

Missouri University of Science and Technology

Modular Architecture for High-Performance and Low Overhead Data Transfers

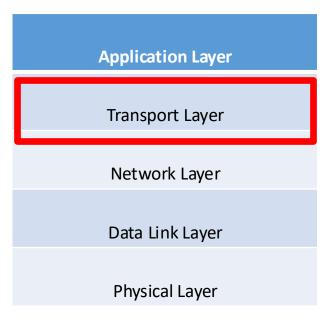
Rasman Mubtasim Swargo, Engin Arslan, and Md Arifuzzaman

The Data Deluge vs. Reality

- Modern scientific workflows are increasingly data-intensive
 - Example: Genome sequencing output grew from 5 MB (2006) \rightarrow 150 GB (2023)
- ▶ The generated data must be moved across wide-area networks for analysis and archival
- Research backbones such as ESnet and Internet2 now deliver more than 400 Gbps connectivity
- ▶ However, legacy transfer tools often fail to reach high throughput

Needs for Application Layer Optimization

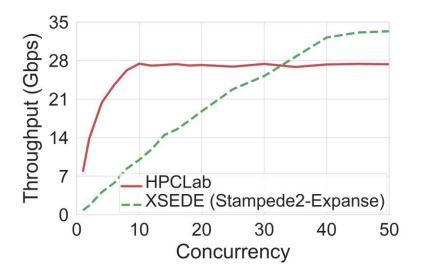
- Single file read/write operations cannot yield more than 20 Gbps throughput
- Single TCP connection is limited to around 30
 Gbps throughput
- For production workloads, performance is significantly lower



TCP/IP Model

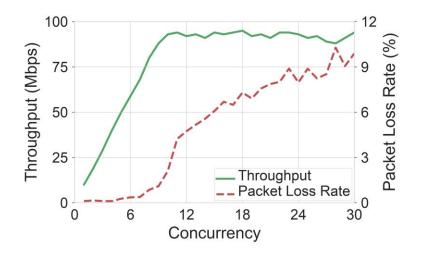
Transfer Parallelism (i.e., Concurrency)

- ▶ Concurrency is the key to increase system utilization.
- ▶ The optimal level of concurrency is not the same in all networks.



Adverse impacts of concurrency

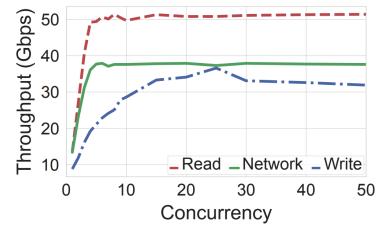
- High concurrency has adverse impacts on performance and resource usage
 - Increase network congestion
 - Increase CPU usage
 - Increased I/O contention



The Problem with Monolithic Optimization

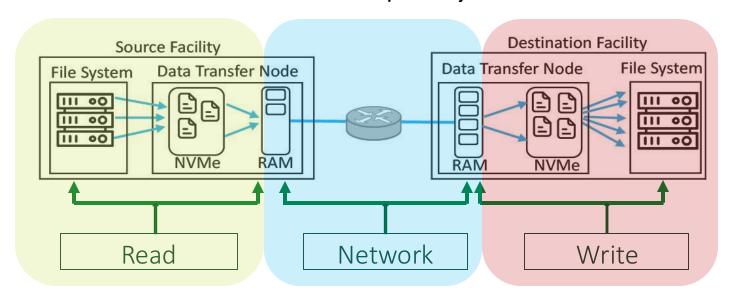
Core Problem: Optimal concurrency is not the same for read, network, and write operations in the same network.

- **Example:**
 - Network needs 5 threads for 38 Gbps.
 - File write needs 25 threads.
 - Monolithic tools force 25 threads for network, causing massive overhead.



Marlin: Modular File Transfer Architecture

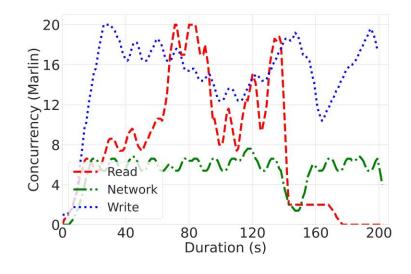
Marlin introduces modular file transfer architecture to separate and read, network, and write operations and tune them independently.



