
ORNL IS MANAGED BY UT-BATTELLE LLC  
FOR THE US DEPARTMENT OF ENERGY

1

From Edge to HPC:
Investigating Cross-Facility
Data Streaming Architectures

Nov 16, 2025 | St. Louis, MO

Anjus George, Michael Brim, Christopher
Zimmer, David Rogers, Sarp Oral, Zach Mayes

Oak Ridge National Laboratory

2

Introduction
• Modern experimental workflows have real-

time data analysis requirement
• Many of them send the experimental data to

HPC facilities for on-the-fly analysis and
timely feedback.

• Some examples are LCLS at SLAC, APS
at ANL, and SNS at ORNL

• Data Streaming allows to send data with
minimal delay using direct memory transfers

• At OLCF, we are exploring different data
streaming architectures to study,

• Performance impacts
• Impact of architectural choices
• Abstraction trade-offs

3

Contributions

1. Architecture and deployment of 3 cross-facility data streaming architectures:
• Direct Streaming (DTS)
• Proxied Streaming (PRS)
• Managed Service Streaming (MSS)

2. Characterize their streaming throughput, round-trip time, and overhead using
IRI scientific workflows

3. Evaluated the architectures using 3 types of messaging patterns:
• Work sharing, Work sharing with feedback, and Broadcast and Gather

4

Data Streaming Architectures: Direct Streaming (DTS)

• Deploys streaming service on destination nodes
• Exposed via node-level network ports
• Pros:

• No intermediate proxies
• Therefore, minimal latency

• Cons:
• Requires explicit admin configs
• Complex because of firewalls and NAT
• Security risks by node-level exposure
• Poor scaling

5

Data Streaming Architectures: Proxied Streaming (PRS)

• Employs intermediary proxies to relay data
• Local proxies deployed on edge/gateway nodes
• Pros:

• Overcomes NAT and firewall barriers with
centralized firewall rules

• Avoids complexity of managing node-level
IPs and ports

• Admins can pre-authorize stable
endpoints

• Cons:
• Extra layers of proxies can add delays

6

Data Streaming Architectures: Managed Service Streaming (MSS)

• Facilities platform infrastructure manages the data flow
• Data is sent to a stable Fully Qualified Domain Name

(FQDN)
• Pros:

• Abstracts away networking complexities
• Users don’t manage IP address, ports and NAT
• Facility handles all routing and DNS
• High convenience for users

• Cons:
• Abstraction layers and extra components might

add to latency

7

Streaming Deployment: Frameworks and Toolkits

• Used Data streaming infrastructure at OLCF to deploy all architectures
• Consists of DS2HPC framework within OLCF Advanced computing Ecosystem (ACE)
• Data Streaming Nodes (DSNs) managed in RedHat OpenShift environment in the OLCF Olivine cluster
• OLCF Secure Scientific Mesh (S3M) provides authentication and provisions streaming service
• SciStream memory-to-memory toolkit developed by researchers at ANL

• Consists of Control Server (S2CS), Data Server (S2DS), and User Client (S2UC) components

8

Streaming Deployments: Specifications

• Used RabbitMQ as the streaming service for the deployments
• Provides message queues to store messages
• Producers to send messages to queues
• Consumers consume messages from queue

• A 3 node RabbitMQ cluster was deployed on the DSNs
• Producers and consumers are deployed on OLCF Andes compute cluster
• Current network connectivity is limited to 1Gbps on the DSNs

9

Streaming Deployments: DTS Deployment

• Used RabbitMQ Helm Chart to deploy 3
RabbitMQ server pods on 3 separate DSNs

• Resource limits are set to use 12 CPUs, 32
GiB memory and 15 GiB persistent storage

• RabbitMQ service is exposed via NodePort
30671 on each DSN

• DTS is feasible only between sites with direct
connectivity

• However, it helps to quantify the streaming
overhead of other architectures

10

Streaming Deployments: PRS Deployment
• Utilized the SciStream toolkit to deploy PRS
• SciStream producer and consumer S2CS were deployed on 2 separate DSNs
• Evaluated two tunneling methods – Stunnel and HAProxy
• Exposed each hop using node-IP:NodePort
• Streaming service is a 3-node RabbitMQ cluster
• S2CS pods and RabbitMQ server pods exposed via node-level access
• S2UC is deployed on Andes login node
• Sends inbound and outbound requests to the S2CSs to create proxies (S2DSs)

