

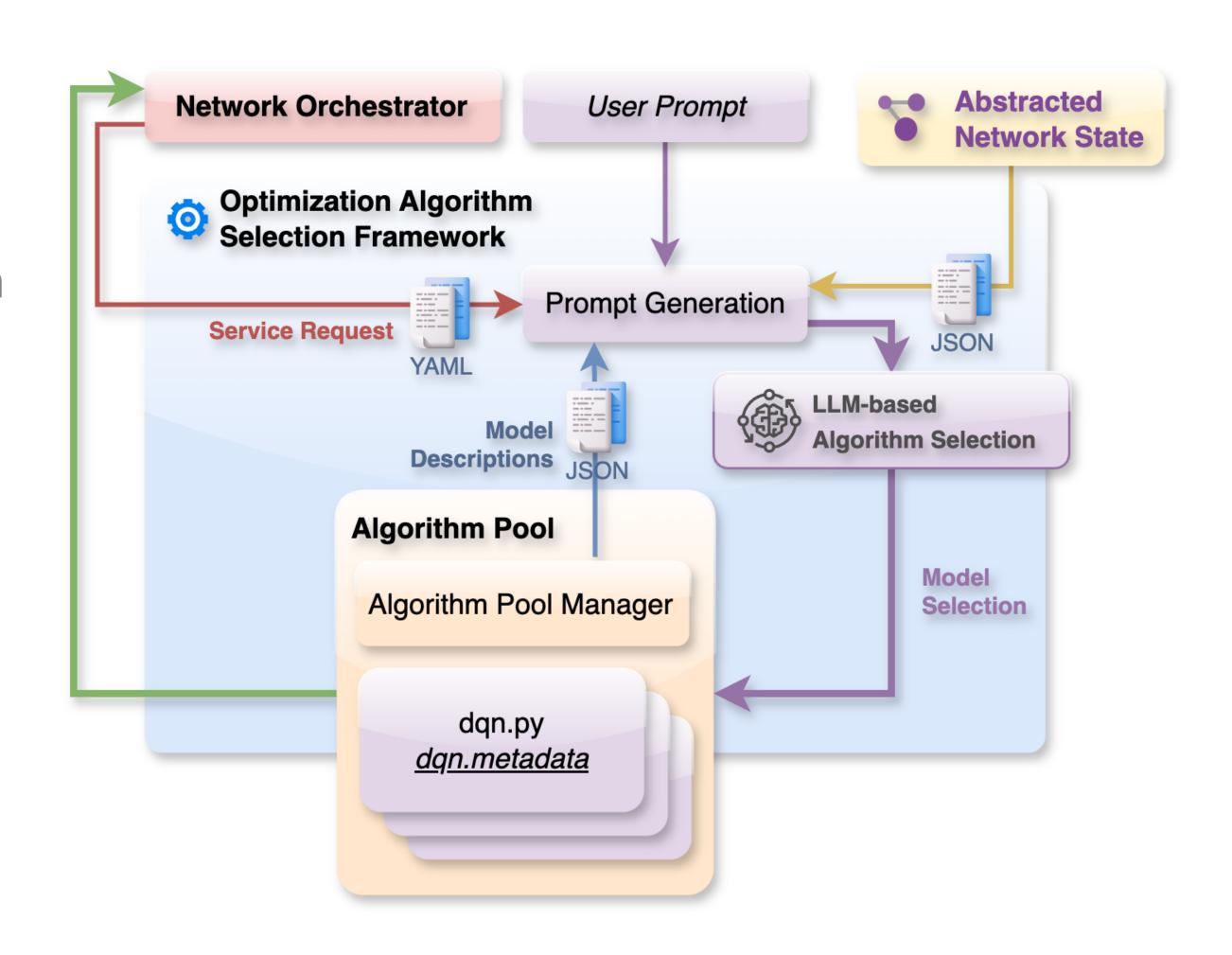
- The adoption of general **AI and LLM-driven workloads in every tool**, has resulted in an **exponential growth** explosion in terms of computational and networking demands across distributed infrastructures.
- Current infrastructure optimization can not scale fast enough to keep pace with demand, leaving significant resources under-utilized.
- Existing orchestration processes still depend on manual decision-making to determine which KPI or objective to optimize, resulting in static and time-consuming workflows.
- No single algorithm performs optimally across all scenarios.
- Clear need for a context-aware, automated algorithm selection mechanism.

- Instead of relying on a pre-set optimization algorithm or entirely offloading the optimization process to an LLM, our modular framework introduces a **hybrid** decision layer.
- It uses the **reasoning and contextual understanding capabilities of LLMs** to evaluate the current network state, service objectives, and available optimization methods.
- The LLM acts as an intelligent orchestrator, dynamically selecting the most suitable optimization algorithm from a curated pool, **emulating human expert decision-making**, but with the scalability and speed required for real-time operation.

