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Self Driving Networks (AlOps)
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Key Requirement

:» . Production-ready ML Model(s)

Generalizable, robust, trustworthy, .

Monitor Control

N -~ . 4
Generalizable models perform as expected in
target settings

- N



AI/ML for Network Security: The Emperor has no Clothes

https://trusteeml.github.io/
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Lack of generalizability attributable to at least 3 underspecification issues

e Shortcut Learning
Model takes shortcuts to classify data (cheating)

e OOD Issues

Model does not generalize to out-of-distribution samples (rote learning)

ML models in networking are vulnerable to these
underspecmcatlon Issues!
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Fundamental Roadblocks

Places the responsibility on users to find the right data,
i.e., data that enables developing generalizable ML model

Preprocessing + . .
Data —){ Model selection }—>{ Training Evaluation

Standard ML Pipeline
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>{ Deployment

Model

For any given learning problem and target environment
what is the “right” data



Fundamental Roadblocks

Networking problems necessitate endogenous data collection

e ‘ 7§ —

Data Generation

54
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Preprocessing + . .
Data —){ Model selection }—>{ Training Evaluation

Standard ML Pipeline
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;{ Deployment

For any given learning problem and target environment
how to generate the “right” data?



Data Generation Challenges
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Fundamental Roadblocks

Outputs the most performant model, with little to no insights into model’s decision-making
(black-box)

Preprocessing + . .
Data —>{ Model selection }—>{ Training Evaluation

Standard ML Pipeline

Black-box

S

- ;{ Deployment

How to assess if resulting models are generalizable, i.e.,
not underspecificied?



Example: HTTP Brute Force Attack Detection
Problem

Learning shortcut

TTL =63
classes = [0.84, 0.16]

How to generate better data
at scale? ——— Is this model underspecified?

classes -'['6.01. 0.16] F1 0.99
4 =Score.: U.

classes = [o 83, 0. 01

....
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CIC'IDS—){ F,\)/:zzreolcszslgglgj; }—>{ Training Evaluation

Is this the right data?
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Standard ML Pipeline

Answering these questions critical for developing
generalizable ML artifacts for networking



Our Approach: Closed-Loop ML Pipeline

Data-generation intents

~
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Data Generation ]

v

NGh

Domain Expert

Analysis results

I){ Explain Analyze ]1

“Beokier”’ Dati){

]

Preprocessing +
Model selection

—

Training

Evaluation

}—)‘ Deployment ]

For any given learning problem and environment,
iteratively fix underspecification issues to generate “better” data
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Realizing Closed-Loop ML Pipeline

NetUnicorn [CCS’23]
NetGent [MLForSys’25]

Data-generation intents Q

NetMosaic [ANRW’24]

NetReplica

Substrate

Data Generation

\

Domain Expert

ol

Analysis results

Trustee [CCS’22]

IEF [NeurlPS’25]

Model Analysis
Framework

“Better” Data
ﬁf{

Preprocessing +
Model selection

—

Training

Evaluation
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Deployment ]
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Trustee

A post-hoc global model explainability framework

D ataset

S
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=:'t IUStee —> Explanations

' (decision trees)
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Model-agnostic, high-fidelity, low-complexity, and stable
decision trees to explain model’s decision-making
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Generates a Trust Report

Classification Trust Report

Summary
Blackbox Whitebox Top-k Whitebox

Model: RandomForestClassifier Explanation method: Trustee Explanation meth Trustee
Dataset size: 947072 Model: DecisionTreeClassifier Model: DecisionTreeClassifier
Train/Test Split: 70.00% / 30.00% Iterations: 1 Iterations: 1
Sample size: 50.00% Sample size: 50.00%

Decision Tree Info Decision Tree Info
Size: 2437 Size:
Depth: 31 Depth:
Leaves: 1219 Leaves:
# Input features: # Input features: 18 (29.51%) Top-k:
# Output classes: # Output classes: 5 (100.00%) # Input features: -
# Output classes: 5 (100.00%)

Performance Fidelity Fidelity

precision recall fl-sco support precision recall fl-score precision recall fl-score

