
Modular Architecture for High-Performance
and Low Overhead Data Transfers

Rasman Mubtasim Swargo, Engin Arslan, and Md Arifuzzaman

Missouri University of Science and Technology

The Data Deluge vs. Reality

► Modern scientific workflows are increasingly data-intensive

▪ Example: Genome sequencing output grew from 5 MB (2006) → 150 GB (2023)

► The generated data must be moved across wide-area networks for analysis and archival

► Research backbones such as ESnet and Internet2 now deliver more than 400 Gbps connectivity

► However, legacy transfer tools often fail to reach high throughput

Missouri University of Science and Technology

Needs for Application Layer Optimization

► Single file read/write operations cannot yield

more than 20 Gbps throughput

► Single TCP connection is limited to around 30

Gbps throughput

► For production workloads, performance is

significantly lower

Application Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Missouri University of Science and Technology

TCP/IP Model

Transfer Parallelism (i.e., Concurrency)

► Concurrency is the key to increase system utilization.

► The optimal level of concurrency is not the same in all networks.

Missouri University of Science and Technology

Adverse impacts of concurrency

► High concurrency has adverse impacts on

performance and resource usage

▪ Increase network congestion

▪ Increase CPU usage

▪ Increased I/O contention

Missouri University of Science and Technology

The Problem with Monolithic Optimization

► Core Problem: Optimal concurrency is not the same for read, network, and write operations in the

same network.

► Example:

• Network needs 5 threads for 38 Gbps.

• File write needs 25 threads.

• Monolithic tools force 25 threads for network, causing

 massive overhead.

Missouri University of Science and Technology

Marlin: Modular File Transfer Architecture

Marlin introduces modular file transfer architecture to separate and read, network, and write operations and

tune them independently.

7

Read Network Write

==> Arifuzzaman, Md, and Engin Arslan. "Use only what you need: Judicious parallelism for file transfers in high performance networks." Proceedings of
the ACM 37th International Conference on Supercomputing. 2023.

Missouri University of Science and Technology

Marlin’s Limitation: Uncoordinated Optimization

► Marlin used three independent optimizers (Gradient Descent) that do not coordinate.

► This approach takes longer time to converge.

► Optimizers may get misdirected as one of them

may mistakenly believe the throughput increase

 happened due to its action.

Missouri University of Science and Technology

Proposed Solution: AutoMDT

► Modular Design: Build on the modular idea, decoupling Read, Network, and Write.

► Joint Optimization: A single Deep Reinforcement Learning (DRL) agent jointly optimizes all three

variables, learning their complex interactions.

► Fast Offline Training: A lightweight simulator solves DRL's "long training time" problem.

• Trains in ~45 minutes (vs. ~7 days online).

Missouri University of Science and Technology

AutoMDT System Architecture

► Phase 1-2 (Training):

• Briefly "Explore" the real network and configure Simulator.

• Train PPO Agent offline (~45 mins).

► Phase 3 (Inference):

• Deploy the fully-trained

 agent for real,

 high-performance

 transfers.

Missouri University of Science and Technology

Phase 1: Learning the Environment

► Before training, we must "teach" the simulator about the real network.

► We run a 10-minute "random-threads" run.

► This captures two key parameter sets:

• Max Bandwidth (𝐵𝑟, 𝐵𝑛, 𝐵𝑤)

• Throughput-per-thread (𝑇𝑃𝑇𝑟, 𝑇𝑃𝑇𝑛, 𝑇𝑃𝑇𝑤)

► These values are used to configure the simulator.

Missouri University of Science and Technology

Phase 1: The Dynamics Simulator

► Why a simulator? Online DRL training is impractical.

• Average episodes required: ~20150

• Each episode: 10 steps * 3 seconds = 30 seconds

• Estimated time: 20150 * 30 seconds = 604500 seconds ~7 days.

• Estimated waste: ~7.6 Petabytes of data in a 100Gbps network.

Missouri University of Science and Technology

Phase 1: The Dynamics Simulator

► Our Solution: A lightweight simulator emulates the memory buffer dynamics.

