NETWORK OPTIMIZATION AND ORCHESTRATION
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PROBLEM STATEMENT
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» The adoption of general Al and LLM-driven workloads in every tool, has resulted in an

exponential growth explosion in terms of computational and networking demands
across distributed infrastructures.

» Current infrastructure optimization can not scale fast enough to keep pace with demand,
leaving significant resources under-utilized.

» Existing orchestration processes still depend on manual decision-making to determine
which KPI or objective to optimize, resulting in static and time-consuming workflows.

» No single algorithm performs optimally across all scenarios.

» Clear need for a context-aware, automated algorithm selection mechanism.
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INTRODUCTION

A DIFFERENT APPROACH

» Instead of relying on a pre-set optimization algorithm or entirely offloading the
optimization process to an LLM, our modular framework introduces a hybrid

decision layer.

» It uses the reasoning and contextual understanding capabilities of LLMs to
evaluate the current network state, service objectives, and available optimization

methods.

» The LLM acts as an intelligent orchestrator, dynamically selecting the most suitable
optimization algorithm from a curated pool, emulating human expert decision-
making, but with the scalability and speed required for real-time operation.
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BACKGROUND & RELATED WORK
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ALGORITHM SELECTION

» The Algorithm Selection Problem was first formalized by John R. Rice (1976), quoting: No single algorithm performs
optimally across all problem instances.

» Traditional methods rely on:
» Ranking and scoring systems to evaluate candidate algorithms with weights.
» Feature extraction and clustering of problem instances to guide selection.
» Modern approaches reimagine this concept with LLMs:
» For semantic feature extraction and context reasoning directly from textual and numerical descriptions.

» Combining algorithm embeddings and problem embeddings to identify the most suitable optimization strategy
for the given context.

» Related work regarding Algorithm Selection exist mainly outside the networking domain. With our project we are
bridging that gap, working on LLM-based algorithm selection for network orchestration.



BACKGROUND & RELATED WORK

UNIVERSITY OF AMSTERDAM
X

SERVICE PARTITIONING

» Service Partitioning refers to the process of dividing network services across multiple domains to enhance
performance and resource efficiency.

» The optimization objective that we explore is to perform Algorithm Selection to optimize several KPIs, for
example: latency.

» Common approaches in the literature:
» Classical methods: Integer Linear Programming (ILP), heuristic optimization

» Machine Learning methods: Reinforcement Learning (RL), Double Deep Q-Networks (DDQN), and Multi-
Agent RL for decentralized decision-making.

» Service partitioning is selected as the preliminary use case for evaluating the proposed LLM-based algorithm
selection framework, it provides a complex, multi-objective orchestration problem representation of real-world
network operations.
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CONCEPT ARCHITECTURE
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» We have designed a modular LLM-based
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. . Network State
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of optimization strategies.
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» It acts as an abstraction layer one step _J U

before the optimization process.




FRAMEWORK ARCHITECTURE

UNIVERSITY OF AMSTERDAM
X

MODULES & POOL

» Algorithm Pool: Repository of optimization T — User Prompt Abstracted
. . . Network State
algorithms and their metadata (AST, complexity, ,
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» Testbed: Demo deployed on FABRIC: Domain manager Domain manager Domain manager
» Multi-domain slice: New York (NEWY), P e [ —
Amsterdam (AMST), Bristol (BRIST). =0 .. |
» Implementation: Python, Redis (databases,
messaging bus), Docker (Container VNFs), net
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tools (performance measurements).

» Models: GPT-40-mini (3rd party) and Llama
3.2 1B (Ollama local).

» Dashboard: Real-time, interactive visualization
playground to explore the concept.
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Table 1: Service Types

EVALUATION SETUP Service Type | o) | +Otopo) | Rty

eMBB 1-10 100-1000 | 99.9%
URLLC 05-5 | 10-100 | 99.999%
» Service Scenarios: Evaluation is conducted using common 5G/B5G/6G service mMTC 10-100 1 1-10 %
. . . . V2X 1-5 50-200 99.99%
profiles, representing diverse network requirements:
AR/VR 5-20 | 200-500 | 99.9%

» eMBB, URLLC, mMTC, V2X, and AR/VR.

