StreamHub: High-performance Managed SciStream as a Service

Seena VazifeDunn, Flavio Castro, Prof. Ian Foster, Prof. Kyle Chard, Dr. Rajkumar Kettimuthu

November 2025

Overview

Scientific Data Streaming

Challenges and Motivations RAM-to-RAM Streaming State of the art Streaming Service

StreamHub

Built on top of SciStream StreamHub Components StreamHub Architecture

Results

Streaming Importance
Performance
Conclusion

What is Scientific Data Streaming

High data rate:

Modern scientific facilities (synchrotrons, telescopes, accelerators) can generate **petabytes of data daily**

Requires high performance computing infrastructure:

Lack of computation infrastructure at the scientific facilities requires data computation at HPC facilities

High operational costs:

Large-scale experiments' cost can reach tens of thousands of dollars per hour

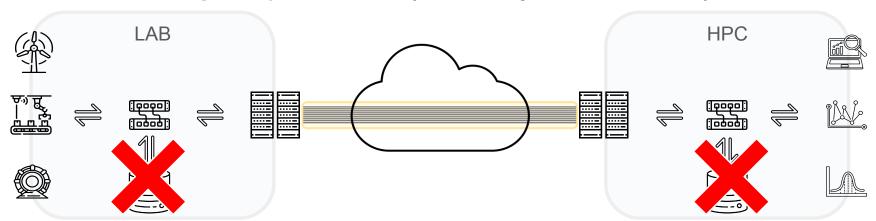
Challenges

Traditional batch-based workflows:

Slow Processing: Data are delayed until the transfer completes

High Storage Costs: Large intermediate storage is required

Limited Real-Time Capability: No immediate processing as data arrives


RAM-to-RAM Streaming:

Data streaming workflows:

Fast Processing: Data are processes as production rate

No Storage Costs: No intermediate storage is required

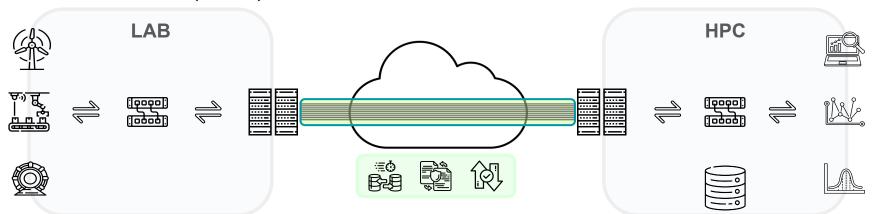
Real-Time Capability: Immediate processing with no I/O delay

Streaming Services & Applications

No federated security model, managed and automated orchestration

Streaming Services & Applications

No federated security model, managed and automated orchestration



Built on top of SciStream

Middlebox Architecture, Allocates Resources, Establishes Streaming Channel
User Control (S2UC): Interacts with user and software to initiate the service
Control Server (S2CS): Interacts with S2UC and S2DS to setup the service
Data Server (S2DS): Streams data between the distributed networks

SciStream Limitations

Separate User Authentication in each domain

→ Creating inconsistent security policies

Manual User Intervention for establishing secure tunnels

→ Increasing **risk of misconfiguration** and setup time

Firewall Modification at each institutions to permit streaming sessions

→ Adding **overhead** and potential **delays**

Lacking Integrated Monitoring Support and Centralized access control

→ Limiting operational visibility

StreamHub

A High-performance, Scalable, Secure Scientific Data Streaming Service

The secure authentication and authorization fabric of Globus Auth

The remote function execution capabilities of Globus Compute

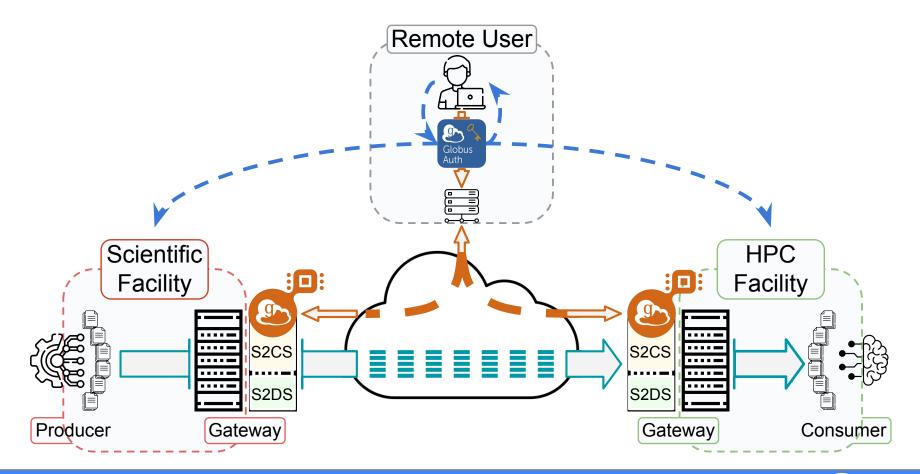
Leverages the high-performance data streaming capabilities of SciStream

System Design

Separated Control Plane & Data Plane

StreamHub Client:

User Authentication, Parameter negotiation, Managing the life cycle


Stream Control Agents:

