Learning to Schedule: A Supervised Learning
Framework for Network-Aware Scheduling of
Data-Intensive Workloads

INDIS Workshop, Supercomputing ‘25, Nov 16th, 2025

Sankalpa Timilsina, Susmit Shannigrahi
Department of Computer Science
Tennessee Technological University

Introduction

e Scheduling assigns job to resources over time.

o Poor scheduling slows jobs, congests networks,
and over- or under-utilizes computing nodes'
capacity.

e Telemetry-informed scheduling can enable informed

decisions.

o Existing solutions like RL or heuristics are generally sample
inefficient, require reward engineering, or do not generalize
across heterogeneous environments.

e We propose a network-aware supervised-learning
scheduler that predicts per-node job completion time
from real-time telemetry.

Motivation

e Need of network-awareness in Data-intensive applications
o Involves massive data shuffles and I/O operations that make the network a critical
performance factor [1].
e Insurgence of Cloud-Native Applications
o Over 89% of organizations adopted cloud-native platforms, with Kubernetes used by over 93%
[2].
e Heuristics lack the ability to learn. RL-based systems typically require huge

trails to converge on a good scheduling [3, 4].
o Supervised models are good on generalizing, can be trained offline, and retraining does not
require system downtime.

System Design

e Supervised learning-based scheduling framework for network-intensive Spark

jobs.
Kubernetes Scheduling Telemetry-aware
scheduling
Blind to runtime factors such as Introduces live system signals into
network variability, CPU pressure, placement decisions. Includes:
memory contention network telemetry (e.g., RTT,

bandwidth usage), host-level metrics
(e.g., CPU, memory pressure), or
application traces.

System Design (Contd.)

Scheduler consists of five main Client Metrics Server | :
components: "Fecher,
Job :
. o . . R t : ,::
e Client: Initiates job submission. | ; Feature
. . : Constructor
Includes: App-specific parameters Scheduler | D g
(job size), input data size, resource : Supervised
t t Kubj;r;etes,". Learning Model
reqU?S S, elc. Description .. R 2
e Metrics Server: Aggregates and — X t ; o i
ubernetes :
exposes system-level telemetry. Cluster o
Includes: RTTs, Tx/Rx rates, CPU, | o——
R ’ S sl
memory' Logger }eeeeeeee »: Model
;. Training :

System Design (Contd.)

Scheduler: Decision-making component. Five sub-modules.
Table: Features Utilized

Telemetry Fetcher

Feature Constructor

Supervised Model

Decision Module

Job Builder

Gets real-time metrics from
metrics server

Converts raw telemetry and
job configurations into input
vectors

Linear Regression, Random
Forest, XGBoost; predicts job
completion per node

Ranks nodes based on
predicted time

Builds Kubernetes-ready job
manifest with node affinity

Feature Description Type
RTT Mean, max, and standard devia- | Network
tion of RTT to all peers
Tx/Rx Rate Transmit and receive through- | Network
put (bytes/sec)

CPU CPU load average (runnable | Node
processes)

Memory Available memory (bytes) Node

Application Categorical job type (e.g., sort, | Job

Type join)

Input Size Size of input data (e.g., number | Job
of records)

Other Configu- | Total executions, requested | Job

ration

memory, etc.

System Design (Contd.)

Scheduler consists of five main Client Metrics Server | © T
. x - Telemetry
components: 1o s Fetcher
5 e
. Request : I
e Cluster: Runs on geographically v : Fosture
- onstructor
distributed Kubernetes cluster. Seiles 8 S 2
e Logger: Captures telemetry and Kubornetis, § [Lezr:i?lrgvi;::iel]
Job :
performance data for future model [pescription . L —
trainin g Kubernetes) . Declston
| Clustor I —
¥ i Ty Job Builder
............. o —/ .
Logger |:oeeeeee » Model
;. Training :

Evaluation

e Kubernetes cluster of 6 nodes
across 3 sites

e 060 distinct job configurations across
3 Spark applications. A total of
3600 training samples with varying
configurations.

e 3 regression models are trained.

Workloads

Spark applications with varying shuffle patterns (data-exchange) are chosen.

Application | Rationale

Sort High network and CPU usage from large shuf-
fles; moderate memory load

PageRank High network and CPU usage from iterative
data exchange; moderate memory load

Join Skewed network, CPU, and memory usage due
to imbalanced joins

Results

e \We note the scheduler’s choice of fastest or among the two fastest nodes.

e Supervised models achieved over 34-54% and 34-62% bigger Top-1 and
Top-2 accuracies.

Method Top-1 Top-2
Kubernetes Default 0.160 0.260
Linear Regression 0.500 0.600
XGBoost 0.560 0.720
Random Forest 0.700 0.880

Conclusion and Future Work

We show the supervised models outperformed the Kubernetes default scheduling
behavior.

Future work:

e Larger-scale evaluation with real workloads such as ML pipelines and
multi-stage streaming.
Quantifying deployability and retraining costs.

e Finer network-telemetry integration, including per-interface throughput and
buffer occupancy.

Email: stimilsin43@tntech.edu

11

References

1. Xin He and Prashant Shenoy. 2016. Firebird: Network-aware task scheduling for spark using
sdns. In 2016 25th International Conference on Computer Communication and Networks
(ICCCN). IEEE, 1-10.

2. CNCF. 2025. Cloud Native 2024: Approaching a Decade of Code, Cloud, and Change.
https://www.cncf.io/reports/cncf-annual-survey-2024/

3. Khaldoun Senjab, Sohail Abbas, Naveed Ahmed, and Atta Ur Rehman Khan. 2023. A survey of
Kubernetes scheduling algorithms. Journal of Cloud Computing 12, 1 (2023), 87.

4. Alejandro Del Real Torres, Doru Stefan Andreiana, Alvaro Ojeda Roldan, Alfonso Hernandez
Bustos, and Luis Enrique Acevedo Galicia. 2023. Deep Reinforcement Learning Approaches for
Smart Manufacturing. Encyclopedia (2023). https://encyclopedia.pub/entry/40007 Entry adapted
from Appl. Sci. 2022, 12, 12377.

12

https://www.cncf.io/reports/cncf-annual-survey-2024/

