MISSOURI

0>

Missouri University of Science and Technology

Modular Architecture for High-Performance
and Low Overhead Data Transfers

Rasman Mubtasim Swargo, Engin Arslan, and Md Arifuzzaman

The Data Deluge vs. Reality

Modern scientific workflows are increasingly data-intensive

Example: Genome sequencing output grew from 5 MB (2006) — 150 GB (2023)
The generated data must be moved across wide-area networks for analysisand archival
Research backbones such as ESnet and Internet2 now deliver more than 400 Gbps connectivity

However, legacy transfer tools often fail to reach high throughput

MISSOURI

. S&T Missouri University of Science and Technology

Needs for Application Layer Optimization

Single file read/write operations cannot yield Application Layer
more than 20 Gbps throughput
Single TCP connection is limited to around 30 Transport Layer

Gbps throughput

Network Layer
For production workloads, performance is

significantly lower Data Link Layer

Physical Layer

TCPF/IP Model

MISSOURI

. S&T Missouri University of Science and Technology

Transfer Parallelism (i.e., Concurrency)

Concurrency is the key to increase system utilization.

The optimal level of concurrency is not the same in all networks.

35 P
o) 28 o /,’/
st 21 =
> P 4
o .
-S) 14 /,’
o 1
£ 7 . _HPCLab
= 5 ./ - _XSEDE (Stampede2-Expanse)

0 10 20 30 40 50
Concurrency

MISSOURI

. S&T Missouri University of Science and Technology

Adverse impacts of concurrency

High concurrency has adverse impacts on
performance and resource usage

—
o
o
—
N

~
(6}
3
-~
N
1 ~]
(o]

Increase network congestion
Increase CPU usage

Increased 1/0 contention

— Throughput
e — - Packet Loss Rate

0 6 12 18 24 30
Concurrency

25 1 / /’ 3

)

@ =

) (O]

e

= ©

~ m
e

/)]

a 50 3 6 &

7’ o

£ , 5

S 5 w

Q

o x

= :

o

MISSOURI

. S&T Missouri University of Science and Technology

The Problem with Monolithic Optimization

Core Problem: Optimal concurrency is not the same for read, network, and write operationsin the
same network.

D50 v mmm
Example: e !
Q40 1
Network needs 5 threads for 38 Gbps. — i/ C—T
=S LT N m——— e —_—
- - Q- 30 , 0/
File write needs 25 threads. S s
S 20 /’
Monolithic tools force 25 threads for network, causing _g : _
— 10 / —Read —Network —Write
massive overhead. 0 10 20 30 40 50
Concurrency

MISSOURI

. S&T Missouri University of Science and Technology

Marlin: Modular File Transfer Architecture

Marlin introduces modular file transfer architecture to separate and read, network, and write operations and
tune them independently.

Destination Facility

Source Facility
File System Data Transfer Node Data Transfer Node File System
2| 100 0|| o [E o]
mest 1| 9 i lgi LB ==
NVMe RAM RAM NVMe
4 i 4 1 l 14 4
Network Write

Read

> Arifuzzaman, Md, and Engin Arslan. "Use only what you need: Judicious parallelism for file transfers in high performance networks." Proceedings of

MISSOURI the ACM 37th International Conference on Supercomputing. 2023

. S&T Missouri University of Science and Technology

Marlin’s Limitation: Uncoordinated Optimization

Marlin used three independent optimizers (Gradient Descent) that do not coordinate.

This approach takes longer time to converge.

Optimizers may get misdirected as one of them 20 A =
. ..._- | L’ \" 'b.\l_' o =
may mistakenly believe the throughputincrease =16 LA 4 i
© I 'k K-y
T - |
happened due to its action =] R
pp - >,12 h 1 3 [N
g B |\ "\ " Iu, :
£ AW 2T, I
s 8 o ¥ ’ |
rFedl A L -~ » g . o
s IR\ TSI Ny NN,
O 4 —.. Network “| l
L e Write ‘-\7--\\
ts R |
% 40 80 120 160 200

Duration (s)

MISSOURI

. S&T Missouri University of Science and Technology

Proposed Solution: AutoMDT

Modular Design: Build on the modular idea, decoupling Read, Network, and Write.

Joint Optimization: A single Deep Reinforcement Learning (DRL) agent jointly optimizes all three
variables, learning their complex interactions.

Fast Offline Training: A lightweight simulator solves DRL's "long training time" problem.