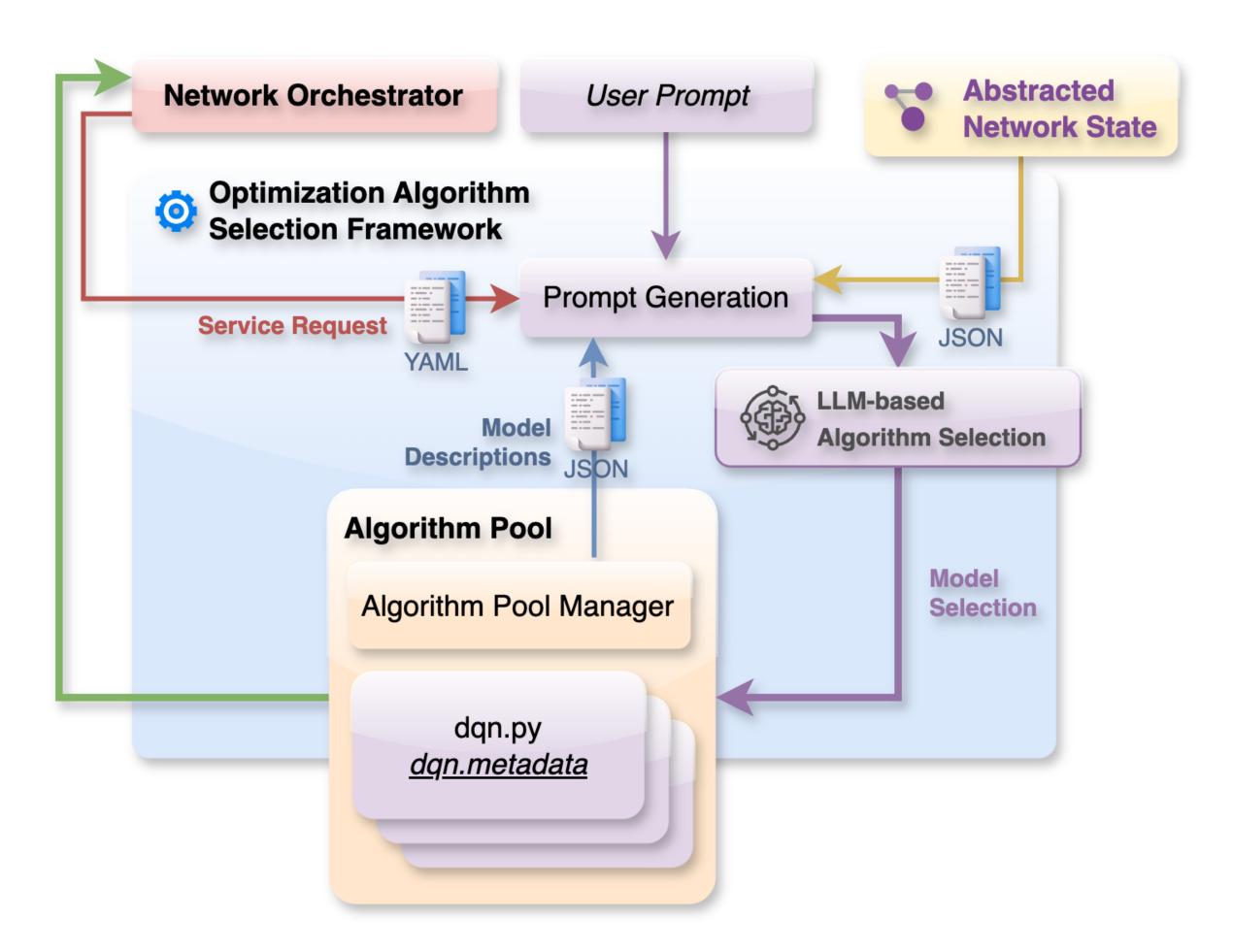
- The Algorithm Selection Problem was first formalized by John R. Rice (1976), quoting: No single algorithm performs optimally across all problem instances.
- Traditional methods rely on:
 - ▶ Ranking and scoring systems to evaluate candidate algorithms with weights.
 - Feature extraction and clustering of problem instances to guide selection.
- Modern approaches reimagine this concept with LLMs:
 - For semantic feature extraction and context reasoning directly from textual and numerical descriptions.
 - Combining algorithm embeddings and problem embeddings to identify the most suitable optimization strategy for the given context.
- Related work regarding Algorithm Selection exist mainly outside the networking domain. With our project we are bridging that gap, working on LLM-based algorithm selection for network orchestration.

- > Service Partitioning refers to the **process of dividing network services across multiple domains** to enhance performance and resource efficiency.
- The optimization objective that we explore is to perform Algorithm Selection to optimize several KPIs, for example: latency.
- Common approaches in the literature:
 - Classical methods: Integer Linear Programming (ILP), heuristic optimization
 - ▶ Machine Learning methods: Reinforcement Learning (RL), Double Deep Q-Networks (DDQN), and Multi-Agent RL for decentralized decision-making.
- > Service partitioning is selected as the preliminary use case for evaluating the proposed LLM-based algorithm selection framework, it provides a complex, multi-objective orchestration problem representation of real-world network operations.

