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Training LLMs at Scale: Motivation

Objective: Demonstrate LLM training scalability with RoCE.

- InfiniBand requires a separated networking infra,
coming with significant cost implications.

- TCP is not optimal for massive communication
during LLM training.

SO...

Is RoCE a good alternative for LLM training? What
techniques can we use to scale with nodes?

More details in paper:

Scaling LLM Training Using RDMA over Converged Ethernet
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Abstract

We present a comprehensive benchmarking study that evaluates
the scaling performance of RDMA over Converged Ethernet (RoCE)
and compares it with InfiniBand in the context of large-scale LLM
training workloads. While InfiniBand is traditionally favored for its

capital expenditure (CAPEX) associated with specialized hardware
and software, InfiniBand often requires organizations to maintain
a separate networking infrastructure distinct from their standard
Ethernet-based systems. This leads to increased operational expen-
diture (OPEX) due to the need for specialized expertise, tooling,
and workflows.

low-latency, high-bandwidth ct istics, it imposes
infrastructure and operational costs. RoCE, leveraging commodity
Ethernet and RDMA, offers a cost-effective alternative. Through
extensive experiments on prod clusters, we de: that
RoCE can achieve near-linear scaling performance comparable
to InfiniBand when properly configured. Our analysis spans data
sharding strategies, quantization and activation recomputation tech-
niques, batch size tuning, and system-level optimizations, providing
practical guidance for designing scalable and efficient Al infrastruc-
ture.

Past studies (e.g., [10]), have suggested that Ethernet—when aug-
mented with Remote Direct Memory Access (RDMA)—can deliver
comparable performance to InfiniBand for Al workloads. RDMA is
a technology that enables direct memory access between devices
across the network without involving the CPU, thereby reducing
latency and CPU overhead while increasing throughput. Both In-
finiBand and RoCE support RDMA, but RoCE has the advantage of
being compatible with standard Ethernet infrastructure, offering a
more cost-effective and operationally streamlined alternative.



Training LLMs at Scale: Motivation

As model size increases, network performance collapses when using traditional TCP/IP sockets

Using TCP/IP sockets (no RDMA)
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Training LLMs at Scale: Communication

Transport and Network layers offloaded to HW with RDMA: eliminates data copies and CPU intervention

(a) TCP/1P

(b) 1B

(c) RoCE
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Benchmark Methodology: Configuration Space and Performance Metrics
Training requires tuning, evaluating performance for multiple Configuration Spaces

(Dimensions explored in our benchmarking framework:

* Network Stack: TCP / RDMA

Batch size

Parallelism Strategy: Data parallelism and sharding (ZeRO stages 1, 2 and 3)
Quantization technique: Weight and gradient quantization

Activation recomputation j

.

~N

Metrics used to evaluate performance:

* Training throughput in samples persec:(b-s)/T
* Scaling factor: tpg.M / tpg.m, where tpg.M denotes the throughput per GPU for the larger configuration, and tpg.m
corresponds to the smaller configuration, respectively.
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Platform and Model Setup

Ve Platforms @ Models

* IB Cluster: IB interconnect, 16 nodes (8x NVIDIA From small to mid-sized architectures.
80GB A100 each). Folded-Clos 1.6 Tbps.

* RoCE Cluster: RoCE interconnect, 64 nodes (8x Models evaluated:
NVIDIA 80GB H100 each). Folded-Clos 1.6 Tbps.

* opt-125m * llama2-7b
* cerebras-590m + opt-30b
* opt-1.3b * llama2-70b

» cerebras-2.7b



Benchmark: On the Effect of RDMA

RDMA is able to achieve close to linear scaling, TCP is not.
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Benchmark: On the Effect of Batch Size

By maximizing the batch size, training throughput can be significantly increased

Token Throughput
2,097,152
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Benchmark: On the Effect of Sharding and Quantization

Selecting the best strategy depends on several factors, tailored to model size.

These optimizations are relevant for improving memory/communication overhead.

On the IB Cluster:
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Benchmark: On the Effect of Activation Recomputation

Activation recomputation allows to increase the batch size, yielding higher training throughput

* Onthe IB Cluster:

Training throughput (samples/sec)

DP Stage 1 with AR : cerebras-2.7b : pbs=9 | 48.26
DP Stage 1: cerebras-2.7b: pbs=3 I 38.13
DP Stage 1 with AR : cerebras-590m : ubs=25 IS 197.11
DP Stage 1 : cerebras-590m: pbs=13 NG 165.72
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Benchmark: On the Effect of Direct GPU-to-GPU Communication

Warning! Enabling Access Control Services (ACS) leads to poor performance.

ACS adds a security layer in multi-tenant platforms, mitigating unauthorized P2P communication: a performance
killer in HPC platforms!
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Benchmark: On the Effect of Straggler Nodes

Malfunctioning of a single GPU can lead to significant performance degradation in the cluster (aka straggler effect).

Token Throughput [RoCE Cluster]
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On Achieving Linear Scaling for Multi-Node Training

RoCE: All scaling factors exceeding 0.8 with ZeRo St3
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Conclusions
RoCE can deliver scaling performance comparable to InfiniBand for LLM training.

¥ B ;
Comprehensive RoCE-based clusters RDMA is critical for
benchmarking of large- on commodity Ethernet efficient multi-node
scale LLM training using can achieve near-linear training.
RDMA over RoCE and scaling, comparable to
InfiniBand. InfiniBand.
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D
Performance depends on batch Identification of straggler Insights provide guidance
size tuning, sharding strategies, nodes to maintain linear for cost-effective,
and system-level settings (e.g., scalability. production-grade Al

GPU-to-GPU communication). training infrastructure.
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