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INTRODUCTION

PROBLEM STATEMENT

▸ The adoption of general AI and LLM-driven workloads in every tool, has resulted in an 
exponential growth explosion in terms of computational and networking demands 
across distributed infrastructures. 

▸ Current infrastructure optimization can not scale fast enough to keep pace with demand, 
leaving significant resources under-utilized. 

▸ Existing orchestration processes still depend on manual decision-making to determine 
which KPI or objective to optimize, resulting in static and time-consuming workflows. 

▸ No single algorithm performs optimally across all scenarios. 

▸ Clear need for a context-aware, automated algorithm selection mechanism.



INTRODUCTION

A DIFFERENT APPROACH

▸ Instead of relying on a pre-set optimization algorithm or entirely offloading the 
optimization process to an LLM, our modular framework introduces a hybrid 
decision layer. 

▸ It uses the reasoning and contextual understanding capabilities of LLMs to 
evaluate the current network state, service objectives, and available optimization 
methods. 

▸ The LLM acts as an intelligent orchestrator, dynamically selecting the most suitable 
optimization algorithm from a curated pool, emulating human expert decision-
making, but with the scalability and speed required for real-time operation.



BACKGROUND



BACKGROUND & RELATED WORK

ALGORITHM SELECTION
▸ The Algorithm Selection Problem was first formalized by John R. Rice (1976), quoting: No single algorithm performs 

optimally across all problem instances. 

▸ Traditional methods rely on: 

▸ Ranking and scoring systems to evaluate candidate algorithms with weights. 

▸ Feature extraction and clustering of problem instances to guide selection. 

▸ Modern approaches reimagine this concept with LLMs: 

▸ For semantic feature extraction and context reasoning directly from textual and numerical descriptions. 

▸ Combining algorithm embeddings and problem embeddings to identify the most suitable optimization strategy 
for the given context. 

▸ Related work regarding Algorithm Selection exist mainly outside the networking domain. With our project we are 
bridging that gap, working on LLM-based algorithm selection for network orchestration.



BACKGROUND & RELATED WORK

SERVICE PARTITIONING
▸ Service Partitioning refers to the process of dividing network services across multiple domains to enhance 

performance and resource efficiency. 

▸ The optimization objective that we explore is to perform Algorithm Selection to optimize several KPIs, for 
example: latency. 

▸ Common approaches in the literature: 

▸ Classical methods: Integer Linear Programming (ILP), heuristic optimization 

▸ Machine Learning methods: Reinforcement Learning (RL), Double Deep Q-Networks (DDQN), and Multi-
Agent RL for decentralized decision-making. 

▸ Service partitioning is selected as the preliminary use case for evaluating the proposed LLM-based algorithm 
selection framework, it provides a complex, multi-objective orchestration problem representation of real-world 
network operations.



ARCHITECTURE



FRAMEWORK ARCHITECTURE

CONCEPT ARCHITECTURE 

▸ We have designed a modular LLM-based 
Algorithm Selection Framework. 

▸ The LLM interprets text-based information 
such as operational logs, service 
descriptions, and network state metrics. 

▸ Dynamically selects the most suitable 
optimization algorithm from a curated pool 
of optimization strategies. 

▸ It acts as an abstraction layer one step 
before the optimization process.



FRAMEWORK ARCHITECTURE

MODULES & POOL

▸ Algorithm Pool: Repository of optimization 
algorithms and their metadata (AST, complexity, 
performance). 

▸ Prompt Generator: Converts service and 
network state logs into LLM-ready prompts, 
including custom user instructions. 

▸ LLM Selector: Inference and selection of the the 
optimal algorithm choice according to the 
prompt instructions. 

▸ Interface: API to connect with other 
orchestration systems in real time.



PROTOTYPE



SUPERCOMPUTING 2025 LIVE DEMO

PROTOTYPE DEMO

▸ Testbed: Demo deployed on FABRIC: 

▸ Multi-domain slice: New York (NEWY), 
Amsterdam (AMST), Bristol (BRIST). 