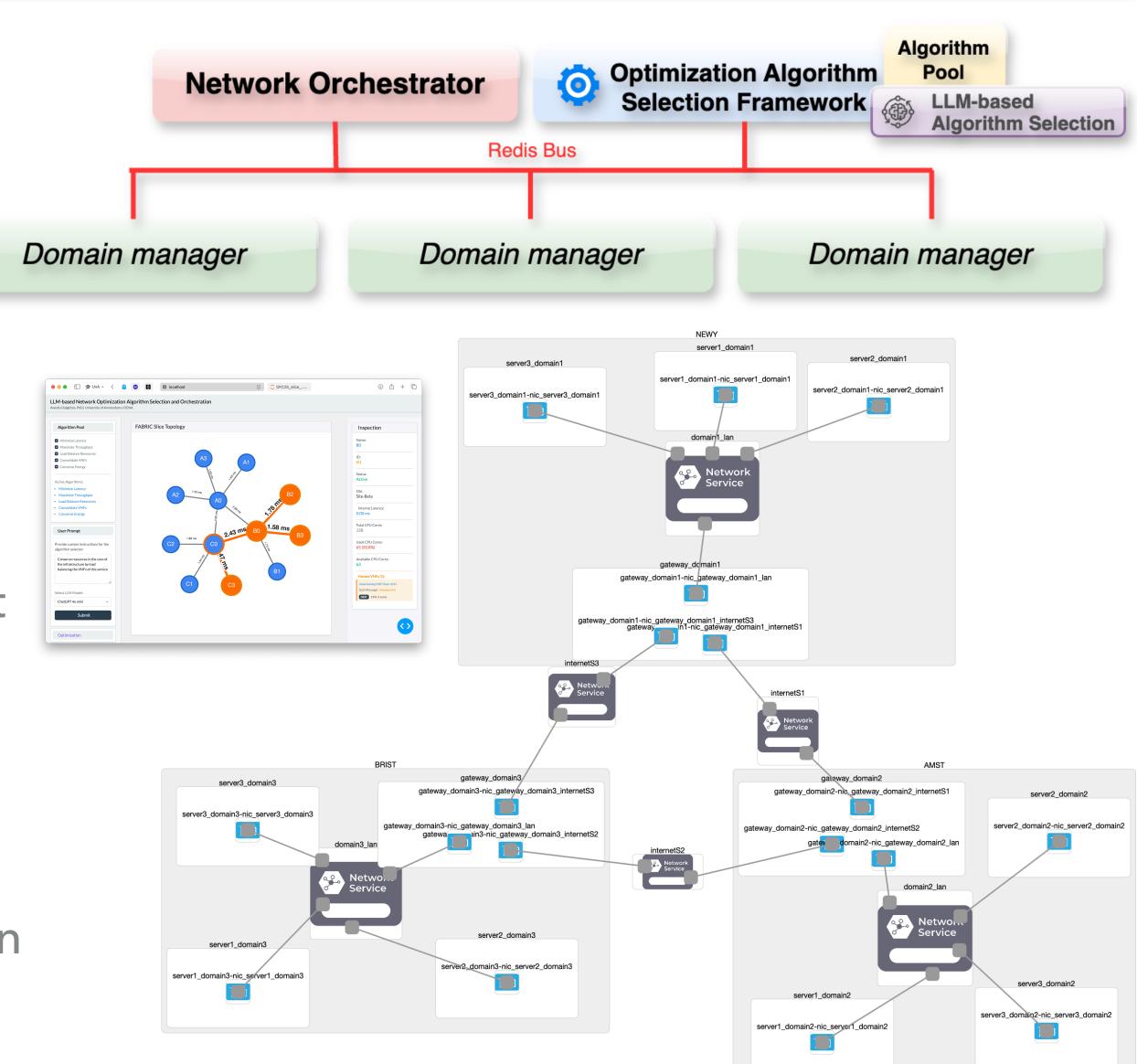
- We have designed a modular LLM-based
 Algorithm Selection Framework.
- The LLM interprets text-based information such as operational logs, service descriptions, and network state metrics.
- Dynamically selects the most suitable optimization algorithm from a curated pool of optimization strategies.
- It acts as an **abstraction layer** one step before the optimization process.



- Algorithm Pool: Repository of optimization algorithms and their metadata (AST, complexity, performance).
- Prompt Generator: Converts service and network state logs into LLM-ready prompts, including custom user instructions.
- LLM Selector: Inference and selection of the the optimal algorithm choice according to the prompt instructions.
- Interface: API to connect with other orchestration systems in real time.