==> Arifuzzaman, Md, and Engin Arslan. "Use only what you need: Judicious parallelism for file transfers in high performance networks." Proceedings of the ACM 37th International Conference on Supercomputing. 2023.

Marlin's Limitation: Uncoordinated Optimization

- Marlin used three *independent* optimizers (Gradient Descent) that do not coordinate.
- ▶ This approach takes longer time to converge.
- Optimizers may get misdirected as one of them may mistakenly believe the throughput increase happened due to its action.

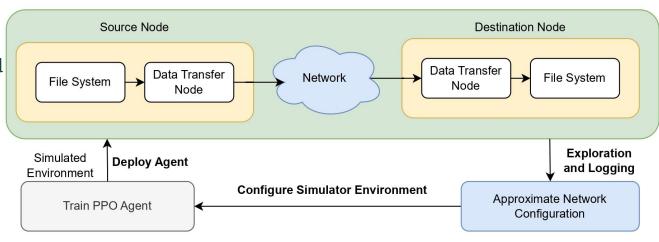


Proposed Solution: AutoMDT

- Modular Design: Build on the modular idea, decoupling Read, Network, and Write.
- ▶ Joint Optimization: A single Deep Reinforcement Learning (DRL) agent *jointly* optimizes all three variables, learning their complex interactions.
- ▶ Fast Offline Training: A lightweight simulator solves DRL's "long training time" problem.
 - Trains in ~45 minutes (vs. ~7 days online).

AutoMDT System Architecture

- Phase 1-2 (Training):
 - Briefly "Explore" the real network and configure Simulator.
 - Train PPO Agent offline (~45 mins).
- Phase 3 (Inference):
 - Deploy the fully-trained agent for real,
 high-performance transfers.



Real Environment

Phase 1: Learning the Environment

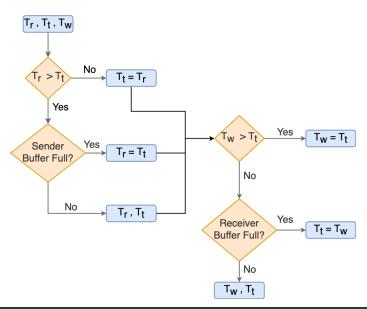
- ▶ Before training, we must "teach" the simulator about the real network.
- We run a 10-minute "random-threads" run.
- This captures two key parameter sets:
 - Max Bandwidth (B_r, B_n, B_w)
 - Throughput-per-thread (TPT_r, TPT_n, TPT_w)
- ► These values are used to configure the simulator.

Phase 1: The Dynamics Simulator

- ▶ Why a simulator? Online DRL training is impractical.
 - Average episodes required: ~20150
 - Each episode: 10 steps * 3 seconds = 30 seconds
 - Estimated time: 20150 * 30 seconds = 604500 seconds ~7 days.
 - Estimated waste: ~7.6 Petabytes of data in a 100Gbps network.

Phase 1: The Dynamics Simulator

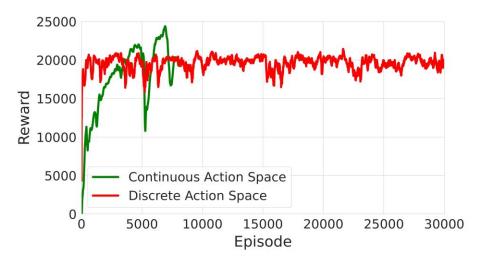
- Our Solution: A lightweight simulator emulates the memory buffer dynamics.
- ▶ It models how buffers fill and drain, which is all the agent needs to learn.



T_r = Read Throughput
 T_w = Write Throughput
 T_t = Transfer Throughput

Phase 2: Offline Agent Training

- ▶ We use Proximal Policy Optimization (PPO), a state-of-the-art DRL algorithm.
- ▶ The agent runs thousands of "simulated transfers" per second, learning the optimal policy.
- Result: Converges in ~45 minutes on average.