► It models how buffers fill and drain, which is all the agent needs to learn.

Missouri University of Science and Technology

Tr = Read Throughput
Tw = Write Throughput
Tt = Transfer Throughput

Phase 2: Offline Agent Training

► We use Proximal Policy Optimization (PPO), a state-of-the-art DRL algorithm.

► The agent runs thousands of "simulated transfers" per second, learning the optimal policy.

► Result: Converges in ~45 minutes on average.

Missouri University of Science and Technology

PPO Agent Design: What it Sees, What it Does

► The agent learns to map State -> Action.

► State Space (What it Sees):

• Current thread counts (𝑛𝑟, 𝑛𝑛, 𝑛𝑤)

• Achieved throughputs (𝑡𝑟, 𝑡𝑛, 𝑡𝑤)

• Sender & Receiver buffer fullness.

► Action Space (What it Does):

• Predicts the next set of thread counts: (𝑛𝑟, 𝑛𝑛, 𝑛𝑤)

Missouri University of Science and Technology

PPO Agent Design: The Utility Function

► The agent's "goal" is to maximize a utility function.

► The utility function is:

► In plain English:

▪ Rewards high throughput .

▪ Penalizes high thread counts (𝐾𝑛).

▪ This forces the agent to find the "sweet spot" of

 high performance with low overhead.

Missouri University of Science and Technology

𝑈 𝑛𝑖 , 𝑡𝑖 = 𝑈𝑟𝑒𝑎𝑑 𝑛𝑟, 𝑡𝑟 + 𝑈𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑛𝑛, 𝑡𝑛 + 𝑈𝑤𝑟𝑖𝑡𝑒 𝑛𝑤, 𝑡𝑤

Where,

𝑈𝑟𝑒𝑎𝑑 𝑛𝑟, 𝑡𝑟 =
𝑡𝑟
𝐾𝑛𝑟

𝑈𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑛𝑛, 𝑡𝑛 =
𝑡𝑛
𝐾𝑛𝑛

𝑈𝑤𝑟𝑖𝑡𝑒 𝑛𝑤, 𝑡𝑤 =
𝑡𝑤
𝐾𝑛𝑤

Phase 3: Deployment in Production

► The fully trained agent is loaded and runs online during the real transfer.

► Continuous Adaptive Loop:

• Sample the real network state (throughputs, buffers).

• Predict the optimal concurrencies.

• Apply settings & repeat.

► This allows it to adapt to changing network conditions in real-time.

Missouri University of Science and Technology

Evaluation

Missouri University of Science and Technology

Evaluation: Testbeds & Baselines

► Testbeds:

• CloudLab (1 Gbps)

• Fabric (NCSA to TACC): Main testbed, ConnectX-6 NICs (30 Gbps).

► Baselines:

• Globus: Monolithic, heuristic-based (Static Solutions).

• We used globus-url-copy from the open-source Grid Community Toolkit (GCT 6.2).

• We set the concurrency to 4 and parallelism to 8.

• Marlin: Modular, independent optimizers (Adaptive).

Missouri University of Science and Technology

Result: AutoMDT is Stable, Marlin is Not

► AutoMDT quickly finds the optimal concurrencies (~20) and stays there. It is stable.

► Marlin's independent optimizers never stabilize.

► The threads constantly fluctuate and fight each other.

Missouri University of Science and Technology

Marlin AutoMDT

Result: Stability = Speed

► Key Takeaways:

• AutoMDT (blue): Reaches 20+ Gbps in 7
seconds.

• Marlin (orange): Takes 62 seconds to reach
14 Gbps.

• AutoMDT has 8x faster convergence.

• Bottom Line: AutoMDT finishes the
transfer 68% faster.

Missouri University of Science and Technology

Bottleneck Analysis: Advantage of Modular Design

► This is the real test of a smart, modular system.

► We created 3 bottleneck scenarios on the Cloudlab testbed:

• Read I/O Bottleneck (Slow disk at source)

• Network Bottleneck (Slow network path)

• Write I/O Bottleneck (Slow disk at destination)

Missouri University of Science and Technology

Read I/O Bottleneck

► AutoMDT (top):

• Correctly identifies the Read bottleneck.