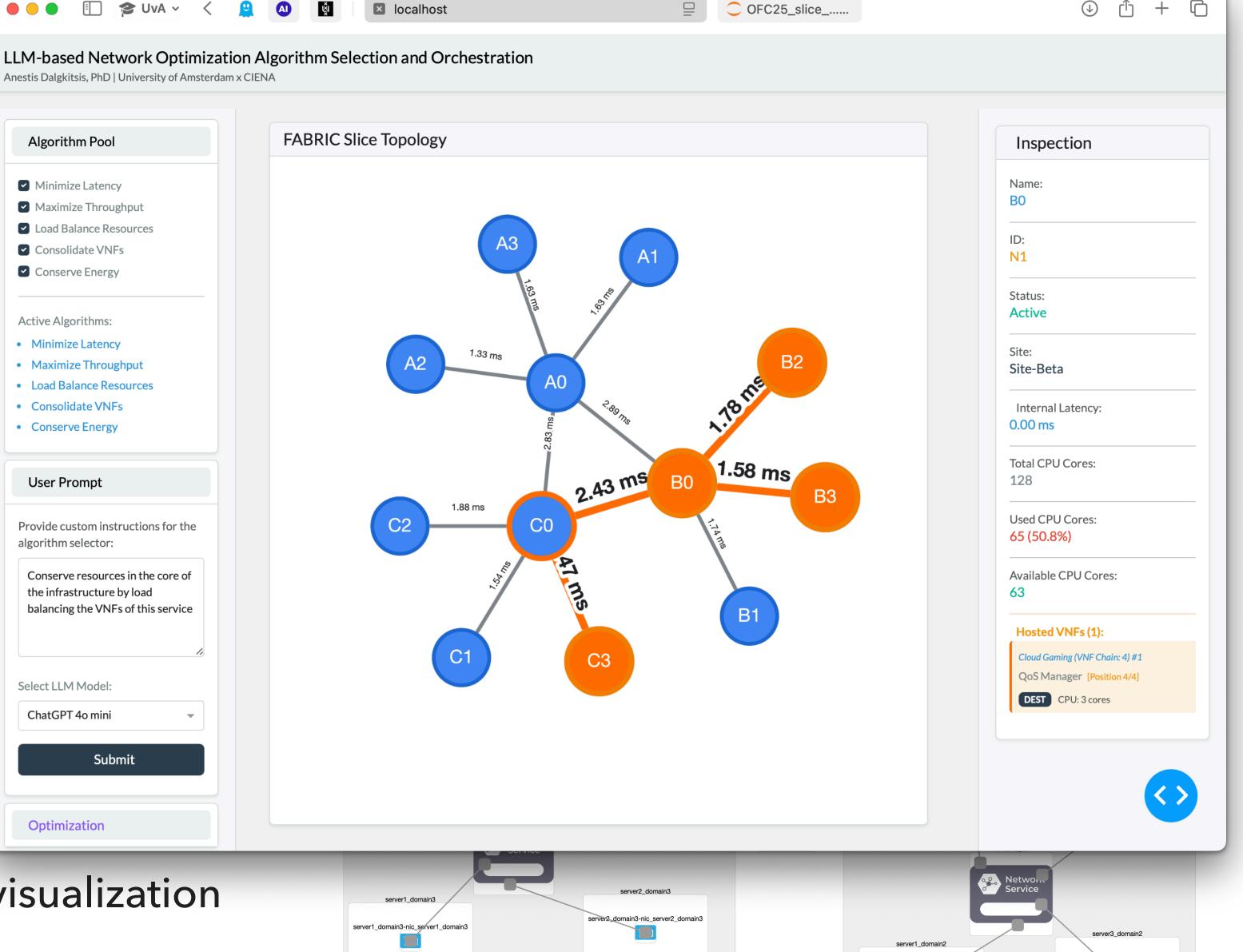


- ▶ Testbed: Demo deployed on FABRIC:
 - Multi-domain slice: New York (NEWY), Amsterdam (AMST), Bristol (BRIST).
- Implementation: Python, Redis (databases, messaging bus), Docker (Container VNFs), net tools (performance measurements).
- Models: GPT-4o-mini (3rd party) and Llama 3.2 1B (Ollama local).
- Dashboard: Real-time, interactive visualization playground to explore the concept.



SUPERCOMPUTING 2025 LIVE DEMO

- ▶ Testbed: Demo deployed on FABI
 - Multi-domain slice: New York (I Amsterdam (AMST), Bristol (BRI
- Implementation: Python, Redis (de messaging bus), Docker (Containe tools (performance measurements)
- Models: GPT-4o-mini (3rd party) a 3.2 1B (Ollama local).
- Dashboard: Real-time, interactive visualization playground to explore the concept.