1.000 0.912 .954 24408 1.000 1.000 1.000 22254 .000 .000 .000
0.752 0.910 .824 1872 1.000 1.000 1.000 2265 .000 .000 .000
0.929 0.827 .875 10994 0.969 0.965 0.967 9781 .000 .000 .000
0.997 0.929 962 65188 0.998 0.998 0.998 60768 .544 .957 .694
0.958 0.997 .978 181660 0.998 0.998 0.998 189054 .875 .847

accuracy . 284122 accuracy 0.997 284122 accuracy

8 3 avg 3 avg

Feature | # of Nodes (%) | Data Split % - 1 |
e T e —

| TCP Src Port | 700 (57.47%) | 782029 (37.11%) |




Trustee in Action

Underspecification

Problem Dataset(s) Model(s) Issues

Detect VPN traffic Public VPN dataset [20] 1-D CNN [61] Shortcut learning

Detect Heartbleed traffic CIC-IDS-2017 [54] RF Classifier [54] Out-of-distribution samples

Detect Malicious traffic (IDS) CIC-IDS-2017 [54], Campus dataset  nPrintML [32] Spurious correlations

Anomaly Detection Mirai dataset [44] Kitsune [44] Out-of-distribution samples

OS Fingerprinting CIC-IDS-2017 [54] nPrintML [32] Potential out-of-distribution samples
IoT Device Fingerprinting UNSW-IoT [56] lisy [63] Likely shortcut learning

Adaptive Bit-rate HSDPA Norway [49] Pensieve [42] Potential out-of-distribution samples

Demonstrated prevalence of underspecification issues in
existing ML artifacts for network security
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IETF/IRTF Applied Networking Research Prize, 2023

Trustee in Action

ACM CCS Best Paper Honorable Mention, 2022

Q
Q

Public Datasets

Problem Dataset(s) Model(s)

Detect VPN traffic Public VPN dataset [20] 1-D CNN [61] Shortcut learning

Detect Heartbleed traffic CIC-IDS-2017 [54] RF Classifier [54] Out-of-distribution samples

Detect Malicious traffic (IDS) CIC-IDS-2017 [54], Campus dataset  nPrintML [32] Spurious correlations

Anomaly Detection Mirai dataset [44] Kitsune [44] Out-of-distribution samples

OS Fingerprinting CIC-IDS-2017 [54] nPrintML [32] Potential out-of-distribution samples
IoT Device Fingerprinting UNSW-IoT [56] lisy [63] Likely shortcut learning

Adaptive Bit-rate HSDPA Norway [49] Pensieve [42] Potential out-of-distribution samples

Attributed most underspecification issues to
publicly available datasets
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How to Fix the Underspecification (Data)

Issues?

Iteratively update
data-generation intents

Y

Data Generation ]

v

Data

>

Preprocessing +
Model selection

&
H

Domain Expert

Analysis results

|—{ Trustee ]—|

Training

Evaluation

|

Deployment ]

Use insights from model analysis to iteratively generate

“better” data
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How to Simplify Data Generation?

Fragmented Thin Waist
Q? Q CP Learning Problems Q ? W
Data Generation netUnlcorn

O 000 —— G&O bb

How to realize data-generation thin waist?
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Disaggregation

e Core Principle

A true thin waist emerges only when we decouple the layers that have
historically been entangled

e Disaggregate Intents from Execution
— Intent = what the experimenter wants: Execution = how it runs

— Decoupling makes intents portable, reusable, and stable across
environments

e Disaggregate Execution from Infrastructure

Separation enables automatic mapping, capability-aware planning, and
scaling across heterogeneity
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Disaggregation In Action

Intent Client(s)
S

Experiments (Intents)

Mediation Service

[ —

Deployment Services Execution Services
E ti ivi —
xecuti Compiler C:;‘:::t';’:ty y Processor Gateway
on 9 (— A
\ Datastore )

Intent-Execution-Infrastructure Disaggregation enables
Data-Generation Thin Waist
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Augmenting Data Generation “Thin Waist”

NetGent: Agent-Based Automation of Network
Application Workflows
Learning Problems
a Koduru* Sanjay Chandrasekaran* Arpit Gupta*
ara  *California State University, East ay

NetGent Bmphfwsmyntmwzadg|ogmplﬂx1\a:pfbﬂmkflows
NetUnicorn

Data Generation

Network environments K{< A >\>}

Disaggregates application workflows into reusable tasks

LY .