Trains in ~45 minutes (vs. ~7 daysonline).

MISSOURI

. S&T Missouri University of Science and Technology

AutoMDT System Architecture

Phase 1-2 (Training):

Briefly "Explore" the real network and configure Simulator.

Train PPO Agent offline (~45 mins). PV —
Phase 3 (| nference): Source Node Destination Node)
Deploy the fully-trained _ Trar— e oo
ile System Nods Noda y:
agent for real,
high-performance Exolorati
Simulated Deploy Agent Xplora |_on
t f Environment and Logging
ransiers. W Configure Simulator Environment ‘ i
Train PPO Agent < Approximate Network
J L Configuration

MISSOURI

. S&T Missouri University of Science and Technology

Phase 1: Learning the Environment

Before training, we must "teach” the simulator about the real network.
We run a 10-minute "random-threads" run.
This captures two key parameter sets:

Max Bandwidth (B,, B,,, B,,)

Throughput-per-thread (TPT,, TPT,, TPT,,)

These values are used to configure the simulator.

MISSOURI

. S&T Missouri University of Science and Technology

Phase 1: The Dynamics Simulator

Why a simulator? Online DRL training is impractical.
Average episodes required: ~20150
Each episode: 10 steps * 3 seconds = 30 seconds
Estimated time: 20150 * 30 seconds = 604500 seconds ~7 days.

Estimated waste: ~7.6 Petabytes of data in a 100Gbps network.

MISSOURI

. S&T Missouri University of Science and Technology

Phase 1: The Dynamics Simulator

Our Solution: A lightweight simulator emulates the memory buffer dynamics.

It models how buffers fill and drain, which is all the agent needs to learn.

T, = Read Throughput
T,, = Write Throughput
T, = Transfer Throughput

No

Receiver
Buffer Full?

No

MISSOURI
. S&T Missouri University of Science and Technology

Phase 2: Offline Agent Training

We use Proximal Policy Optimization (PPO), a state-of-the-art DRL algorithm.
The agent runs thousands of "simulated transfers" per second, learning the optimal policy.

Result: Converges in ~45 minutes on average.

25000
20000
© 15000
©
=
& 10000
5000 j =—— Continuous Action Space
—— Discrete Action Space
0
0 5000 10000 15000 20000 25000 30000

Episode
MISSOURI

. S&T Missouri University of Science and Technology

PPO Agent Design: What it Sees, What it Does

The agent learns to map State -> Action.
State Space (What it Sees):
Current thread counts (n,, n,,n,,)
Achieved throughputs (t,, t,,, t,,)
Sender & Receiver buffer fullness.
Action Space (What it Does):

Predicts the next set of thread counts: (n,,, n,,, n,,)

MISSOURI

. S&T Missouri University of Science and Technology

PPO Agent Design: The Utility Function

The agent's "goal” is to maximize a utility function.

The utility functionis: U(ny, t;) = Ureaa(ny, tr) + Unetwork(Mn, tn) + Uprite (M, ty)

In plain English: Where.
Rewafds hlg-;h throughput. Upong(ny) = Kt:lr
Penalizes high thread counts (K™). t,
This forces the agent to find the "sweet spot" of Uneawori(mn, tn) ztﬁ
high performance with low overhead. Uwrite(Mw, tw) = K_:va
MISSOURI

. S&T Missouri University of Science and Technology

Phase 3: Deployment in Production

The fully trained agent is loaded and runs online during the real transfer.
Continuous Adaptive Loop:

Sample the real network state (throughputs, buffers).

Predict the optimal concurrencies.

Apply settings & repeat.

This allows it to adapt to changing network conditions in real-time.

MISSOURI

. S&T Missouri University of Science and Technology

o>
Evaluation

Missouri University of Science and Technology

Evaluation: Testbeds & Baselines

Testbeds:

CloudLab (1 Gbps)

Fabric (NCSA to TACC): Main testbed, ConnectX-6 NICs (30 Gbps).
Baselines:

Globus: Monolithic, heuristic-based (Static Solutions).

* We used globus-url-copy from the open-source Grid Community Toolkit (GCT 6.2).

* We set the concurrency to 4 and parallelism to 8.

Marlin: Modular, independent optimizers (Adaptive).