11

Streaming Deployments: MSS Deployment

• 3 node RabbitMQ cluster is provisioned via the
facility’s S3M API

• Requires an authentication token generated via
S3M

• Once provisioned, provides an AMQPS URL
that can be used in RabbitMQ client API

• Load balancer is a dedicated hardware located
outside OpenShift cluster

• Load balancer forwards traffic to cluster’s
ingress controller

12

Evaluation: Messaging Patterns

• Messaging patterns found in AI and HPC workloads
• Work sharing:- hyperparameter searches and Monte Carlo ensembles

• Thousands of tasks are launched without any post-dispatch communication
• Work sharing with feedback:- DL frameworks like TensorFlow-PS and MXNet

• Weight shard is sent to each worker, and each worker returns its gradient to the same
shard

• Broadcast and gather:- distributed data parallel training frameworks like NCCL and Gloo
• Performs fan-out, reduce-scatter and all-gather

13

Evaluation: Streaming Workloads
• Streaming Workloads:

• Workloads based on IRI workflows:
• Deleria (Dstream), and LCLS (Lstream)

• Generic workload

14

Evaluation: Streaming Simulator

• Developed using Golang by incorporating RabbitMQ AMQP client APIs
• Simulator Inputs:

• Streaming characteristics of workloads
• Type of streaming architecture (DTS, PRS or MSS)
• Streaming service specific parameters (type of acknowledgements, number of queues,

prefetch count)
• Experiment configurations (# producers and consumers, message count, experiment

duration)
• Infrastructure or toolkit specific options (URL for connection, number of connections, TLS)

• RabbitMQ is configured with specific parameters and queue model for each pattern

15

Evaluation: Work Sharing Pattern

• Dstream:
• 1 prod and 1 cons, PRS with HAProxy

achieved highest throughput
• As prods and cons increase, DTS improved,

max of 39K
• PRS with Stunnel suffered most, and HAProxy

scaled better
• MSS has lower throughput than PRS-HAProxy

• Lstream:
• DTS saturates beyond 8 consumers
• PRS-HAProxy scales well upto 4 consumers
• MSS saturated beyond 4 cons

• Overhead:
• Upto 2.5x overhead compared to DTS

16

Evaluation: Work Sharing with Feedback Pattern

• Dstream:
• Both PRS and DTS has median RTT < 0.5

sec
• RTT increased for both DTS and PRS for

cons > 8
• MSS showed higher RTTs with sharp

increase at 64 cons

• Lstream:
• RTTs were under 200ms for DTS and PRS
• 600ms (3x) for MSS
• MSS RTT spiked after 8 cons

• Overhead:
• PRS has equivalent performance as DTS
• MSS has around 6.9x overhead

17

Evaluation: Broadcast and gather pattern

• Broadcast:
• PRS scales equivalently to DTS
• MSS has bottlenecks >4 consumers
• DTS and PRS has bottlenecks only >32

consumers

• Broadcast and Gather:
• All 3 architectures have comparable RTTs
• Upto 4 consumers, RTTs are under 5 seconds
• Beyond this, RTTs increase sharply

18

Conclusion and Future Work
• Architecturally DTS offers lowest hop path but requires explicit firewall/iptables rule configurations
• PRS reduces such requirements via stable, pre-authorized endpoints
• MSS fully abstracts networking by letting facility’s platform manage data flow
• Deployment wise DTS is simplest, PRS adds moderate complexity, and MSS is most streamlined
• Work sharing: PRS and MSS experience significant overhead
• Work sharing with feedback: PRS performs as well or better than DTS, MSS has overhead
• Broadcast and gather: PRS scales equivalently to DTS, and MSS eventually shows lower latency
• Future work:

• Other streaming architectures: EJFAT, Banana Pepper
• Usage of high-speed network: 100 Gbps connectivity for the DSNs
• Usage of network and gateway load balancers

19

Acknowledgements

• Grateful to my colleagues: Nick Schmitt, Ethan O’Dell, Steven Lu, Tyler Skluzacek, A.J. Ruckman,
Paul Bryant, and Gustav Jansen

• Thanks to SciStream team at ANL: Flavio Castro and Rajkumar Kettimuthu
• This research used resources of the Oak Ridge Leadership Computing Facility located at Oak

Ridge National Laboratory, which is supported by the Office of Science of the Department of Energy
under contract No. DE-AC05-00OR22725.

20

Thank you! 
 

Questions?