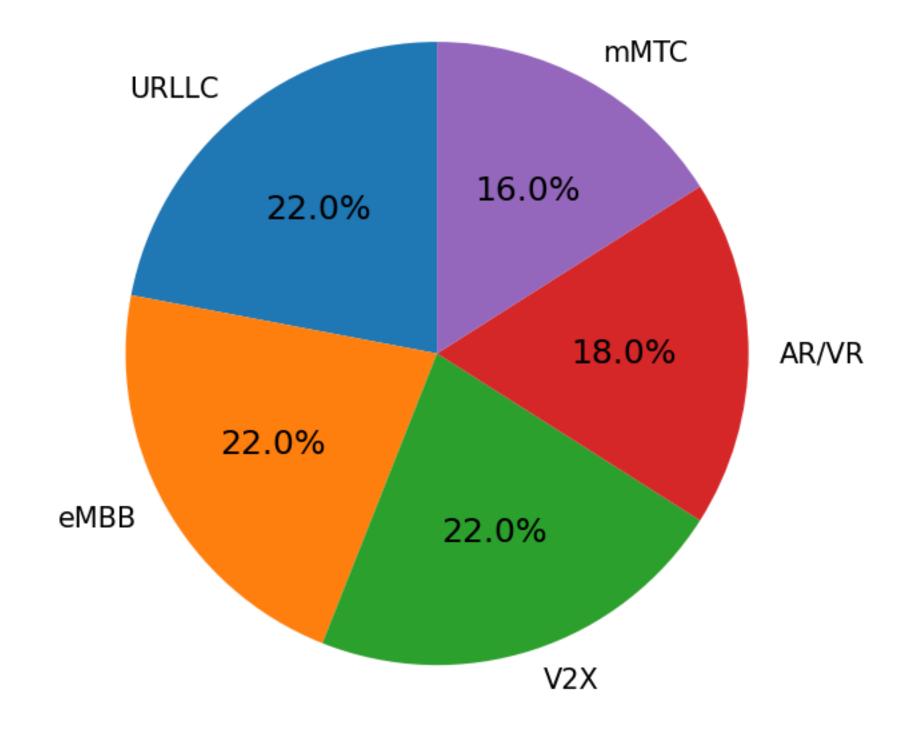
server1_domain2-nic_server1_domain

- Service Scenarios: Evaluation is conducted using common 5G/B5G/6G service profiles, representing diverse network requirements:
 - ▶ eMBB, URLLC, mMTC, V2X, and AR/VR.
- Performance Metrics: Two primary indicators are used to assess framework performance with simulation:
 - ▶ Partitioning Success Rate: Percentage of successfully deployed service partitions.
 - ▶ SLA Compliance Rate: Admitted services that fully meet SLA requirements.
- > Success conditions: A partition is considered successful when:
 - Resource constraints are met (over provisioning is allowed with performance degradation).
 - Valid VNF placement across domains.
 - > SLA Latency requirements are met.

Table 1: Service Types

Service Type	λ (ms)	τ (Mbps)	Reliability
eMBB	1-10	100-1000	99.9%
URLLC	0.5-5	10-100	99.999%
mMTC	10-100	1-10	99%
V2X	1-5	50-200	99.99%
AR/VR	5-20	200-500	99.9%

Service Type Distribution



Partitioning Methods (Pool)

- DDQN RL (single agent)
- DDQN MARL (multi-agent)
- Greedy
- SLA-aware
- Logic-based
- Resource-based (CPU)
- Random

