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Self Driving Networks (AIOps)

                 
Monitor Control

                 

   
   

   
   

   
  Pre-defined rules… Machine Learning

Enable secure & performant connectivity with 
minimal human interventions
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Key Requirement

                 
Monitor Control

                 

   
   

   
   

   
  … Production-ready ML Model(s)

Generalizable, robust, trustworthy, ...
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Generalizable models perform as expected in 
target settings



Lack of generalizability attributable to at least 3 underspecification issues

• Shortcut Learning
Model takes shortcuts to classify data (cheating)

• OOD Issues
Model does not generalize to out-of-distribution samples (rote learning)

• Spurious Correlations
Model picks up wrong relations in the data (lucky guesses)

Model Generalizability

ML models in networking are vulnerable to these 
underspecification issues!



Fundamental Roadblocks

Training EvaluationPreprocessing +
Model selection DeploymentData

Model

For any given learning problem and target environment 
what is the “right” data

Standard ML Pipeline

Places the responsibility on users to find the right data, 
i.e., data that enables developing generalizable ML model
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Fundamental Roadblocks

Training EvaluationPreprocessing +
Model selection DeploymentData

Model

For any given learning problem and target environment 
 how to generate the “right” data?

Standard ML Pipeline

Networking problems necessitate endogenous data collection 

Data Generation
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Learning Problems

Video 
Fingerprinting

QoE 
Inference

Bruteforce
Attack

HTTP SSH

Fragmented
data generation

Network environments

Physical/virtual Network infrastructures

AWS Netrics UCSB

Overspecialized efforts with limited extensibility;  
public datasets dictate choice of problems & models

Effort 1 Effort 2 Effort N…

Data Generation Challenges
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Fundamental Roadblocks

Training EvaluationPreprocessing +
Model selection DeploymentData

Model

How to assess if resulting models are generalizable, i.e., 
not underspecificied?

Standard ML Pipeline

Black-box

Outputs the most performant model, with little to no insights into model’s decision-making 
(black-box)
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Example: HTTP Brute Force Attack Detection 
Problem

Training EvaluationPreprocessing +
Model selectionCIC-IDS

F1-score: 0.99

Standard ML Pipeline
Is this the right data?

Is this model underspecified?
How to generate better data 

at scale?

Learning shortcut

Answering these questions critical for developing 
generalizable ML artifacts for networking
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Training EvaluationPreprocessing +
Model selection

Deployment

Explain AnalyzeData Generation
Domain Expert

Analysis resultsData-generation intents

“Better” Data

For any given learning problem and environment, 
iteratively fix underspecification issues to generate “better” data

“Some” Data

Our Approach: Closed-Loop ML Pipeline
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Model Analysis 
Framework

Training EvaluationPreprocessing +
Model selection

Deployment

Data Generation 
Substrate

Domain Expert

Analysis resultsData-generation intents

“Better” Data

Realizing Closed-Loop ML Pipeline
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Generation 
Infrastructure

PINOT [HotNets’19, ANRW’23]

Trustee [CCS’22]
IEF [NeurIPS’25]

NetUnicorn [CCS’23]
NetGent [MLForSys’25]
NetMosaic [ANRW’24]
NetReplica



Trustee

Explanations
(decision trees)

Model-agnostic, high-fidelity, low-complexity, and stable 
decision trees to explain model’s decision-making

A post-hoc global model explainability framework
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Generates a Trust Report
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Lowers the threshold of detecting underspecification issues



Trustee in Action

Underspecification
Issues

Demonstrated prevalence of underspecification issues in 
existing ML artifacts for network security
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Trustee in Action

Public Datasets

IETF/IRTF Applied Networking Research Prize, 2023

ACM CCS Best Paper Honorable Mention, 2022

Attributed most underspecification issues to 
publicly available datasets
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How to Fix the Underspecification (Data) 
Issues?

Data

Training EvaluationPreprocessing +
Model selection

Deployment

TrusteeData Generation
Domain Expert

Analysis results

Iteratively update
data-generation intents

Use insights from model analysis to iteratively generate 
“better” data
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Learning Problems

Network environments

Physical/virtual network infrastructures
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Data Generation

Fragmented Thin Waist

netUnicorn

How to Simplify Data Generation?

How to realize data-generation thin waist?