21

CDF of Individual Message RTTs for Work Sharing with
Feedback Pattern

Beyond eight consumers, all architectures exhibit a noticeable rightward shift in the CDF, particularly in the MSS
architecture under the Lstream workload. This is likely due to the direct feedback path from consumers to
producers, which introduces significant RTT bottlenecks. In contrast, the PRS architecture consistently maintains
tighter RTT distributions, with less variation than MSS, and often performs comparably to DTS. Notably, for the
64-consumer case, PRS keeps 80% of message RTTs under 0.7 seconds for Dstream and 12.5 seconds for
Lstream, demonstrating uniformity in latency. However, increasing PRS connections from one to four does not
yield observable improvements in RTT.

22

CDF of Individual Message RTTs for Broadcast and Gather
Pattern

The CDF trends of per-message RTT in this pattern show that, in some cases, particularly with 2 to 16
consumers, PRS exhibits lower RTTs than DTS. MSS still shows comparatively higher RTTs, though not as high
as in the work sharing with feed-back pattern. Another notable trend is that as consumer count reaches or
exceeds 32, the CDFs of all three architectures converge, and MSS begins to outperform the other two.

23

More on LCLS

The Linac Coherent Light Source (LCLS) at SLAC National Accelerator Laboratory provides X-ray scattering for
molecular structure analysis and streams experimental data to enable rapid analysis and decision-making
between experiment runs. The LCLStream pilot project trains a generalist AI model using streamed detector data,
from both archived and live LCLS/LCLS-II experiments, to support tasks like hit classification, Bragg peak
segmentation, and image reconstruction. This AI-driven approach serves as a shared backbone for various
downstream data analysis tasks. With the new LCLS-II producing data at 400x the rate of its predecessor,
streaming up to 100 GB/s to HPC systems will be essential for responsive analysis and experiment steering.
LCLStream aims to support online streaming and real-time analysis during experiment execution, eliminating
delays associated with waiting for data to be written to file storage systems before processing.

24

More on GRETA

GRETA (Gamma-Ray Energy Tracking Array) is a gamma-ray spectrometer currently being deployed at the
Facility for Rare Isotope Beams at Michigan State University. It enables real-time analysis of gamma-ray energy
and 3D position with up to 100x greater sensitivity than existing detectors. The associated workflow software,
Deleria, continuously streams experimental data over ESNet to hundreds of analysis processes on an HPC
system, processing up to 500K events per second. Deleria supports time-sensitive streaming and has been
deployed across ESNet and ACE to demonstrate a distributed experimental pipeline. Recent emulation
experiments on ACE scaled to 120 simulated detectors, achieving sustained bidirectional streaming rates of∼35
Gb/s.

25

More on Experimental-HPC Workflows

Recent examples of such experimental-HPC workflows include the Linac Coherent Light Source (LCLS) workflow
at SLAC National Accelerator Laboratory, which streams diffraction frames from the LCLS light source over Esnet
directly to HPC systems at OLCF. There, AI models identify Bragg peaks and recommend parameter changes
while the sample is still in the beam. At Argonne’s Advanced Photon Source (APS), an AI enabled workflow
pushes 2 kHz ptychography data to embedded GPUs for edge inference, while HPC nodes retrain the model on
the fly, enabling dose-efficient imaging and real-time experimental steering. Another example is an edge-to-
exascale workflow using Frontier at OLCF, where a Temporal Fusion Transformer (TFT) is employed at the
Spallation Neutron Source (SNS) to predict 3D scattering patterns and adjust beam settings within minutes
instead of hours.

26

More on Messaging Patterns

These patterns align closely with communication motifs found in many AI and HPC workloads. The work sharing
pattern is used in embarrassingly parallel workloads such as hyperparameter searches or Monte Carlo
ensembles, where thousands of short, independent jobs are launched without any post-dispatch communication.
Schedulers like Slurm job arrays or GNU Parallel distribute tasks once, allowing each node to compute in
isolation, matching the work sharing model.
The work sharing with feedback pattern appears in data-parallel deep learning (DL) frameworks like TensorFlow-
PS and MXNet, where a weight shard is sent to each worker, and each worker returns its gradient to the same
shard. This push–pull interaction forms a classic distribute-with-reply loop. Another example is master–worker
task farms that require immediate results, such as real-time inference on micro-batches, where each reply must
be routed back to the originating producer.
The broadcast and gather pattern is common in distributed data-parallel (DDP) training frameworks like NCCL
and Gloo, which perform a fan-out of weights, a reduce-scatter of gradients, and an all-gather of aggregated
values every iteration. Another instance is large-scale metric aggregation, where a single node issues a collect
request and all workers send back metrics to be reduced at the initiator.

