NETWORK OPTIMIZATION AND ORCHESTRATION

INTRODUCTION

PROBLEM STATEMENT

UNIVERSITY OF AMSTERDAM
X

» The adoption of general Al and LLM-driven workloads in every tool, has resulted in an

exponential growth explosion in terms of computational and networking demands
across distributed infrastructures.

» Current infrastructure optimization can not scale fast enough to keep pace with demand,
leaving significant resources under-utilized.

» Existing orchestration processes still depend on manual decision-making to determine
which KPI or objective to optimize, resulting in static and time-consuming workflows.

» No single algorithm performs optimally across all scenarios.

» Clear need for a context-aware, automated algorithm selection mechanism.

UNIVERSITY OF AMSTERDAM
X

INTRODUCTION

A DIFFERENT APPROACH

» Instead of relying on a pre-set optimization algorithm or entirely offloading the
optimization process to an LLM, our modular framework introduces a hybrid

decision layer.

» It uses the reasoning and contextual understanding capabilities of LLMs to
evaluate the current network state, service objectives, and available optimization

methods.

» The LLM acts as an intelligent orchestrator, dynamically selecting the most suitable
optimization algorithm from a curated pool, emulating human expert decision-
making, but with the scalability and speed required for real-time operation.

BACKGROUNL

BACKGROUND & RELATED WORK

UNIVERSITY OF AMSTERDAM
X

ALGORITHM SELECTION

» The Algorithm Selection Problem was first formalized by John R. Rice (1976), quoting: No single algorithm performs
optimally across all problem instances.

» Traditional methods rely on:
» Ranking and scoring systems to evaluate candidate algorithms with weights.
» Feature extraction and clustering of problem instances to guide selection.
» Modern approaches reimagine this concept with LLMs:
» For semantic feature extraction and context reasoning directly from textual and numerical descriptions.

» Combining algorithm embeddings and problem embeddings to identify the most suitable optimization strategy
for the given context.

» Related work regarding Algorithm Selection exist mainly outside the networking domain. With our project we are
bridging that gap, working on LLM-based algorithm selection for network orchestration.

BACKGROUND & RELATED WORK

UNIVERSITY OF AMSTERDAM
X

SERVICE PARTITIONING

» Service Partitioning refers to the process of dividing network services across multiple domains to enhance
performance and resource efficiency.

» The optimization objective that we explore is to perform Algorithm Selection to optimize several KPIs, for
example: latency.

» Common approaches in the literature:
» Classical methods: Integer Linear Programming (ILP), heuristic optimization

» Machine Learning methods: Reinforcement Learning (RL), Double Deep Q-Networks (DDQN), and Multi-
Agent RL for decentralized decision-making.

» Service partitioning is selected as the preliminary use case for evaluating the proposed LLM-based algorithm
selection framework, it provides a complex, multi-objective orchestration problem representation of real-world
network operations.

ARCHITECTURE

FRAMEWORK ARCHITECTURE

CONCEPT ARCHITECTURE

UNIVERSITY OF AMSTERDAM
X

» We have designed a modular LLM-based

Network Orchestrator User Prompt Abstracted
. . Network State
Algorithm Selection Framework. .
Optimization Algorithm
Selection Framework
» The LLM interprets text-based information =

Service Request -

| w JSON

such as operational logs, service '
LLM-based
@ Algorithm Selection

descriptions, and network state metrics.

Model ~—-
Descriptions JSbN

» Dynamically selects the most suitable Algorithm Pool

optimization algorithm from a curated pool
of optimization strategies.

Model

Algorithm Pool Manager Selection

dgn.py

. dqn.metadata '
» It acts as an abstraction layer one step _J U

before the optimization process.

FRAMEWORK ARCHITECTURE

UNIVERSITY OF AMSTERDAM
X

MODULES & POOL

» Algorithm Pool: Repository of optimization T — User Prompt Abstracted
. . . Network State
algorithms and their metadata (AST, complexity, ,
Optimization Algorithm
pe I"fO rmance) . Selection Framework .
Prompt Generation ¢ =

» Prompt Generator: Converts service and e Eaauaet =5
network state logs into LLM-ready prompts,

including custom user instructions.

w JSON
@ LLM-based
.o} Algorithm Selection

Descriptions JSON

Algorithm Pool
» LLM Selector: Inference and selection of the the

optimal algorithm choice according to the
prompt instructions. —

dgn.metadata r
» Interface: APl to connect with other —J U

orchestration systems in real time.