• Raises Read threads (red) to compensate.

• Keeps Network (green) and Write (blue)
threads low (no wasted resources).

► Marlin (bottom):

• Is completely confused. All three
optimizers fluctuate, failing to find the true
bottleneck.

Missouri University of Science and Technology

Network Bottleneck

► AutoMDT (top):

• Correctly identifies the Network bottleneck.

• Raises Network threads (green).

• Keeps I/O threads (Read/Write) low and
stable.

► Marlin (bottom):

• Again, is unstable and wastes resources
fluctuating I/O threads.

Missouri University of Science and Technology

Write I/O Bottleneck
► AutoMDT (top):

• Correctly identifies the Write bottleneck.

• Raises Write threads (blue) while keeping others
low.

► Marlin (bottom):

• Large fluctuations in read and write concurrencies.

► This proves the independent optimizer approach is
fundamentally flawed.

Missouri University of Science and Technology

Performance in High-Speed Network

► Periodic data transfers were conducted in the FABRIC Testbed (NCSA → TACC).

► Compared Globus, Marlin, and AutoMDT across two 1TB datasets:

• Large dataset: 500 files, each 2 GB.

• Mixed dataset:

80% medium files (1–100 MB)

10% large files (1–2 GB)

5% small files (500 KB–1 MB)

► Each experiment was repeated multiple times to ensure consistency.

Missouri University of Science and Technology

Performance in High-Speed Network
► Key Numbers (Large Files):

AutoMDT (23.9 Gbps) is:

▪ 1.33x faster than Marlin

▪ 6.57x faster than Globus

► Key Numbers (Mixed Files):

AutoMDT (16.9 Gbps) is:

▪ 1.23x faster than Marlin

▪ 7.28x faster than Globus

Missouri University of Science and Technology

Summary

► Monolithic optimizers are inefficient, wasting I/O resources.

► AutoMDT's modular design decouples Read, Network, and Write.

► A single, joint DRL agent (PPO) outperforms unstable independent optimizers.

► A novel simulator enables fast, practical offline training (~45 min vs. 7 days).

► Result: AutoMDT achieves 8x faster convergence and up to 68% faster transfers than the state-of-the-

art.

Missouri University of Science and Technology

Thank You!

Questions?

Missouri University of Science and Technology

Rasman Mubtasim Swargo

	Slide 1: Modular Architecture for High-Performance and Low Overhead Data Transfers
	Slide 2: The Data Deluge vs. Reality
	Slide 3: Needs for Application Layer Optimization
	Slide 4: Transfer Parallelism (i.e., Concurrency)
	Slide 5: Adverse impacts of concurrency
	Slide 6: The Problem with Monolithic Optimization
	Slide 7: Marlin: Modular File Transfer Architecture
	Slide 8: Marlin’s Limitation: Uncoordinated Optimization
	Slide 9: Proposed Solution: AutoMDT
	Slide 10: AutoMDT System Architecture
	Slide 11: Phase 1: Learning the Environment
	Slide 12: Phase 1: The Dynamics Simulator
	Slide 13: Phase 1: The Dynamics Simulator
	Slide 14: Phase 2: Offline Agent Training
	Slide 15: PPO Agent Design: What it Sees, What it Does
	Slide 16: PPO Agent Design: The Utility Function
	Slide 17: Phase 3: Deployment in Production
	Slide 18
	Slide 19: Evaluation: Testbeds & Baselines
	Slide 20: Result: AutoMDT is Stable, Marlin is Not
	Slide 21: Result: Stability = Speed
	Slide 22: Bottleneck Analysis: Advantage of Modular Design
	Slide 23: Read I/O Bottleneck
	Slide 24: Network Bottleneck
	Slide 25: Write I/O Bottleneck
	Slide 26: Performance in High-Speed Network
	Slide 27: Performance in High-Speed Network
	Slide 28: Summary
	Slide 30: Thank You!