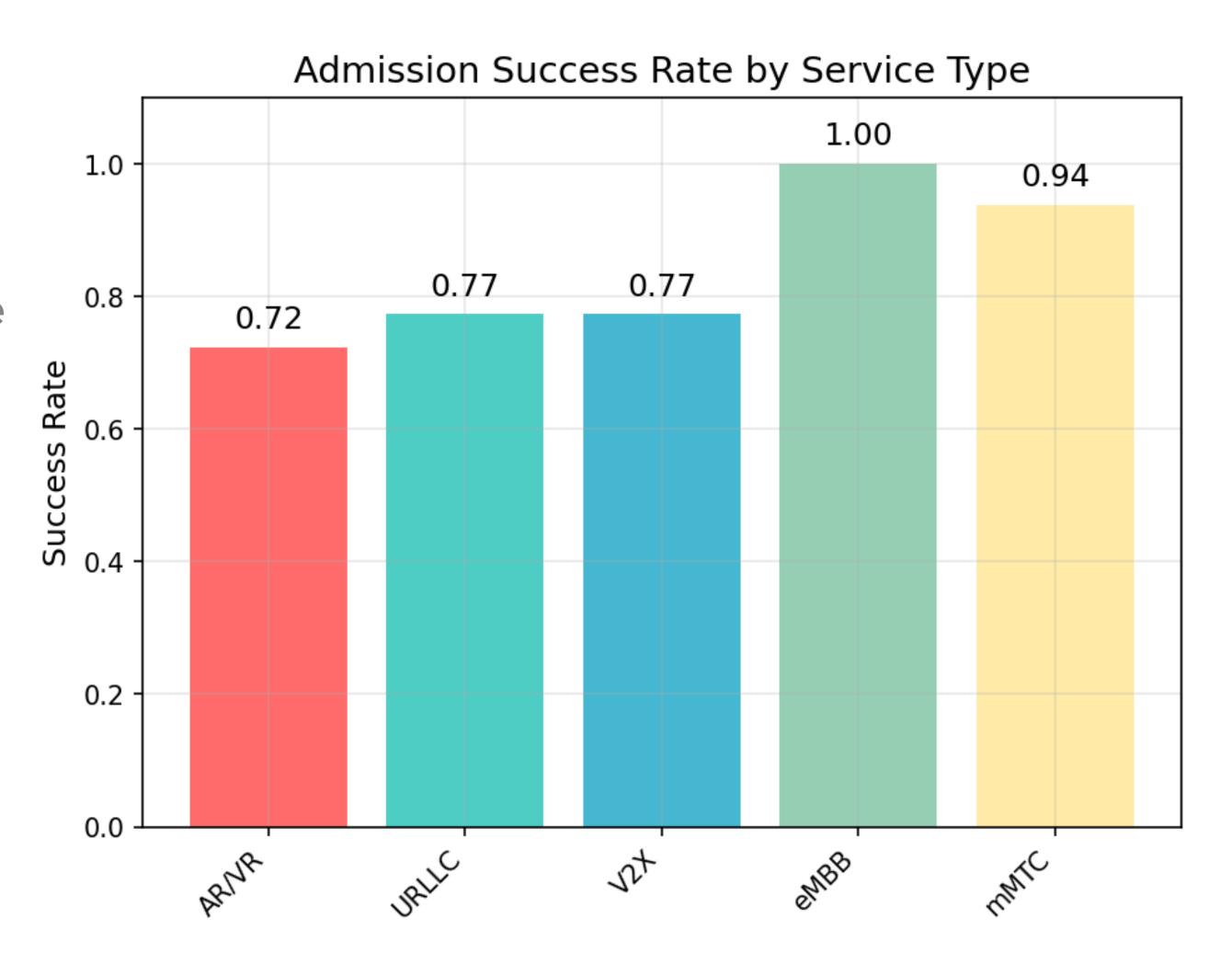
LLM Models Compared

- Llama 3.2: 1b (local)
- Llama 3.2: 3b (local)
- ► GPT-4o (3rd party)
- ► GPT-4o-mini (3rd party)

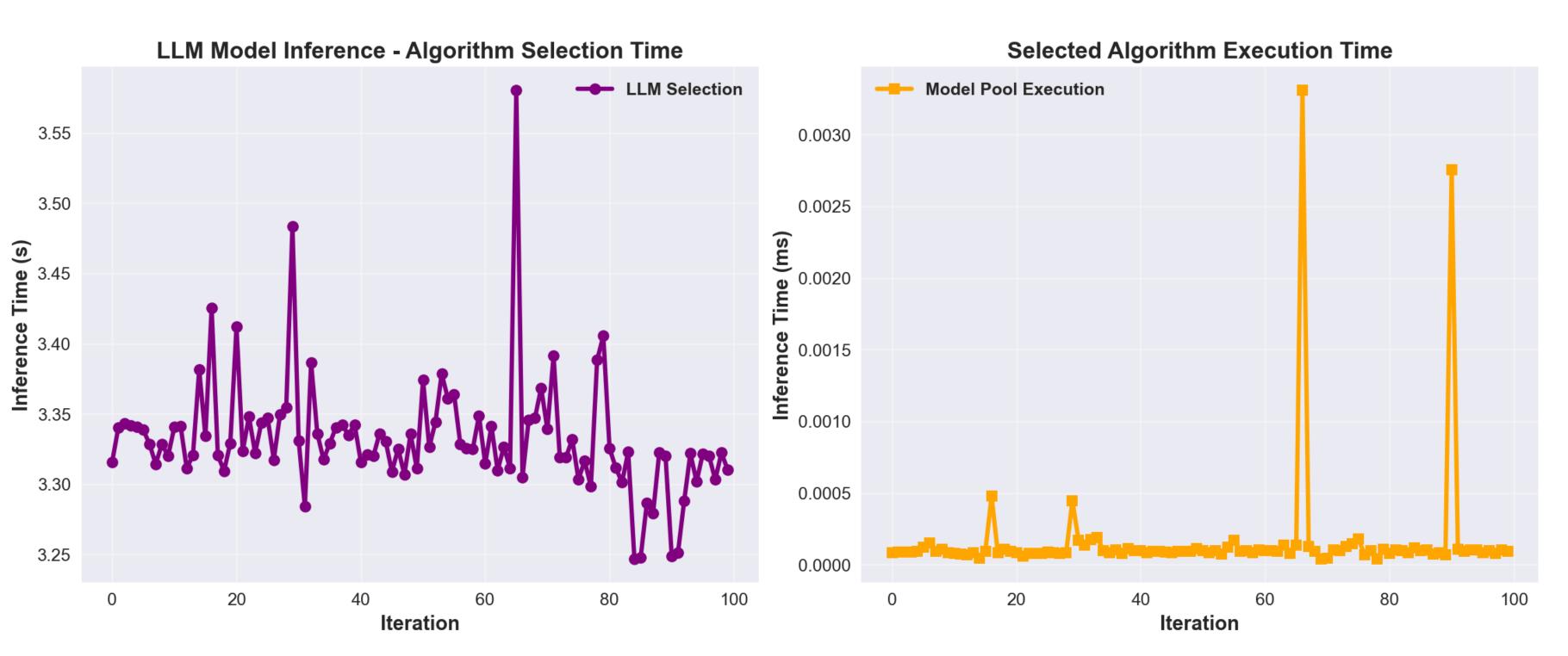
- ▶ 100 iterations using Llama 3.2:3B.
- AR/VR, URLLC, and V2X hardest to admit due to strict latency limits.
- eMBB, mMTC maintain success due to relaxed latency SLA.