Model

Algorithm Pool Manager Selection

PROTOTYPE

SUPERCOMPUTING 2025 LIVE DEMO

UNIVERSITY OF AMSTERDAM
X

Algorithm

Optimization Algorithm Pool
PR OTO I I PE D EM 0 Natwark Quchasizaiar = Selection Frameworkl@ LLM-based
@Lorithm Selection J
| Redis Bus |

» Testbed: Demo deployed on FABRIC: Domain manager Domain manager Domain manager
» Multi-domain slice: New York (NEWY), P e [—
Amsterdam (AMST), Bristol (BRIST). =0 .. |
» Implementation: Python, Redis (databases,
messaging bus), Docker (Container VNFs), net

|||||||||||

tools (performance measurements).

» Models: GPT-40-mini (3rd party) and Llama
3.2 1B (Ollama local).

» Dashboard: Real-time, interactive visualization
playground to explore the concept.

eoe [uwv < A O localhost O 7~ OFC25_slice._... © h +

SUPERCOMPUTING 2025 LIVE DEMO

LLM-based Network Optimization Algorithm Selection and Orchestration

Anestis Dalgkitsis, PhD | University of Amsterdam x CIENA

P R OTO I Y P E D EM 0 Algorithm Pool FABRIC Slice Topology Inspection
Minimize Latency -

Maximize Throughput BO
Load Balance Resources
Consolidate VNFs :51
Conserve Energy
T tb d . D d I d FAB Status:

» Testbed: Demo deployed on Pt
¢ Minimize Latency e i5Sms Site:
e Maximize Throughput Site-Beta
* Load Balance Resources

Internal Latency:
0.00 ms

» Multi-domain slice: New York (1 : ceene
Amsterdam (AMST), Bristol (BRI)

Total CPU Cores:

User Prompt 128
Provide custom instructions for the Used CPU Cores:
65 (50.8%)

» Implementation: Python, Redis (df e

Conserve resources in the core of Available CPU Cores:

N N the infrastructure by load 63
messaging bus), Docker (Containg] | e
Hosted VNFs (1):
Cloud Gaming (VNF Chain: 4) #1

tools (performance measurements :

Select LLM Model:

QoS Manager [Position 4/4]

p33 CPU: 3 cores

ChatGPT 40 mini v

» Models: GPT-40-mini (3rd party) a
3.2 1B (Ollama local).

Optimization

» Dashboard: Real-time, interactive visualization e —
playground to explore the concept. |

SIMULATION

SIMULATION ENVIRONMENT & SETUP

UNIVERSITY OF AMSTERDAM
X

Table 1: Service Types

EVALUATION SETUP Service Type | o) | +Otopo) | Rty

eMBB 1-10 100-1000 | 99.9%
URLLC 05-5 | 10-100 | 99.999%
» Service Scenarios: Evaluation is conducted using common 5G/B5G/6G service mMTC 10-100 1 1-10 %
. . . . V2X 1-5 50-200 99.99%
profiles, representing diverse network requirements:
AR/VR 5-20 | 200-500 | 99.9%

» eMBB, URLLC, mMTC, V2X, and AR/VR.

Service Type Distribution
» Performance Metrics: Two primary indicators are used to assess framework

performance with simulation:

mMTC

» Partitioning Success Rate: Percentage of successfully deployed service partitions.
» SLA Compliance Rate: Admitted services that fully meet SLA requirements.
» Success conditions: A partition is considered successful when:

» Resource constraints are met (over provisioning is allowed with performance

AR/VR
degradation).

» Valid VNF placement across domains.

» SLA Latency requirements are met.