MISSOURI

. S&T Missouri University of Science and Technology

Result: AutoMDT is Stable, Marlin is Not

AutoMDT quickly finds the optimal concurrencies (~20) and stays there. It is stable.
Marlin'sindependent optimizers never stabilize.

The threads constantly fluctuate and fight each other.

25 25
- = Read - = Read
20 =—* Network 20 7\ = — - Network
> - Write > (===t oe N *+ Write
g /\\ g Rl ‘ ,
o 15 > — 0 15 -'l (o |
S ’,—-' /. \ . I 5 .: -
-~ .
£10 e \\._,- £10 ; [
U r.".,/-.\':/‘/ \\o" o . l
5 i i o 58
Xd ¥3 I
/’ \- :
g o
0 15 30 45 60 75 0 15 30 45 60 75
Duration (s) Duration (s)
MISSOURI Marlin AutoMDT

. S&T Missouri University of Science and Technology

Result: Stability = Speed

25 = AutoMDT
Key Takeaways: :
0N = Marlin
AutoMDT (blue): Reaches 20+ Gbpsin7 220 -
seconds. o
- Marlin (orange): Takes 62 secondstoreach 5 15
14 Gbps. =
©10
« AutoMDT has 8x faster convergence. 8
+ Bottom Line: AutoMDT finishes the E 5
transfer 68% faster.
% 15 30 45 60 75
Duration (s)
MISSOURI

. S&T Missouri University of Science and Technology

Bottleneck Analysis: Advantage of Modular Design

This isthe real test of a smart, modular system.

We created 3 bottleneck scenarios on the Cloudlab testbed:
Read 1/0 Bottleneck (Slow disk at source)
Network Bottleneck (Slow network path)
Write 1/0 Bottleneck (Slow disk at destination)

MISSOURI

. S&T Missouri University of Science and Technology

16

— I\ s I‘- LY
Read 1/0 Bottleneck YA s S SN AT A
% 12 l' \‘
5 |1 1
£ |3 " -)
> 8 ,"im-‘:'.\'dw‘"?‘,\'f Ve VSN
= aee R Sl i o ".‘ abe B e .o-.“. ¢ R
AutoMDT (top): g i R
) L é 4f —=—- Read
Correctly identifies the Read bottleneck. S] Network
----- Write
Raises Read threads (red) to compensate. Og 40 80 120 160 200
. Duration (s)
Keeps Network (green) and Write (blue) -
threads low (no wasted resources). R A ;\‘,n‘ A ¢
. g v \ | |'|
Marlin (bottom): cie P\ N ‘."\,
Z .'“ / \ \ [\ *
g :) - .
Is completely confused. All three o A A ne 2P
- - —_— - c . Al W & £ 2
optimizers fluctuate, failing to find the true o o iVEIN i
2 SO . s fe ot . =S —
bottleneck. g =7 pedd I ;g,-/' M J*AJJ‘\ ,\,\3. :]-f-
B R S . %
O 4 —.. Network * - \ll :
P i Write \J ————— R
%" 40 80 120 160 200 240 280
Duration (s)
MISSOURI

. S&T Missouri University of Science and Technology

Network Bottleneck

AutoMDT (top):

Correctly identifies the Network bottleneck.

Raises Network threads (green).

Keeps I/0 threads (Read/Write) lowand
stable.

Marlin (bottom):

Again, is unstable and wastes resources
fluctuating 1/0 threads.

MISSOURI

. S&T Missouri University of Science and Technology

- o .
E l5/'\ g v .ﬁ-’, 7 \l\./ A2V - / vy
=), |
5
< -
= |
O 8 ,
6 . N » ' . v
g hl\. [,*/I\\‘I Y'}“ ’I T¥; 2t -\b\/\ . \-."_\ B A

L N
§ 44 Read) % |‘
S i—-- Ne‘.cwor :

i ----- Write |‘

% 40 80 120 160 200
Duration (s)
20 oY -1 NP
=% ,"\,' Y Il A
= Ay rrytoon
b= 16 A "l h Vo || l\;\
B iamMPViel ge
R 'R [

12— Y:" TR '| /
> s el g st /
s iSFy i L
E g1l 3 Wl ll\ /
3 o ad L L
(@) -".-‘ -." .-
g —=: Read Af 0 '-‘ :' .
O 4 —.. Network [

PECTEE Write | PO R0 | A e

OLI

0 40 80 120 160 200 240
Duration (s)

Write 1/0 Bottleneck

AutoMDT (top):

Correctly identifies the Write bottleneck.