Augmenting Data Generation “Thin Waist”

NETREPLICA:
Toward a Programmable Substrate for Last-Mile Data Generation
Jaber Daneshamooz*, Satyandra Guthula*, Jessica Nguyen*, William Chen', Sanjay Chandrasekaran*,
Ankit Gupta¥, Arp G upta®, WallerWillinger§
Learning Problems sity of California Santa Barbara® NIKSUN® Cary Academy High School! AMD#

NetGent Slmpllfles synthesizing complex app. workflows
NetUnicorn

Data Generation

BExffaipdes ot @uindtad \eraneistardrk @achitldias s

NetReplica <
Network environments K (ﬂ h h>\

Disaggregates network environment specification into
static and dynamic attributes

LY Y .




Augmenting Data Generation “Thin Waist”

QQ PPY

NetGent Slmpllfles synthesizing complex app. workflows
Data Generation NetUnlco rn
NetReplica < Enables prog. control over network conditions

Network environments Kﬁ h h>\
NETREPLICA:

Programmatically generate data for hundreds of applications across
millions of different network conditions

LY Y .




Closed-Loop ML Pipeline

NetUnicorn [CCS’23]

NetGent [M LForSys’25] Data-generation intents ~ Analysis results

Trustee [CCS’22
NetMosaic [ANRW’24] Gﬁ?@l < rustee [ ]
NetReplica

Data Generation Domain Expert

Substrate

13 ”
Better” Data .
Preprocessing + . .
. Training Evaluation
Model selection

Model Analysis
Framework

NN

Deployment ]

Only fixes generalizability for one model at a time

Data
Generation 23
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New Frontier: Network Foundation Models
(NFMs)

Task Specific
supervised learning
Task Agnostic

Labelled . .
Network Data Fine-Tuning | @O
self-supervised learning
Unlabeled ‘ | '.%’? | ]
niabele -
Telemetry Data Pre-Training A\ d!‘ .

Foundation =
Model

( 1 M

Critical to reason about generalizability of pre-trained
Network Foundation Models

Thanks to SDN-powered telemetry infrastructure Almost aIV\;ays the case, eve'n with closed-loop ML pipeline
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The Current Landscape for NFMs

Masked Auto Encoders (MAE) BERT Mamba
’ ’ﬁi’ Mas'kLM Ma‘iLM \ .,
ENSEE = . HEPSE= L i |
EuEEs g \ [ 7] BERT _ 5
Eeeas m = ;- Eaaas NEIER
ll,,l ll(lgtIl § )t j A
]

Ima Natural Linear
e 9 Langua State-Spa
ge ce

YaTC ET-BERT NetMamba

Force mapping of network data to images, natural
Ianguage or Ilnear state -space models

; ; _ = — = —
_ “lu Payload Matrix J M o T \  —— Masking G S S S S .
a1 v 0D D) -+ (20) (D) () (G550 -+~ (DD Fostion
Cmbedding | z
Flows ckets Packet-Level Matric atrix Sq_:”:‘ [—-:- (— T I I ]
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What’s Uniqgue about Network Data (Packet
Traces)?

e Embody different protocols (tokenization?)
Packet content is dictated by disparate protocols and standards

e Entail variable length sequences (token selection?)
Packet sequences at any granularity is heavy tailed (multi-fractal behavior)

e Encode multi-modal information (token embedding?)

Packet sequences carry critical spatial, temporal, & contextual information

e Intrinsically hierarchical (modelling?)
Packets in different spatial/temporal groups have disparate semantic meanings

Necessitates a “Domain-specific”’ Approach



netFound: A Domain-Specific Network

Foundation Model

b, b b
0° 108 0% 0%
— — — + """ " W " + € ok o TR “"'u""“"‘u"'“"f_"'“""n'"u'"M'"'u'"+"'u""u"'ﬁ"'h‘_‘ — —-—
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. . Flow Encoder ! '

Hierarchical .

Architecture . '
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Burst Encoder
Protocol-aware tokenization Tokens | cls8 0x2f43 , CLSB  0x0004 I
— —— — — I I S S S S S S S S S S S S S S G S S S S S E— E—
[ Positi 1 2 108 1 2 |
I Direct 1 1 1 1 1 [
I # bytes in burst | 4517 4517 nan 4517 : 54 54 I
Metadata | #pktsinburst | 6 6 6 ! 1 1 1

How do we know if netFound Is better, i.e.,
not only performant but also generallzable?