Table 1: Service Types

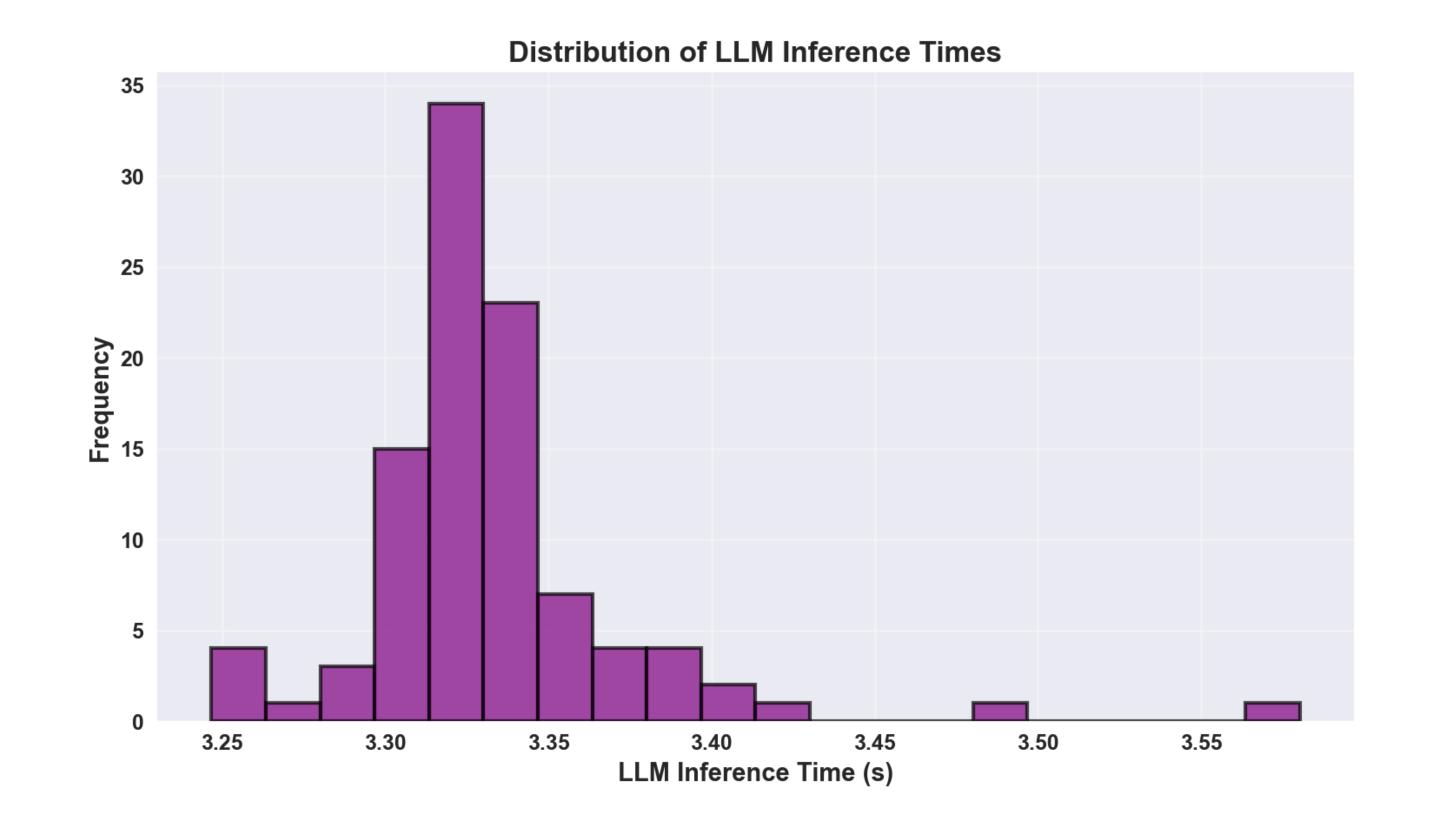
Service Type	λ (ms)	τ (Mbps)	Reliability
eMBB	1-10	100-1000	99.9%
URLLC	0.5-5	10-100	99.999%
mMTC	10-100	1-10	99%
V2X	1-5	50-200	99.99%
AR/VR	5-20	200-500	99.9%



- LLM inference time remains stable across iterations (~3.3s avg)
- Selection alternates mainly between Greedy and Single DDQN solutions
- Occasional spikes when prompt complexity increases due to resource scarcity.
- Local LLM models show low and consistent overhead suitable for real-time orchestration. Data privacy too.