• Core Principle
A true thin waist emerges only when we decouple the layers that have 
historically been entangled

• Disaggregate Intents from Execution
– Intent = what the experimenter wants: Execution = how it runs
– Decoupling makes intents portable, reusable, and stable across 

environments

• Disaggregate Execution from Infrastructure
Separation enables automatic mapping, capability-aware planning, and 
scaling across heterogeneity
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Disaggregation



Connectivity
ManagerCompiler GatewayProcessor

NodesDeployment Systems

Client(s)

Mediation Service

Datastore

Deployment Services Execution Services

Experiments (Intents)

Instructions

Instructions

Results

Disaggregation In Action

Intent
s

Executi
on

Infrastructu
re

Intent-Execution-Infrastructure Disaggregation enables 
Data-Generation Thin Waist



Learning Problems

Network environments

Physical/virtual network infrastructures
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Data Generation NetUnicorn

Augmenting Data Generation “Thin Waist”

NetGent Simplifies synthesizing complex app. workflowsRequires manually adding new workflows

Disaggregates application workflows into reusable tasks



Learning Problems

Network environments

Physical/virtual network infrastructures
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Data Generation NetUnicorn

Augmenting Data Generation “Thin Waist”

NetGent

NetReplica

Simplifies synthesizing complex app. workflows

Enables prog. control over network conditionsOffers no direct control over network conditions

Disaggregates network environment specification into 
static and dynamic attributes



Learning Problems

Network environments

Physical/virtual network infrastructures
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Data Generation NetUnicorn

Augmenting Data Generation “Thin Waist”

NetGent

NetReplica

Simplifies synthesizing complex app. workflows

Enables prog. control over network conditions

Programmatically generate data for hundreds of applications across 
millions of different network conditions



Model Analysis 
Framework

Training EvaluationPreprocessing +
Model selection

Deployment

Data Generation 
Substrate

Domain Expert

Analysis resultsData-generation intents

“Better” Data

Closed-Loop ML Pipeline
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Data 
Generation 

Infrastructure

PINOT [HotNets’19, ANRW’23]Only fixes generalizability for one model at a time

NetUnicorn [CCS’23]
NetGent [MLForSys’25]
NetMosaic [ANRW’24]
NetReplica

Trustee [CCS’22]



New Frontier: Network Foundation Models 
(NFMs)

Unlabeled
Telemetry Data Pre-Training

Task Agnostic
self-supervised learning

Labelled 
Network Data Fine-Tuning

Fine-Tuning

Task Specific
supervised learning

. . .

Labelled 
Network Data

Abundant!
Thanks to SDN-powered telemetry infrastructure 

Can be sparse and noisy!
Almost always the case, even with closed-loop ML pipeline
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Critical to reason about generalizability of pre-trained 
Network Foundation Models



The Current Landscape for NFMs
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Masked Auto Encoders (MAE)

YaTC

BERT

ET-BERT

Mamba

NetMamba

Imag
e

Natural 
Langua

ge

Linear  
State-Spa

ce

Force mapping of network data to images, natural 
language, or linear state-space models



• Embody different protocols (tokenization?)
Packet content is dictated by disparate protocols and standards

• Entail variable length sequences (token selection?)
Packet sequences at any granularity is heavy tailed (multi-fractal behavior)

• Encode multi-modal information (token embedding?)
Packet sequences carry critical spatial, temporal, & contextual information 

• Intrinsically hierarchical (modelling?)
Packets in different spatial/temporal groups have disparate semantic meanings

What’s Unique about Network Data (Packet 
Traces)? 

Necessitates a “Domain-specific” Approach



netFound: A Domain-Specific Network 
Foundation Model

Protocol-aware tokenization

Metadata

Hierarchical
Architecture
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How do we know if netFound is better, i.e., 
not only performant but also generalizable?



Exhibits better performance for diverse “well-explored” 
learning tasks and datasets

Network 
Foundation Models

Deep Learning 
Models

Standard Approach



Wait! Which Task? What Data?

Learning 
Shortcuts

Learning 
ShortcutsFixed Fixed

Equating NFMs’ success with performance on a limited set 
of downstream tasks and datasets is misleading



Assess embedding quality decoupled from downstream tasks/datasets

• Embedding Geometry Analysis
How efficiently the model utilizes representation space?

• Metric Alignment Assessment
How well it captures well-known features, developed by experts over time?

• Causal Sensitivity Testing
How sensitive is the model to network context perturbations?