Raises Write threads (blue) while keeping others
low.

Marlin (bottom):

Large fluctuations in read and write concurrencies.

This proves the independent optimizer approach is
fundamentally flawed.

MISSOURI

TRE

Missouri University of Science and Technology

N
o

= .
= O
2 =
212 I
3. B \ \.
@) \/d - / A\
e o N\ 1Y < Y\
5 8ip _@,\4\\ e/ \IVf\ =
e "I A ‘, \ \, \/ .
3 :--- Read E ‘ VY o
5 4§ — -+ Network \
€ J‘ ----- Write ‘\
i I ey
% 40 80 120 160
Duration (s)
20 \ ’l'\‘ .‘:‘. -
- :L’ A 11
—E-16 5 1 I
% LT Ky |
= T
B2 - VAT
= ’ / \l\' U} 1
g eIV i 1
£ 8 FAVIRY 5 ‘J,-, \
VBN B NP N v] = A
g |[SERLNYITINST N AN \./\
O 4 —.. Network ‘l]
| gt Write I.d__\\
ts |
00 40 80 120 160 200

Duration (s)

Performance in High-Speed Network

Periodic data transfers were conducted in the FABRIC Testbed (NCSA — TACC).
Compared Globus, Marlin, and AutoMDT across two 1TB datasets:
Large dataset: 500 files, each 2 GB.
Mixed dataset:
80% medium files (1-100 MB)
10% large files (1-2 GB)
5% small files (500 KB-1 MB)

Each experiment was repeated multiple times to ensure consistency.

MISSOURI

. S&T Missouri University of Science and Technology

Performance in High-Speed Network

End-to-End Transfer Speed Comparison

Key Numbers (Large Files): 25000 -

AutoMDT (23.9 Gbps) is: - 3‘::;5

= 1.33x faster than Marlin 20000 B AutoMDT
= 6.57x faster than Globus 8

Key Numbers (Mixed Files): % 15000 -

AutoMDT (16.9 Gbps) is: a

= 1.23x faster than Marlin "E 10000 +

= 7.28x faster than Globus =

5000 -

A (Large) B (Mixed)
Dataset

MISSOURI

. S&T Missouri University of Science and Technology

Summary

Monolithic optimizers are inefficient, wasting 1/0 resources.

AutoMDT's modular design decouples Read, Network, and Write.

A single, joint DRL agent (PPO) outperforms unstable independent optimizers.
A novel simulator enables fast, practical offline training (~45 minvs. 7 days).

Result: AutoMDT achieves 8x faster convergence and up to 68% faster transfers than the state-of-the-
art.

MISSOURI

. S&T Missouri University of Science and Technology

MISSOURI

S&l

Thank You!

Rasman Mubtasim Swargo

Missouri University of Science and Technology

	Slide 1: Modular Architecture for High-Performance and Low Overhead Data Transfers
	Slide 2: The Data Deluge vs. Reality
	Slide 3: Needs for Application Layer Optimization
	Slide 4: Transfer Parallelism (i.e., Concurrency)
	Slide 5: Adverse impacts of concurrency
	Slide 6: The Problem with Monolithic Optimization
	Slide 7: Marlin: Modular File Transfer Architecture
	Slide 8: Marlin’s Limitation: Uncoordinated Optimization
	Slide 9: Proposed Solution: AutoMDT
	Slide 10: AutoMDT System Architecture
	Slide 11: Phase 1: Learning the Environment
	Slide 12: Phase 1: The Dynamics Simulator
	Slide 13: Phase 1: The Dynamics Simulator
	Slide 14: Phase 2: Offline Agent Training
	Slide 15: PPO Agent Design: What it Sees, What it Does
	Slide 16: PPO Agent Design: The Utility Function
	Slide 17: Phase 3: Deployment in Production
	Slide 18
	Slide 19: Evaluation: Testbeds & Baselines
	Slide 20: Result: AutoMDT is Stable, Marlin is Not
	Slide 21: Result: Stability = Speed
	Slide 22: Bottleneck Analysis: Advantage of Modular Design
	Slide 23: Read I/O Bottleneck
	Slide 24: Network Bottleneck
	Slide 25: Write I/O Bottleneck
	Slide 26: Performance in High-Speed Network
	Slide 27: Performance in High-Speed Network
	Slide 28: Summary
	Slide 30: Thank You!