▸ Implementation: Python, Redis (databases, 
messaging bus), Docker (Container VNFs), net 
tools (performance measurements). 

▸ Models: GPT-4o-mini (3rd party) and Llama 
3.2 1B (Ollama local). 

▸ Dashboard: Real-time, interactive visualization 
playground to explore the concept.
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SIMULATION ENVIRONMENT & SETUP

EVALUATION SETUP
▸ Service Scenarios: Evaluation is conducted using common 5G/B5G/6G service 

profiles, representing diverse network requirements: 

▸ eMBB, URLLC, mMTC, V2X, and AR/VR. 

▸ Performance Metrics: Two primary indicators are used to assess framework 
performance with simulation: 

▸ Partitioning Success Rate: Percentage of successfully deployed service partitions. 

▸ SLA Compliance Rate: Admitted services that fully meet SLA requirements. 

▸ Success conditions: A partition is considered successful when: 

▸ Resource constraints are met (over provisioning is allowed with performance 
degradation). 

▸ Valid VNF placement across domains. 

▸ SLA Latency requirements are met.



SIMULATION ENVIRONMENT & SETUP

BASELINES

Partitioning Methods (Pool) 

▸ DDQN RL (single agent) 

▸ DDQN MARL (multi-agent) 

▸ Greedy 

▸ SLA-aware 

▸ Logic-based 

▸ Resource-based (CPU) 

▸ Random

LLM Models Compared 

▸ Llama 3.2: 1b (local) 

▸ Llama 3.2: 3b (local) 

▸ GPT-4o (3rd party) 

▸ GPT-4o-mini (3rd party)



RESULTS



SIMULATION STUDY RESULTS

SUCCESS RATE PER SERVICE TYPE

▸ 100 iterations using Llama 3.2:3B. 

▸ AR/VR, URLLC, and V2X hardest to admit due 
to strict latency limits. 

▸ eMBB, mMTC maintain success due to 
relaxed latency SLA.



SIMULATION STUDY RESULTS

LLM INFERENCE TIME AVERAGES (LOCAL)
▸ LLM inference time remains stable across iterations (~3.3s 

avg) 

▸ Selection alternates mainly between Greedy and Single 
DDQN solutions

▸ Occasional spikes when prompt complexity increases due 
to resource scarcity. 

▸ Local LLM models show low and consistent overhead 
suitable for real-time orchestration. Data privacy too.



SIMULATION STUDY RESULTS

INFERENCE TIMES DISTRIBUTION (LOCAL)

▸ Stable inference distribution 
centered around ~3.3s. 

▸ Predictable inference latency for 
local inference (under normal 
compute load). 

▸ Local, on premise LLMs provide 
consistent timing for closed-loop 
orchestration.



SIMULATION STUDY RESULTS

ALGORITHM SELECTION LLM COMPARISON
▸ Llama 3.2:1B (local) performs surprisingly close to larger models (due 

to simple preliminary study scenario). 

▸ Llama 3.2:3B achieves highest success rate (≈92%), optimal balance 
of accuracy and speed. 

▸ Key takeaway: Smaller LLMs can be viable (for simple scenarios).

▸ GPT-4o yields strong accuracy (≈88%) but higher latency due to “Thinking” and 
external inference. 

▸ GPT-4o-mini fastest with external inference (≈160ms) but least consistent (~68 
%). 

▸ Key takeaway: There are trade-off between performance and inference cost.



SIMULATION STUDY RESULTS

TABLE SUMMARY

▸ Llama 3B: highest success, moderate latency 
overhead (local inference), data privacy. 

▸ GPT-4o: Costly inference, inference latency. 

▸ Llama 1B: Lightweight and stable, runs on limited 
resources, data privacy. 

▸ GPT-4o-mini: Fast response, costly inference. 

▸ Preliminary results: Confirm that mid-sized local 
≈3B models can yield viable cost-performance 
ratio for optimization algorithm selection.
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