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Introduction

● Scheduling assigns job to resources over time.
○ Poor scheduling slows jobs, congests networks, 

and over- or under-utilizes computing nodes' 
capacity.

● Telemetry-informed scheduling can enable informed 
decisions.

○ Existing solutions like RL or heuristics are generally sample 
inefficient, require reward engineering, or do not generalize 
across heterogeneous environments.

● We propose a network-aware supervised-learning 
scheduler that predicts per-node job completion time 
from real-time telemetry.
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Motivation

● Need of network-awareness in Data-intensive applications
○ Involves massive data shuffles and I/O operations that make the network a critical 

performance factor [1].
● Insurgence of Cloud-Native Applications

○ Over 89% of organizations adopted cloud-native platforms, with Kubernetes used by over 93% 
[2].

● Heuristics lack the ability to learn. RL-based systems typically require huge 
trails to converge on a good scheduling [3, 4].

○ Supervised models are good on generalizing, can be trained offline, and retraining does not 
require system downtime.
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System Design

● Supervised learning-based scheduling framework for network-intensive Spark 
jobs.
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Kubernetes Scheduling Telemetry-aware 
scheduling

Blind to runtime factors such as 
network variability, CPU pressure, 
memory contention

Introduces live system signals into 
placement decisions. Includes: 
network telemetry (e.g., RTT, 
bandwidth usage), host-level metrics 
(e.g., CPU, memory pressure), or 
application traces.



System Design (Contd.)

Scheduler consists of five main 
components:

● Client: Initiates job submission. 
Includes: App-specific parameters 
(job size), input data size, resource  
requests, etc.

● Metrics Server: Aggregates and 
exposes system-level telemetry. 
Includes: RTTs, Tx/Rx rates, CPU, 
memory.
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System Design (Contd.)

● Scheduler: Decision-making component. Five sub-modules.
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Telemetry Fetcher Gets real-time metrics from 
metrics server

Feature Constructor Converts raw telemetry and 
job configurations into input 
vectors

Supervised Model Linear Regression, Random 
Forest, XGBoost; predicts job 
completion per node

Decision Module Ranks nodes based on 
predicted time

Job Builder Builds Kubernetes-ready job 
manifest with node affinity

Table: Features Utilized



System Design (Contd.)

Scheduler consists of five main 
components:

● Cluster: Runs on geographically 
distributed Kubernetes cluster.

● Logger: Captures telemetry and 
performance data for future model 
training.
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Evaluation

● Kubernetes cluster of 6 nodes 
across 3 sites

● 60 distinct job configurations across 
3 Spark applications. A total of 
3600 training samples with varying 
configurations.

● 3 regression models are trained.
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Workloads

Spark applications with varying shuffle patterns (data-exchange) are chosen.
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Results

● We note the scheduler’s choice of fastest or among the two fastest nodes.
● Supervised models achieved over 34-54% and 34-62% bigger Top-1 and 

Top-2 accuracies.
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Conclusion and Future Work

We show the supervised models outperformed the Kubernetes default scheduling 
behavior.

Future work:

● Larger-scale evaluation with real workloads such as ML pipelines and 
multi-stage streaming.

● Quantifying deployability and retraining costs.
● Finer network-telemetry integration, including per-interface throughput and 

buffer occupancy.

Email: stimilsin43@tntech.edu
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