PPO Agent Design: What it Sees, What it Does

- ► The agent learns to map State -> Action.
- State Space (What it Sees):
 - Current thread counts (n_r, n_n, n_w)
 - Achieved throughputs (t_r, t_n, t_w)
 - Sender & Receiver buffer fullness.
- Action Space (What it Does):
 - Predicts the next set of thread counts: (n_r, n_n, n_w)

PPO Agent Design: The Utility Function

- ▶ The agent's "goal" is to maximize a utility function.
- The utility function is: $U(n_i, t_i) = U_{read}(n_r, t_r) + U_{network}(n_n, t_n) + U_{write}(n_w, t_w)$
- ▶ In plain English:
 - Rewards high throughput .
 - Penalizes high thread counts (K^n) .
 - This forces the agent to find the "sweet spot" of high performance with low overhead.

Where,

$$U_{read}(n_r, t_r) = \frac{t_r}{K^{n_r}}$$

$$U_{network}(n_n, t_n) = \frac{t_n}{K^{n_n}}$$

$$U_{write}(n_w, t_w) = \frac{t_w}{K^{n_w}}$$

Phase 3: Deployment in Production

- ▶ The fully trained agent is loaded and runs online during the real transfer.
- Continuous Adaptive Loop:
 - Sample the real network state (throughputs, buffers).
 - Predict the optimal concurrencies.
 - Apply settings & repeat.
- ▶ This allows it to adapt to changing network conditions in real-time.

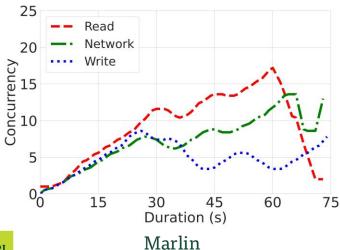
Evaluation

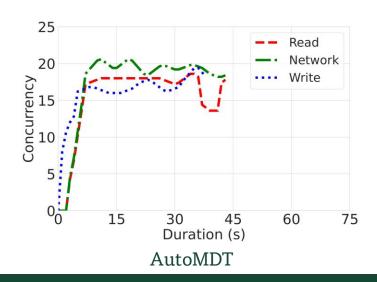
Evaluation: Testbeds & Baselines

- Testbeds:
 - CloudLab (1 Gbps)
 - Fabric (NCSA to TACC): Main testbed, ConnectX-6 NICs (30 Gbps).
- Baselines:
 - Globus: Monolithic, heuristic-based (Static Solutions).
 - We used globus-url-copy from the open-source Grid Community Toolkit (GCT 6.2).
 - We set the concurrency to 4 and parallelism to 8.
 - Marlin: Modular, independent optimizers (Adaptive).

Result: AutoMDT is Stable, Marlin is Not

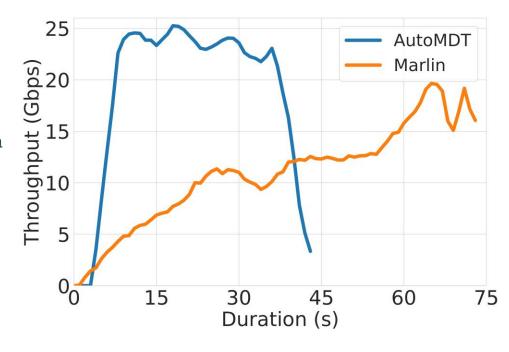
- ▶ AutoMDT quickly finds the optimal concurrencies (~20) and *stays there*. It is stable.
- Marlin's independent optimizers never stabilize.
- ► The threads constantly fluctuate and fight each other.





Result: Stability = Speed

- Key Takeaways:
 - AutoMDT (blue): Reaches 20+ Gbps in 7 seconds.
 - Marlin (orange): Takes 62 seconds to reach 14 Gbps.
 - AutoMDT has 8x faster convergence.
 - Bottom Line: AutoMDT finishes the transfer 68% faster.

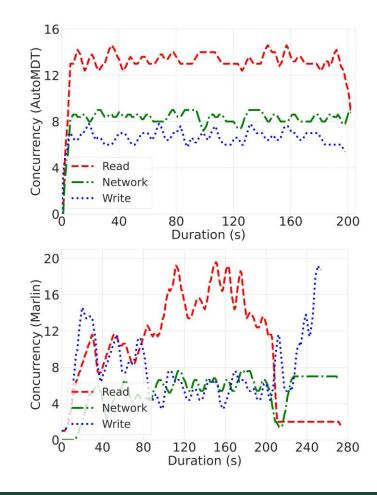


Bottleneck Analysis: Advantage of Modular Design

- ▶ This is the *real* test of a smart, modular system.
- ▶ We created 3 bottleneck scenarios on the Cloudlab testbed:
 - Read I/O Bottleneck (Slow disk at source)
 - Network Bottleneck (Slow network path)
 - Write I/O Bottleneck (Slow disk at destination)

