# Learning to Schedule: A Supervised Learning Framework for Network-Aware Scheduling of Data-Intensive Workloads

INDIS Workshop, Supercomputing '25, Nov 16th, 2025

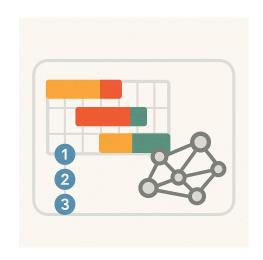


Sankalpa Timilsina, Susmit Shannigrahi
Department of Computer Science
Tennessee Technological University



#### Introduction

- Scheduling assigns job to resources over time.
  - Poor scheduling slows jobs, congests networks, and over- or under-utilizes computing nodes' capacity.
- Telemetry-informed scheduling can enable informed decisions.
  - Existing solutions like RL or heuristics are generally sample inefficient, require reward engineering, or do not generalize across heterogeneous environments.
- We propose a network-aware supervised-learning scheduler that predicts per-node job completion time from real-time telemetry.



#### **Motivation**

- Need of network-awareness in Data-intensive applications
  - Involves massive data shuffles and I/O operations that make the network a critical performance factor [1].
- Insurgence of Cloud-Native Applications
  - Over 89% of organizations adopted cloud-native platforms, with Kubernetes used by over 93% [2].
- Heuristics lack the ability to learn. RL-based systems typically require huge trails to converge on a good scheduling [3, 4].
  - Supervised models are good on generalizing, can be trained offline, and retraining does not require system downtime.

## System Design

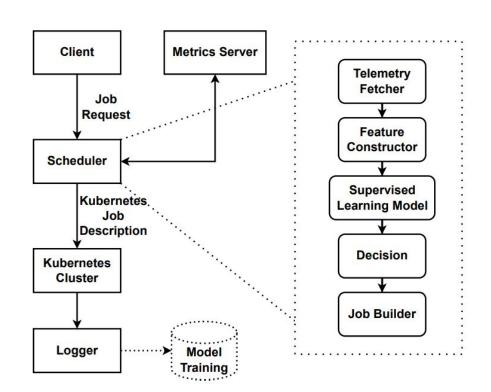
 Supervised learning-based scheduling framework for network-intensive Spark jobs.

| Kubernetes Scheduling                                                                 | Telemetry-aware scheduling                                                                                                                                                                 |
|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Blind to runtime factors such as network variability, CPU pressure, memory contention | Introduces live system signals into placement decisions. Includes: network telemetry (e.g., RTT, bandwidth usage), host-level metrics (e.g., CPU, memory pressure), or application traces. |

## System Design (Contd.)

Scheduler consists of five main components:

- Client: Initiates job submission.
   Includes: App-specific parameters (job size), input data size, resource requests, etc.
- Metrics Server: Aggregates and exposes system-level telemetry. Includes: RTTs, Tx/Rx rates, CPU, memory.



## System Design (Contd.)

• Scheduler: Decision-making component. Five sub-modules.

| Telemetry Fetcher   | Gets real-time metrics from metrics server                                        |  |
|---------------------|-----------------------------------------------------------------------------------|--|
| Feature Constructor | Converts raw telemetry and job configurations into input vectors                  |  |
| Supervised Model    | Linear Regression, Random<br>Forest, XGBoost; predicts job<br>completion per node |  |
| Decision Module     | Ranks nodes based on predicted time                                               |  |
| Job Builder         | Builds Kubernetes-ready job manifest with node affinity                           |  |

