
Rapid Quantum Network
Simulation Design with a Path
to Scalable Execution

INDIS 2025 | ST LOUIS, MO

Aaron Welch1, Joel Dawson1, Mariam Kiran1

1Oak Ridge National Laboratory
welchda@ornl.gov, dawsonja@ornl.gov, kiranm@onnl.gov

ORNL IS MANAGED BY UT-BATELLE LLC
FOR THE DEPARTMENT OF ENERGY



Too Long, Didn’t Listen

• Quantum networking is highly valuable, but simulations of it remain difficult/expensive

• To make simulations easier to design and iterate upon, we introduce a simulation
framework allowing experiments to be designed in a dataflow fashion using abstract and
reusable blocks

• We study the potential for performance improvement of parallel execution using another
existing framework

• We demonstrate how simulations designed in the former could be ported to the latter for
running at larger scales

2



BISQIT

• Block-diagram Integrated Simulation framework for Quantum Information
Technologies (BISQIT), or Baked-In Security for Quantum Information
Technologies (BISQIT)

• Composed primarily of three components:

- Quantum-Classical Interface Component (QCIC) — the individual components of the simulated
system

- Relations — the links between the different components

- QCSim — combines components and their relations into a simulation experiment

• Uses a publisher-subscriber model to facilitate data transfer

3



BISQIT

• Relations (edges) conceptually denote a logical or mathematical dependency between two
or more members of one or more sets

- Can operate in parallel

• QCIC “blocks” abstract the transduction of data between classical and quantum forms

- Likely maps to discrete hardware components in many cases

- May contain a series of other QCIC blocks and relations within it

• QCSim represents a particular graph of components and models the simulation parametres
and data flowing through it

4



Design Philosophy

From the PyFlow GitHub, used here for illustration purposes only

5



SeQUeNCe
• SeQUeNCe is a traditionally serial discrete event simulation framework designed in Python
for high precision

• Comprised of six components:

- Simulation kernel

- Hardware module

- Entanglement management module

- Network management module

- Resource management module

- Application module

• Assumes no loss and perfect reliability for the classical channels

- Accuracy becomes uncertain for saturated networks or if failures occur

• Past efforts sought to upgrade SeQUeNCe with parallel execution capabilities

6



Parallelisation of SeQUeNCe
• Prior work uncovered five key observations pertaining to parallelisation potential:

- Events on quantum channels are dominant based on both quantity and simulation execution time.
- The execution time for these events is highly consistent.
- Events between pairs of quantum key distribution (QKD) terminals are evenly distributed over the
simulated timeline.

- The latency of quantum channel transmission is dominated by its propagation delay, which is
lower than that of an equivalent classical channel.

- Different QKD sessions are largely independent.

• Simulated routers were selected as the unit of parallelisation
- The simulation timeline gets split into n parallel timelines, subdivided into synchronisation epochs
- Within epochs, processes synchronise/exchange events, compute the end of the next epoch, then
process local events

• The quantum state manager (QSM) gets broken up into a hierarchy of n local QSMs and
one global QSM

7



Adapting BISQIT Simulations

• While it could be a bit less straightforward to go the other way around, adapting a BISQIT
simulation to SeQUeNCe can be done rather simply

• QCIC blocks can be mapped to the Entity class

- Management of resource acquisition may need to be modified to go through SeQUeNCe’s
resource management module

• Relations between components can be mapped directly to events in SeQUeNCe

• The application layer doesn’t have as direct of a transition, but can be rewritten from the
contents of BISQIT’s QCSim component

8



SeQUeNCe Performance Study

• To evaluate parallel performance, we reproduced two QKD experiments from SeQUeNCe’s
past efforts

- These used either linear or autonomous system network topologies, though we will only focus on
the latter here

• We simulated 1024 routers distributed across up to 512 processes on up to 8 nodes of
ORNL’s Frontier, plus an additional node for the global QSM

• Each compute node has:

- A single 64-core AMD Epyc 7A53 2GHz CPU

- 512GB of memory

- Four HPE Slingshot 11 200Gbit/s Cassini NICs connected to four AMD MI250X GPUs

• We used Python 3.10 for the run-time environment.

9



Autonomous System Network Topology

0 4

5

6

1 0

1

2

3

7

8
9

1 1

1 2

1 3

10



Performance

0

500

1000

1500

2000

2500

3000

3500

1 2 4 8 16 32 64 128 256 512

Ti
m
e
(s
)

Number of Processes

Socket Computing MPI Sync

11



Performance Breakdown

0

500

1000

1500

2000

2500

3000

3500

1 2 4 8 16 32 64 128 256 512

Ti
m
e
(s
)

Number of Processes

Socket Computing MPI Sync Waiting

12



Performance, Redefined

0

500

1000

1500

2000

2500

3000

3500

1 2 4 8 16 32 64 128 256 512

Ti
m
e
(s
)

Number of Processes

Socket Computing MPI Sync

13



System Computing Time Per Process

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70 80 90

Co
m
pu

tin
g
Ti
m
e
(s
)

Synchronisation Epoch (x8)

14



Conclusions

• The intuitive design of BISQIT makes prototyping of new simulation designs fast and easy,
but:

- It does not provide as clean of a way to represent execution timelines

- Is not currently well suited for large simulation runs

- Work on an interface to PyFlow could go even further toward simplifying and democratising
simulation design

• Porting simulations initially designed with BISQIT to SeQUeNCe for effective testing is easy
and straightforward

• SeQUeNCe proved to be able to provide more efficient/scalable execution through
parallelisation, but the scaling potential is limited by the workload and resulting work
imbalances

15



Questions?

16