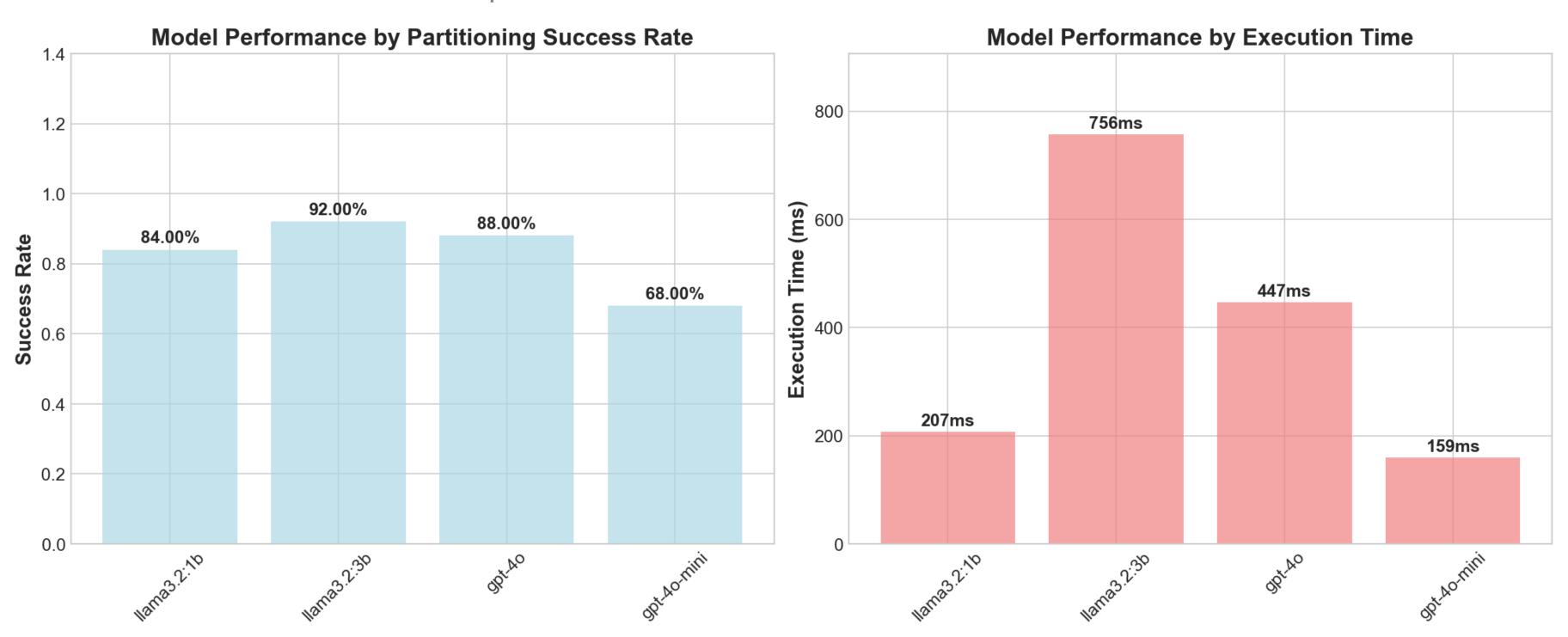


- Stable inference distribution centered around ~3.3s.
- Predictable inference latency for local inference (under normal compute load).
- Local, on premise LLMs provide consistent timing for closed-loop orchestration.



- Llama 3.2:1B (local) performs surprisingly close to larger models (due to simple preliminary study scenario).
- Llama 3.2:3B achieves highest success rate (≈92%), optimal balance of accuracy and speed.
- ▶ Key takeaway: Smaller LLMs can be viable (for simple scenarios).

- ► GPT-40 yields strong accuracy (≈88%) but higher latency due to "Thinking" and external inference.
- GPT-4o-mini fastest with external inference (≈160ms) but least consistent (~68 %).
- ▶ Key takeaway: There are trade-off between performance and inference cost.



- Llama 3B: highest success, moderate latency > GPT-4o-mini: Fast response, costly inference. overhead (local inference), data privacy.
- ▶ GPT-4o: Costly inference, inference latency.

- Llama 1B: Lightweight and stable, runs on limited resources, data privacy.
- Preliminary results: Confirm that mid-sized local ≈3B models can yield viable cost-performance ratio for optimization algorithm selection.

Model	Success %	λ (ms)	τ (Mbps)	Time (ms)
llama3.2:1b	84.18%	15.45	176.29	207.360
llama3.2:3b	92.15%	15.85	178.14	756.445
gpt-4o	88.32%	14.87	208.06	447.103
gpt-4o-mini	68.45%	15.08	209.85	158.993