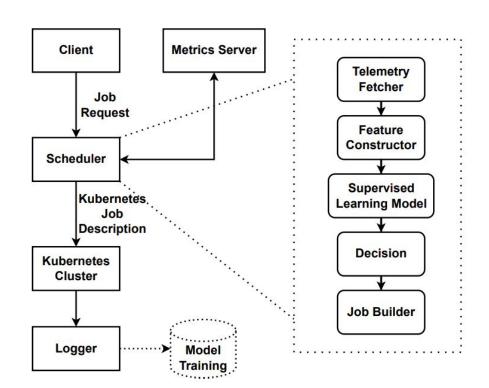
Table: Features Utilized

| Feature        | Description                       | Type    |
|----------------|-----------------------------------|---------|
| RTT            | Mean, max, and standard devia-    | Network |
|                | tion of RTT to all peers          |         |
| Tx/Rx Rate     | Transmit and receive through-     | Network |
|                | put (bytes/sec)                   |         |
| CPU            | CPU load average (runnable        | Node    |
|                | processes)                        |         |
| Memory         | Available memory (bytes)          | Node    |
| Application    | Categorical job type (e.g., sort, | Job     |
| Type           | join)                             |         |
| Input Size     | Size of input data (e.g., number  | Job     |
|                | of records)                       |         |
| Other Configu- | Total executions, requested       | Job     |
| ration         | memory, etc.                      |         |

## System Design (Contd.)

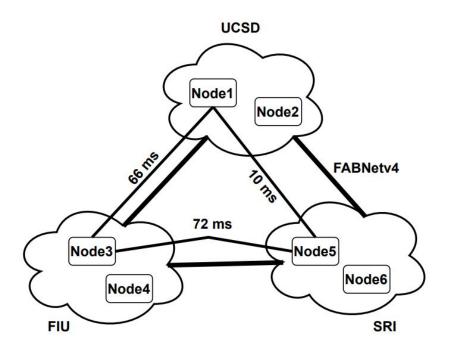
Scheduler consists of five main components:

- Cluster: Runs on geographically distributed Kubernetes cluster.
- Logger: Captures telemetry and performance data for future model training.



#### **Evaluation**

- Kubernetes cluster of 6 nodes across 3 sites
- 60 distinct job configurations across
   3 Spark applications. A total of
   3600 training samples with varying configurations.
- 3 regression models are trained.



### Workloads

Spark applications with varying shuffle patterns (data-exchange) are chosen.

| Application | Rationale                                   |
|-------------|---------------------------------------------|
| Sort        | High network and CPU usage from large shuf- |
|             | fles; moderate memory load                  |
| PageRank    | High network and CPU usage from iterative   |
|             | data exchange; moderate memory load         |
| Join        | Skewed network, CPU, and memory usage due   |
|             | to imbalanced joins                         |

#### Results

- We note the scheduler's choice of fastest or among the two fastest nodes.
- Supervised models achieved over 34-54% and 34-62% bigger Top-1 and Top-2 accuracies.

| Method             | Top-1 | Top-2 |
|--------------------|-------|-------|
| Kubernetes Default | 0.160 | 0.260 |
| Linear Regression  | 0.500 | 0.600 |
| XGBoost            | 0.560 | 0.720 |
| Random Forest      | 0.700 | 0.880 |

#### Conclusion and Future Work

We show the supervised models outperformed the Kubernetes default scheduling behavior.

#### **Future work:**

- Larger-scale evaluation with real workloads such as ML pipelines and multi-stage streaming.
- Quantifying deployability and retraining costs.
- Finer network-telemetry integration, including per-interface throughput and buffer occupancy.

Email: stimilsin43@tntech.edu

#### References

- 1. Xin He and Prashant Shenoy. 2016. Firebird: Network-aware task scheduling for spark using sdns. In 2016 25th International Conference on Computer Communication and Networks (ICCCN). IEEE, 1–10.
- 2. CNCF. 2025. Cloud Native 2024: Approaching a Decade of Code, Cloud, and Change. <a href="https://www.cncf.io/reports/cncf-annual-survey-2024/">https://www.cncf.io/reports/cncf-annual-survey-2024/</a>
- 3. Khaldoun Senjab, Sohail Abbas, Naveed Ahmed, and Atta Ur Rehman Khan. 2023. A survey of Kubernetes scheduling algorithms. Journal of Cloud Computing 12, 1 (2023), 87.
- Alejandro Del Real Torres, Doru Stefan Andreiana, Álvaro Ojeda Roldán, Alfonso Hernández Bustos, and Luis Enrique Acevedo Galicia. 2023. Deep Reinforcement Learning Approaches for Smart Manufacturing. Encyclopedia (2023). https://encyclopedia.pub/entry/40007 Entry adapted from Appl. Sci. 2022, 12, 12377.