%OAK RIDGE

National Laboratory

INDIS 2025 | ST LOUIS, MO

Rapid Quantum Network
Simulation Design with a Path
to Scalable Execution

Aaron Welch!, Joel Dawson!, Mariam Kiran'

'0ak Ridge National Laboratory
welchda@ornl.gov, dawsonja@ornl.gov, kiranm@onnl.gov

o e«% .s. bpEPARTMENT OF ORNL IS MANAGED BY UT-BATELLE LLC

55 NERGY FOR THE DEPARTMENT OF ENERGY

Too Long, Didn't Listen

« Quantum networking is highly valuable, but simulations of it remain difficult/expensive

- To make simulations easier to design and iterate upon, we introduce a simulation
framework allowing experiments to be designed in a dataflow fashion using abstract and
reusable blocks

- We study the potential for performance improvement of parallel execution using another
existing framework

- We demonstrate how simulations designed in the former could be ported to the latter for
running at larger scales

%OAK RIDGE

National Laboratory

BISQIT

- Block-diagram Integrated Simulation framework for Quantum Information
Technologies (BISQIT), or Baked-In Security for Quantum Information

Technologies (BISQIT)
« Composed primarily of three components:

- Quantum-Classical Interface Component (QCIC) — the individual components of the simulated
system

- Relations — the links between the different components

- QCSim — combines components and their relations into a simulation experiment

* Uses a publisher-subscriber model to facilitate data transfer

%OAK RIDGE

National Laboratory

BISQIT

» Relations (edges) conceptually denote a logical or mathematical dependency between two
or more members of one or more sets

- Can operate in parallel
 QCIC “blocks” abstract the transduction of data between classical and quantum forms
- Likely maps to discrete hardware components in many cases

- May contain a series of other QCIC blocks and relations within it

« QCSim represents a particular graph of components and models the simulation parametres
and data flowing through it

%OAK RIDGE

National Laboratory 4

Design Philosophy

H ryriowvi1o - O X
File Edit

PyFlow

Array

branch

Common ForEachloop
DefaultLib
addTo

Inputs
e o)

1 ew inExec:
Dictionary il I entity:
FlowControl

branch Info

charge
9 makeInt2 I

delay
doN
doOnce

flipFlop makeThEL, I
forEachLoop o oo

1 ot

forLoop
forLoopWithBreak makeIntd I
retriggerableDelay r ok
sequence

witchOnString

v

[InFo

[INFO 17
LEQUTPUT 17
LEQUTPUT 17

LEQUTPUT 17:

From the PyFlow GitHub, used here for illustration purposes only

,‘f(,OAK RIDGE

National Laboratory

SeQUeNCe

- SeQUeNCe is a traditionally serial discrete event simulation framework designed in Python
for high precision

« Comprised of six components:
- Simulation kernel
- Hardware module
- Entanglement management module
- Network management module
- Resource management module

- Application module

- Assumes no loss and perfect reliability for the classical channels

- Accuracy becomes uncertain for saturated networks or if failures occur

- Past efforts sought to upgrade SeQUeNCe with parallel execution capabilities
%OAK RIDGE

National Laboratory 6

Parallelisation of SeQUeNCe

* Prior work uncovered five key observations pertaining to parallelisation potential:

- Events on quantum channels are dominant based on both quantity and simulation execution time.
- The execution time for these events is highly consistent.

- Events between pairs of quantum key distribution (QKD) terminals are evenly distributed over the
simulated timeline.

- The latency of quantum channel transmission is dominated by its propagation delay, which is
lower than that of an equivalent classical channel.

- Different QKD sessions are largely independent.

- Simulated routers were selected as the unit of parallelisation

- The simulation timeline gets split into n parallel timelines, subdivided into synchronisation epochs

- Within epochs, processes synchronise/exchange events, compute the end of the next epoch, then
process local events

* The quantum state manager (QSM) gets broken up into a hierarchy of n local QSMs and
one global QSM

%OAK RIDGE

National Laboratory 7

Adapting BISQIT Simulations

- While it could be a bit less straightforward to go the other way around, adapting a BISQIT
simulation to SeQUeNCe can be done rather simply

* QCIC blocks can be mapped to the Entity class

- Management of resource acquisition may need to be modified to go through SeQUeNCe’s
resource management module

- Relations between components can be mapped directly to events in SeQUeNCe

* The application layer doesn't have as direct of a transition, but can be rewritten from the
contents of BISQIT's QCSim component

%QA RIDGE

tional Laboratory

SeQUeNCe Performance Study

- To evaluate parallel performance, we reproduced two QKD experiments from SeQUeNCe’s
past efforts

- These used either linear or autonomous system network topologies, though we will only focus on
the latter here

- We simulated 1024 routers distributed across up to 512 processes on up to 8 nodes of
ORNL's Frontier, plus an additional node for the global QSM

- Each compute node has:

- A single 64-core AMD Epyc 7A53 2 GHz CPU

- 512 GB of memory
- Four HPE Slingshot 11 200 Gbit/s Cassini NICs connected to four AMD MI250X GPUs

« We used Python 3.10 for the run-time environment.

%OAK RIDGE

National Laboratory 9

Autonomous System Network Topology

%OAK RIDGE
National Laboratory

> @

10

Performance

3500
3000
2500

» 2000

Time

1500
1000
500

OAK RIDGE

National Laboratory

Socket mmmmmComputing s MPI Sync

1 2 4 8 16 32 64 128 256 512

Number of Processes

Performance Breakdown

Socket mmmmmComputing W MPI Sync mmmm Waiting mam
3500

3000
2500

» 2000

Ime

1500

T

1000
500

1 2 4 8 16 32 64 128 256 512

Number of Processes

OAK RIDGE

National Laboratory

Performance, Redefined

3500
3000
2500

» 2000

Ime

1500

T

1000
500

OAK RIDGE

National Laboratory

Socket mmmmmComputing s MPI Sync

1 2 4 8 16 32 64 128 256 512

Number of Processes

System Computing Time Per Process

2.5

Computing Time (s)

Synchronisation Epoch (x8)

%OAK RIDGE

National Laboratory

90

14

Conclusions

. 'brhe intuitive design of BISQIT makes prototyping of new simulation designs fast and easy,
ut:

- It does not provide as clean of a way to represent execution timelines
- Is not currently well suited for large simulation runs

- Work on an interface to PyFlow could go even further toward simplifying and democratising
simulation design

» Porting simulations initially designed with BISQIT to SeQUeNCe for effective testing is easy
and straightforward

« SeQUeNCe proved to be able to provide more efficient/scalable execution through
parallelisation, but the scaling potential is limited by the workload and resulting work
imbalances

%OAK RIDGE

National Laboratory 1 5

Questions?

%QA RIDGE

tional Laboratory

16