Standard Approach

Deep Learning Network
Models Foundation Models
Task Type Dataset Curtains (%) nPrintML (%) ET-BERT (%) YaTC (%) | netFound (our) (%)
5453 +097  87.22+0.12  72.26+038 7654 + 0.23 96.08 + 0.04
1 Traffic Classificati dataset
raffic Classification Campus datase p < 0.001 p < 0.001 p <0001  p<0.001 -
) Grosmmatkets (s3] iAce@10) 20.64 +0.13  64.83+0.28  35.62+039 5813+ 0.89 66.35 + 0.99
P — p < 0.001 p =0.098 p < 0.001 p =0.010 -
3 PP CRVIN-201€ [18) 66.85+221  84.10+041  77.57+120 83.84 +0.24 91.02 + 0.10
p =0.003 p < 0.001 p < 0.001 p < 0.001 -
99.75 +0.16  99.93+0.01  99.94+0.01 99.92 + 0.01 99.99 + 0.01
4 Intrusion Detecti CICIDS2017 [55
EREIORSeeon L p=0.082 p=0.012 p=0018  p=0.005 -
. . 96.82 £0.22  9851+0.02  98.63+0.02 98.73 +0.10 99.01 + 0.01
5 HTTP Bruteforce Detection netUnicorn [11] p = 0.006 < 0.001 » < 0.001 p = 0.030 -

Exhibits better performance for diverse “well-explored”
learning tasks and datasets



The Sweet Danger of Sugar: Debunking Representation Learning

= ' = ? for Encrypted Traffic Classification
Wait! Which Task? What Datl ... " oo™ e
| n Politecnico di Torino Politecnico di Torino Politecnico di Torino
Torino, Torino, Torino,
qi. iovanni.def atte:
uca vVassio
litecnico di Torino

CIC-IDS (Heartbleed) Crossmarket (Acc@10)

ET-BERT | 99.99 + 0.01 99.82 + 0.03

YaTC 99.99 + 0.01 99.69 + 0.03

netFound | 99.99 + 0.01 66.35 + 0.99
Learning Fivad Learning Fixed

Equating NFMs’ success with performance on a limited set
of downstream tasks and datasets is misleading



Our Approach: Intrinsic Evaluation Framework
(IEF)

Assess embedding quality decoupled from downstream tasks/datasets

e Embedding Geometry Analysis
How efficiently the model utilizes representation space?

e Metric Alignment Assessment
How well it captures well-known features, developed by experts over time?

e Causal Sensitivity Testing
How sensitive is the model to network context perturbations?



Demystifying Network Foundation Models

Experimental Setup

e Network Foundation Models
YaTC, ET-BERT, NetFound, and NetMamba

e Datasets
Endogenous (Actively Generated)

Sylee (Roman) Beltiukov* Satyandra Guthula
UC Santa Barbara UC Santa Barbara

Wenbo Guo Walter Willinger Arpit Gupta
UC Santa Barbara NIKSUN, Inc UC Santa Barbara

0

Android Crossmarket, CIC-IDS, APT-lloT

Exogenous (Passive Traces)
MAWI, CAIDA



Embedding Geometry Analysis

o C I a i m Embedding and Cosine Similarity
Effective NFMs’ embeddings should utilize the full ] - Enmamavo

representation space

! cat

Dog

e Rationale

Well-distributed embedding geometry indicates that model
distinguishes between flow along meaningful dimensions

- Cosine Similarity

o MGthOdO'Ogy Example of embedding distribution in

. . L ) the space: less related embeddings
Measure anisotropy (cosine similarity) between embeddings are further from each other

pairs in the dataset



Embedding Geometry Analysis Results

YaTC ET-BERT netFound NetMamba
Dataset cos . cos cos cos
Crossmarket 0.85 0.88 0.69 0.93
CIC-APT-IIoT24 0.87 0.88 0.82 0.98
CIC-IDS2017 0.85 0.74 0.69 0.92
CAIDA 0.87 0.71 0.86 0.99
MAWI 0.88 0.78 0.94 0.99

We observe total representation collapse (NetMamba), dimensional
dominance (YaTC), and limited generalizability (netFound)