Execute the task, generate session credentials, lunch the components

Streaming Data Plane:

Streaming encrypted data over streamings channels

Evaluation

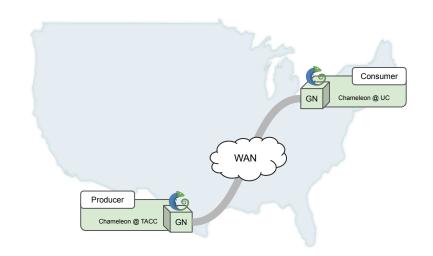
Evaluating over 6,700 experiments on Chameleon Cloud

Experimental parameters across all configurations

Baselines: Nginx, No-Proxy

• Applications: iPerf3, APS mini-app

• **Proxy:** Stunnel, Haproxy


• **Encryption:** Plain TCP, TLSv1.2, TLSv1.3

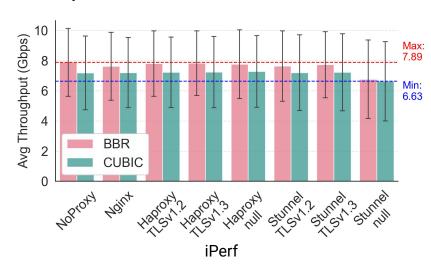
• Congestion Control: CUBIC, BBR

• Parallelism: 1, 3, 5 concurrent stream

• **Duration:** 10s, 20s, 30s, 60s

• Iteration: 10 runs per configuration

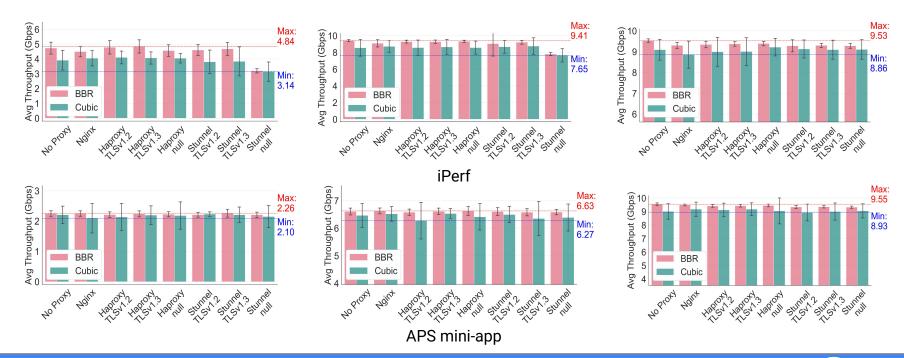




Proxy & Congestion Algorithm Comparison

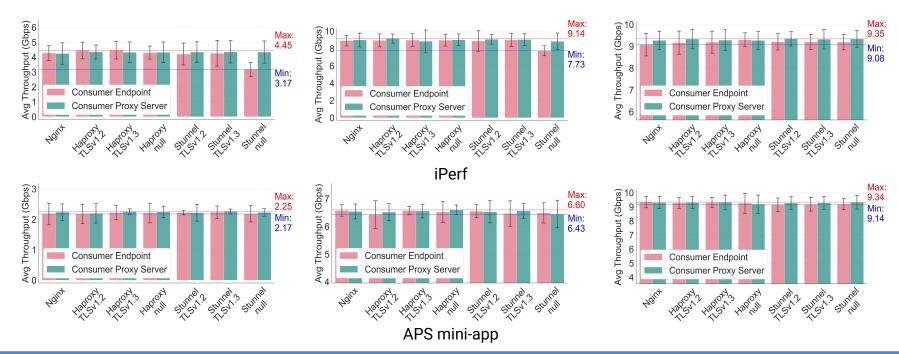
Near data acquisition speed secure streaming

Higher throughput: BBR compared to CUBIC



Application & Parallelism

Max throughput: iPerf with 3 streams & APS mini-app with 5 streams



End-to-End vs. Gateway-to-Gateway

Negligible throughput reduction of only less than 2%

Control Plane Orchestration Overhead

Negligible Overhead of only ~4.3s for the entire end-to-end orchestration

Operation	Time (s)	Notes
Authentication	~ 0.7	Access token verification
Service Discovery	~ 0.12	Queried Globus services
Function Registration	~ 0.19	Registered remote functions
Task Submission	~ 0.21	Submitted control tasks
Session Setup	~ 0.65	SciStream session initiation
Inbound Setup	~ 0.41	Producer gateway configured
Outbound Setup	~ 0.47	Consumer gateway configured
Additional delays	~ 1.55	Scheduler, network jitter, overlaps
Total Duration	~ 4.3	End-to-end orchestration overhead

Conclusion

Scientific discovery depends on real-time, secure streaming

Traditional approaches **add latency**, are **costly** and **inefficient**Collect data → Transfer to storage → Later analyze on HPC

Requires storage → High latency → No online steering → Costly

Current approaches lack federate security, automation, or scalability

Federated security model • Manual intervention • Admin-level permissions

Network modification • Remote execution

StreamHub: Secure End-to-End, High-Throughput, Scalable, Efficient

Thank you.