Our Approach: Intrinsic Evaluation Framework 
(IEF)



• Network Foundation Models
YaTC, ET-BERT, NetFound, and NetMamba

• Datasets
Endogenous (Actively Generated)

Android Crossmarket, CIC-IDS, APT-IIoT

Exogenous (Passive Traces)
MAWI, CAIDA

Experimental Setup



• Claim
Effective NFMs’ embeddings should utilize the full 
representation space

• Rationale
Well-distributed embedding geometry indicates that model 
distinguishes between flow along meaningful dimensions

• Methodology
Measure anisotropy (cosine similarity) between embeddings 
pairs in the dataset

Embedding Geometry Analysis

Example of embedding distribution in 
the space: less related embeddings 
are further from each other



Embedding Geometry Analysis Results

Cos: Mean cosine similarity between embeddings inside the dataset 

MCC: Mean cosine contribution of top dimension of embeddings to avg.

We observe total representation collapse (NetMamba), dimensional 
dominance (YaTC), and limited generalizability (netFound)



• Claim
Effective NFMs’ should encode critical network statistics such 
as flow duration, packet size distributions, TCP dynamics, 
etc., without explicit supervision. 

• Rationale
These features, developed over decades, encode 
domain-knowledge, which worked well for different learning 
tasks

• Methodology
Compute CKA similarity between each established metric 
and embeddings across flows

Metric Alignment Assessment

PCAP

FeaturesEmbeddings

Correlation 
(CKA)

CICFlowme
ter



Metric Alignment Assessment

Except netFound, most NFMs miss established metrics; 
yet netFound falters on production traces.



• Embedding Geometry Analysis
Total collapse (NetMamba), dimensional dominance (YaTC), limited 
generalizability (netFound)

• Metric Alignment Assessment
Poor alignment for most except netFound, which struggles to generalize

• Causal Sensitivity Testing
Poor context discrimination for all except netFound; all NFMs struggle to 
generalize

Result Summary: Intrinsic Evaluation 
Framework

While no clear winner emerges, this framework provides an 
insightful benchmark



Current State

Packet
Traces

Learn (snapshot) representations for flows 
to solve well-explored learning problems

Can we learn more expressive and generalizable 
representations with least complexity and minimal data?  



Where can we go from here?

System 
Calls

MIBs Packet
Traces

IDS 
Alerts

App. 
Logs

Client 
Code

Server 
Code

Learn more expressive representations to facilitate solving 
“unexplored” learning problems in networking



• Less Ambitious 
Facilitate interactions with network data in natural language---rethink
network telemetry systems

• Moderately Ambitious
Identify and diagnose subtle and complex network events (anomalies), 
predict future events, and search/rank similar past events

• Extremely Ambitious
Pkt-2-pkt transformations for traffic generation & counterfactual analysis 
Code-2-pkt & pkt-2-code transformations for verification

“Unexplored” Learning Problems in 
Networking

Caution: Please remember the “garbage-in-garbage-out” 
adage and don’t blindly throw LLMs for these problems



Internet

ISP WiFi AP

Home Last mile Backbone

Exemplary Use Case

For every residence (i.e., dense spatial coverage), periodically (i.e., dense temporal coverage)

• Report metric(s) that captures users’ quality of experience* (high-fidelity assessment)

• Diagnose if poor quality is attributable to last-mile service provider (accurate attribution)

*Quality of experience (QoE) is an application-specific metric

Existing tools fail to bridge gap between 
measured and experienced broadband quality
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Rethinking Broadband Quality 
Measurements 

Users

Measurement
Server(s)

Synthesize 
QoE

Learn 
Policies

Infer 
Context

Quality

Context

Policy

Packets
Metadata

Higher 
Fidelity

Accurate 
Attribution

Lower 
Overheads

Better Spatial 
Coverage

Better Temporal 
Coverage

Learn data representations that enable closed-loop 
measurements, context inference, and counterfactual analysis
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Learning Problems

Network environments

Physical/virtual network infrastructures
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Data Generation NetUnicorn

Programmable Data Generation Substrate

NetGent

NetReplica

Simplifies synthesizing complex app. workflows

Enables prog. control over network conditions

Provides a unique tool to pursue this “grand challenge” 
problem in network measurement



Summary
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• Production-ready ML models critical for self-driving networks

• Closed-loop ML pipeline, composed of model-analysis (Trustee) and 
data-generation (NetUnicorn, NetReplica, NetGent) substrates 
critical for production-ready ML

• Network foundation model(s) are critical for self-driving networks
– Intrinsic evaluation framework helps answer what a Network foundation 

model is (and is not) learning 
– Programmable data-generation substrate provide a unique opportunity to 

take on new and revisit older problems with a fresher perspective

NeurIPS’
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