be enhanced by trapping both in a small volume, i.e. an optical resonator

A=A

Quantum Networks Group




Experimental requirements
I I —

* precise high-power lasers

» free-space optical components in a temperature- and vibration-stabilized lab
 ultra-high vacuum or ultra-low temperatures

* high-power electronic control signals

* PhD students

* public funding




Experimental requirements

* precis

e hi lasers

o Ulra-high-vasuum-eruitra-low temperatures
 [tigiTpower electronic control signals

 PhD students

* public

% Bundesministerium
fur Bildung ) _
undForschung ~ Project TransQnode:

Entanglement at kHz rate between
rack-integrated, transportable
guantum network nodes over 100
km of optical fiber (until 2024)

A=A

Quantum Networks Group

funding

Weiss*, Gritsch*, Merkel, Reiserer; Optica 8(1) 40 (2021)
Gritsch* et al. arXiv:2108.05120 (2021); Patent pending
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Outlook

‘| don’t make any predictions,
and in particular not about the future.”
— Karl Valentin



Quantum network applications

100 erbium qubits in a single resonator: Ulanowski, Merkel, Reiserer: Spectral Multiplexing
of Telecom Emitters with Stable Transition Frequency. arXiv:2110.09409 (2021)

Getting here

needs disru ptive Quantum computing Leader election, fast byzantine agreement....
technology —
. Clock synchronization, distributed quantum
state-of-the-art Few qubit fault tolerant - computation....
in 7 years: —> N
10 QUbitS, 500 km Quantum memory .B. o Blind quantum computing, simple leader
_ _ 3 — election and agreement protocols....
practical devices / ol2
in 3 years (2 qu bitS) /:nglement generation :‘E © Device independent protocols
t =

State-of-the-art o o
(2 qubits 1.3 km, <1 eb/h)[ {111 epareandmessir ST S
Practical devices >

Trusted repeater Quantum key distribution (no end-to-end

security)
Stage of quantum network Examples of known applications

Wehner, et al: “Quantum Internet: A Vision for the Road Ahead,” Science 362 (2018)
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Fabry-Perot resonators: A. Ulanowski, F. Salamon, F. Wintersberger
Silicon nanophotonics: L. Weil3, A. Gritsch, F. Burger, S. Rinner, J. Frih, J. Ebel

Collaborators: T. Boeck (LKZ Berlin), EU Quantum Flagship Project: Quantum Internet Alliance

Quantum Networks Group

und Forschung

% Bundesministerium
fur Bildung

www.mpg.mpg.de/quantum-networks