V2X

SIMULATION ENVIRONMENT & SETUP

UNIVERSITY OF AMSTERDAM
X

BASELINES

Partitioning Methods (Pool)

4

4

DDQN RL (single agent)
DDQN MARL (multi-agent)
Greedy

SLA-aware

Logic-based
Resource-based (CPU)

Random

LLM Models Compared
» Llama 3.2: 1b (local)

» Llama 3.2: 3b (local)

» GPT-40 (3rd party)

» GPT-40-mini (3rd party)

RESULLS

SIMULATION STUDY RESULTS

UNIVERSITY OF AMSTERDAM
X

SUCCESS RATE PER SERV|CE TYPE Admission Success Rate by Service Type

1.00
: : . 1.0~ 0.94
» 100 iterations using Llama 3.2:3B.
. - 0.77 0.77
» AR/VR, URLLC, and V2X hardest to admit due 0.72
to strict latency limits. o
ﬁ 0.6 -
» eMBB, mMTC maintain success due to 0
O
relaxed latency SLA. % 04
Table 1: Service Types
0.2 -
Service Type | A (ms) | 7 (Mbps) | Reliability
eMBB 1-10 | 100-1000 | 99.9%
URLLC 05-5 | 10-100 | 99.999% 0.0 |
mMTC 10-100 | 1-10 99% &
V2X 1-5 50-200 | 99.99% ¢
AR/VR 5-20 | 200-500 | 99.9%

UNIVERSITY OF AMSTERDAM
X

SIMULATION STUDY RESULTS

LLM INFERENCE TIME AVERAGES (LOCAL)

» LLM inference time remains stable across iterations (~3.3s » Occasional spikes when prompt complexity increases due

avg) to resource scarcity.
» Selection alternates mainly between Greedy and Single » Local LLM models show low and consistent overhead
DDAQN solutions suitable for real-time orchestration. Data privacy too.
LLM Model Inference - Algorithm Selection Time Selected Algorithm Execution Time
=@ LLM Selection == Model Pool Execution
3.55 0.0030
3.50 0.0025
O g
g 3.45 o 0.0020
= £
” B
£ 340 8 0.0015
8 5
= £

3.35 0.0010

3.30

0.0005 h h

0.0000 H "

0 20 40 60 80 100 0 20 40 60 80 100
Iteration Iteration

3.25

SIMULATION STUDY RESULTS

INFERENCE TIMES DISTRIBUTION (LOCAL)

UNIVERSITY OF AMSTERDAM
X

> Stable Inference d|Str|but|On . Distribution of LLM Inference Times
centered around ~3.3s.

30

25

» Predictable inference latency for
local inference (under normal 2
compute load). £ 15

10

» Local, on premise LLMs provide
consistent timing for closed-loop - -
. 3.25 3.30 3.35 3.40 . 3.45 3.50 3.55
orc h est ratl on. LLM Inference Time (s)

SIMULATION STUDY RESULTS

UNIVERSITY OF AMSTERDAM
X

ALGORITHM SELECTION LLM COMPARISON

» GPT-40 yields strong accuracy (=88%) but higher latency due to “Thinking” and

» Llama 3.2:1B (local) performs surprisingly close to larger models (due

to simple preliminary study scenario).

» Llama 3.2:3B achieves highest success rate (=92%), optimal balance

of accuracy and speed.

» Key takeaway: Smaller LLMs can be viable (for simple scenarios).

Model Performance by Partitioning Success Rate

1.4

1.2

1.0
92.00%

84.00%

O
o

88.00%

68.00%

Success Rate
o
o

0.4

0.2

0.0

Execution Time (ms)

external inference.

» GPT-40-mini fastest with external inference (=160ms) but least consistent (~68

%).

» Key takeaway: There are trade-off between performance and inference cost.

Model Performance by Execution Time

800

(®)]
o
o

400

200

756

ms

SIMULATION STUDY RESULTS

TABLE SUMMARY » Llama 1B: Lightweight and stable, runs on limited

resources, data privacy.

UNIVERSITY OF AMSTERDAM
X

» Llama 3B: highest success, moderate latency » GPT-4o0-mini: Fast response, costly inference.

overhead (local inference), data privacy.
|) P Y » Preliminary results: Confirm that mid-sized local

» GPT-40: Costly inference, inference latency. =3B models can yield viable cost-performance
ratio for optimization algorithm selection.

Model Success % | A (ms) | 7 (Mbps) | Time (ms)
llama3.2:1b 34.18% 15.45 176.29 207.360
llama3.2:3b 92.15% 15.85 173.14 756.445
gpt-40 83.32% 14.87 208.06 447.103
gpt-40-min1 | 68.45% 15.08 209.85 158.993

X
]
%

51S, CHRYSA PAPAGIANNIPAGIEASGROSSORCEES DE LAAT