Metric Alignment Assessment

e Claim
Effective NFMs’ should encode critical network statistics such PCAP
as flow duration, packet size distributions, TCP dynamics, \

etc., without explicit supervision.
4P
h, y CICFlowme

® Rat i O n a I e Foundation ter
These features, developed over decades, encode Hes
domain-knowledge, which worked well for different learning i
taSkS Embeddings <@ Features
Correlation
(CKA)

e Methodology

Compute CKA similarity between each established metric
and embeddings across flows



Metric Alignment Assessment

Crossmarket CIC-APT-IIoT24 CIC-IDS2017

YaTC 0.098 0.148 0.092
ET-BERT 0.012 0.014 0.064
netFound 0.156 0.219 0.167
NetMamba 0.047 0.141 0.042

Except netFound, most NFMs miss established metrics;
yet netFound falters on production traces.



Result Summary: Intrinsic Evaluation
Framework

e Embedding Geometry Analysis

Total collapse (NetMamba), dimensional dominance (YaTC), limited
generalizability (netFound)

e Metric Alignment Assessment
Poor alignment for most except netFound, which struggles to generalize

o (Mancal Qancitivilhvi Tactinn

While no clear winner emerges, this framework provides an
insightful benchmark



Current State
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Foundation
Model

A

Packet
Traces :
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Learn (snapshot) representations for flows
to solve well-explored learning problems

U
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Can we learn more expressive and generalizable
representations with least complexity and minimal data?
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Where can we go from here?

Foundation
Model

T

. System - 'Packet . IDS . App. ..
- Calls .- MIBS"" Traces -Alerts . |Logs %

&

- ___—_aa ‘ A

Learn more expressive representations to facilitate solving
“unexplored” learning problems in networking
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“Unexplored” Learning Problems in
Networking

e Less Ambitious
Facilitate interactions with network data in natural language---rethink

network telemetry systems

e Moderately Ambitious

|dentify and diagnose subtle and complex network events (anomalies),
predict future events, and search/rank similar past events

Caution: Please remember the “garbage-in-garbage-out”
adage and don’t blindly throw LLMs for these problems

CO0C=Z=PKT & PRT=Z=Co0ae Transtormations 1or verirrcation



Exemplary Use Case

O Home Last mile Backbone
LL }; — *?— Internet
WiFi AP ISP

For every residence (i.e., dense spatial coverage), periodically (i.e., dense temporal coverage)

e Report metric(s) that captures users’ quality of experience* (high-fidelity assessment)

Existing tools fail to bridge gap between
measured and experienced broadband quality
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Rethinking Broadband Quality

Better Spatial
I— 'You' 'Q(.Tovi'iaﬁe' -t === 'I
I Tuhe zoom . I
I . Higher I
Synthesize F-ld%iﬁ)ﬁlity I
QoE I
Packets [ |
/
0’ ,,.\\ '\‘e:‘ﬁta : Accurate :
~ _ - .
I Infer Attﬂblﬁb%%xt |
o= | Context |
= Measurement '_________________'
leare Server(s) e e e e e e e _m———=n

Learn data representations that enable closed-loop
measurements, context inference, and counterfactual analysis



Programmable Data Generation Substrate

QQ PPY

NetGent Slmpllfles synthesizing complex app. workflows
Data Generation Netunlco rn
NetReplica Enables prog. control over network conditions

Network environments K/« H\ R\>\

Provides a unique tool to pursue this “grand challenge”
problem in network measurement
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NeurlPS’
Demystifying %ork Foundation Models

Summary

Sylee (Roman) Beltiukov* Satyandra Guthula
UC Santa Barbara UC Santa Barbara

‘Wenbo Guo Walter Willinger Arpit Gupta
UC Santa Barbara NIKSUN, Inc UC Santa Barbara

* Production-ready ML models critical for self-driving networks

e Closed-loop ML pipeline, composed of model-analysis (Trustee) and
data-generation (NetUnicorn, NetReplica, NetGent) substrates
critical for production-ready ML

e Network foundation model(s) are critical for self-driving networks
- Intrinsic evaluation framework helps answer what a Network foundation
model is (and is not) learning

- Programmable data-generation substrate provide a unique opportunity to

take on new and revisit older problems with a fresher perspective
43