Service Type Distribution
» Performance Metrics: Two primary indicators are used to assess framework

performance with simulation:

mMTC

» Partitioning Success Rate: Percentage of successfully deployed service partitions.
» SLA Compliance Rate: Admitted services that fully meet SLA requirements.
» Success conditions: A partition is considered successful when:

» Resource constraints are met (over provisioning is allowed with performance

AR/VR
degradation).

» Valid VNF placement across domains.

» SLA Latency requirements are met.

V2X
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BASELINES

Partitioning Methods (Pool)

4

4

DDQN RL (single agent)
DDQN MARL (multi-agent)
Greedy

SLA-aware

Logic-based
Resource-based (CPU)

Random

LLM Models Compared
» Llama 3.2: 1b (local)

» Llama 3.2: 3b (local)

» GPT-40 (3rd party)

» GPT-40-mini (3rd party)
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SUCCESS RATE PER SERV|CE TYPE Admission Success Rate by Service Type

1.00
: : . 1.0~ 0.94
» 100 iterations using Llama 3.2:3B.
. - 0.77 0.77
» AR/VR, URLLC, and V2X hardest to admit due 0.72
to strict latency limits. o
ﬁ 0.6 -
» eMBB, mMTC maintain success due to 0
O
relaxed latency SLA. % 04
Table 1: Service Types
0.2 -
Service Type | A (ms) | 7 (Mbps) | Reliability
eMBB 1-10 | 100-1000 | 99.9%
URLLC 05-5 | 10-100 | 99.999% 0.0 |
mMTC 10-100 | 1-10 99% &
V2X 1-5 50-200 | 99.99% ¢
AR/VR 5-20 | 200-500 | 99.9%
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SIMULATION STUDY RESULTS

LLM INFERENCE TIME AVERAGES (LOCAL)

» LLM inference time remains stable across iterations (~3.3s  » Occasional spikes when prompt complexity increases due

avg) to resource scarcity.
» Selection alternates mainly between Greedy and Single » Local LLM models show low and consistent overhead
DDAQN solutions suitable for real-time orchestration. Data privacy too.
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SIMULATION STUDY RESULTS

INFERENCE TIMES DISTRIBUTION (LOCAL)
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> Stable Inference d|Str|but|On . Distribution of LLM Inference Times
centered around ~3.3s.

30

25

» Predictable inference latency for
local inference (under normal 2
compute load). £ 15

10

» Local, on premise LLMs provide
consistent timing for closed-loop - -
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orc h est ratl on. LLM Inference Time (s)
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ALGORITHM SELECTION LLM COMPARISON

» GPT-40 yields strong accuracy (=88%) but higher latency due to “Thinking” and

» Llama 3.2:1B (local) performs surprisingly close to larger models (due

to simple preliminary study scenario).

» Llama 3.2:3B achieves highest success rate (=92%), optimal balance

of accuracy and speed.

» Key takeaway: Smaller LLMs can be viable (for simple scenarios).

Model Performance by Partitioning Success Rate
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external inference.

» GPT-40-mini fastest with external inference (=160ms) but least consistent (~68

%).

» Key takeaway: There are trade-off between performance and inference cost.
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SIMULATION STUDY RESULTS

TABLE SUMMARY » Llama 1B: Lightweight and stable, runs on limited

resources, data privacy.
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» Llama 3B: highest success, moderate latency » GPT-4o0-mini: Fast response, costly inference.

overhead (local inference), data privacy.
| ) P Y » Preliminary results: Confirm that mid-sized local

» GPT-40: Costly inference, inference latency. =3B models can yield viable cost-performance
ratio for optimization algorithm selection.

Model Success % | A (ms) | 7 (Mbps) | Time (ms)
llama3.2:1b 34.18% 15.45 176.29 207.360
llama3.2:3b 92.15% 15.85 173.14 756.445
gpt-40 83.32% 14.87 208.06 447.103
gpt-40-min1 | 68.45% 15.08 209.85 158.993
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