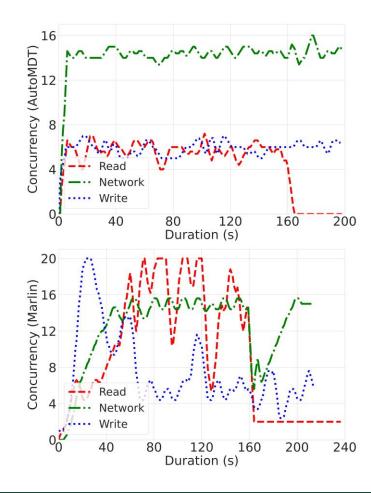
Read I/O Bottleneck

- AutoMDT (top):
 - Correctly identifies the Read bottleneck.
 - Raises Read threads (red) to compensate.
 - Keeps Network (green) and Write (blue) threads low (no wasted resources).
- Marlin (bottom):
 - Is completely confused. All three optimizers fluctuate, failing to find the true bottleneck.



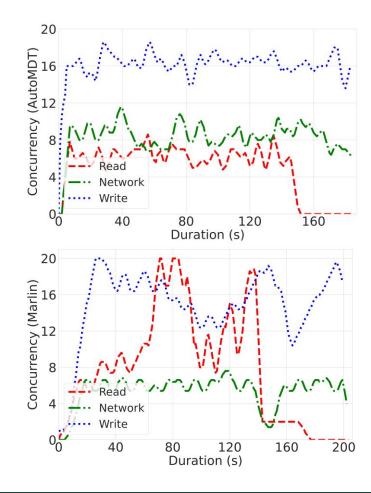
Network Bottleneck

- AutoMDT (top):
 - Correctly identifies the Network bottleneck.
 - Raises Network threads (green).
 - Keeps I/O threads (Read/Write) low and stable.
- Marlin (bottom):
 - Again, is unstable and wastes resources fluctuating I/O threads.



Write I/O Bottleneck

- AutoMDT (top):
 - Correctly identifies the Write bottleneck.
 - Raises Write threads (blue) while keeping others low.
- Marlin (bottom):
 - Large fluctuations in read and write concurrencies.
- This proves the independent optimizer approach is fundamentally flawed.



Performance in High-Speed Network

- \triangleright Periodic data transfers were conducted in the FABRIC Testbed (NCSA \rightarrow TACC).
- ► Compared Globus, Marlin, and AutoMDT across two 1TB datasets:
 - Large dataset: 500 files, each 2 GB.
 - Mixed dataset:

```
80% medium files (1-100 MB)
```

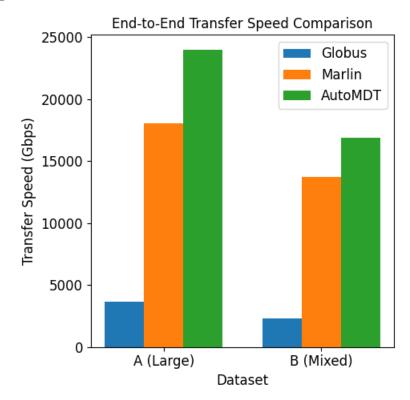
10% large files (1–2 GB)

5% small files (500 KB-1 MB)

► Each experiment was repeated multiple times to ensure consistency.

Performance in High-Speed Network

- Key Numbers (Large Files):AutoMDT (23.9 Gbps) is:
 - 1.33x faster than Marlin
 - 6.57x faster than Globus
- Key Numbers (Mixed Files): AutoMDT (16.9 Gbps) is:
 - 1.23x faster than Marlin
 - 7.28x faster than Globus



Summary

- ▶ Monolithic optimizers are inefficient, wasting I/O resources.
- ▶ AutoMDT's modular design decouples Read, Network, and Write.
- A single, joint DRL agent (PPO) outperforms unstable independent optimizers.
- ► A novel simulator enables fast, practical offline training (~45 min vs. 7 days).
- Result: AutoMDT achieves 8x faster convergence and up to 68% faster transfers than the state-of-the-art.

Thank You!

Rasman Mubtasim Swargo

Questions?