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ABSTRACT 
To address the high-performance challenges of data 
transfer in the big data era, we are developing and 
implementing mdtmFTP: a high-performance data transfer 
tool for big data. mdtmFTP has four salient features. First, 
it adopts an I/O centric architecture to execute data transfer 
tasks. Second, it more efficiently utilizes the underlying 
multicore platform through optimized thread scheduling. 
Third, it implements a large virtual file mechanism to 
address the lots-of-small-files (LOSF) problem. Finally, 
mdtmFTP integrates multiple optimization mechanisms, 
including—zero copy, asynchronous I/O, pipelining, batch 
processing, and pre-allocated buffer pools—to enhance 
performance. mdtmFTP has been extensively tested and 
evaluated within the ESNET 100G testbed. Evaluations 
show that mdtmFTP can achieve higher performance than 
existing data transfer tools, such as GridFTP, FDT, and 
BBCP.  

Categories and Subject Descriptors 
C.2.2 [Network Protocols]: Applications;  
C.2.4 [Distributed Systems]: Client/server 

General Terms 
Algorithms, Performance, Design 

Keywords 
Multicore, data transfer, high-speed networking. 

 

1. Introduction 
Big data has emerged as a driving force for scientific 
discoveries [1]. Large scientific instruments (e.g., colliders, 
light sources, and telescopes) generate exponentially 
increasing volumes of data. Currently, Large Hadron 
Collider (LHC) experiments generate hundreds of petabytes 
of data per years. The aggregated amount of climate 
science data is projected to exceed 100 exabytes by 2020. 
To enable scientific discovery, science data must be 
collected, indexed, archived, shared, and analyzed, 
typically in a widely distributed, highly collaborative 
manner [2-7]. At present, computing facilities for large-
scale science, such as ALCF, OLCF, and NERSC, offer the 
types of computing and storage resources needed to process 
and analyze science data. The efficient movement of 
science data from their sources into processing and storage 
facilities and ultimately to user analysis is critical to the 
success of any such endeavor. Data transfer is now an 

essential function for science discoveries, particularly 
within big data environments. 

Within the DOE research community, the emergence 
of distributed, extreme-scale science applications is 
generating significant performance challenges regarding 
data transfer [2-7]. First, it is becoming essential to transfer 
data at the highest possible throughputs to deal with 
exponentially growing volumes of science data. Second, 
DOE is in the process of deploying extreme-scale 
supercomputer facilities to support its extreme-scale 
science applications. To maximize utilization of  these very 
high cost computing facilities, ultra-high-throughput data 
transfer capabilities will be required to move data in and 
out of them. 

To date, several data transfer tools (e.g., GridFTP [8-9] 
and BBCP [10]) have been developed to support bulk data 
movement. Advanced data transfer features, such as 
transfer resumption, partial transfer, third-party transfer, 
and security, have been implemented in these tools and 
services. There have also been numerous enhancements to 
speed up data transfer performance. Parallelism at all levels 
(e.g., multi-stream parallelism [8] and multi-path 
parallelism [12-15]) is now widely implemented in bulk 
data movement, providing  significant improvement in 
aggregate data transfer throughput.  

Although significant improvements have been made in 
the area of bulk data transfer, the currently available data 
transfer tools will not be able to successfully address the 
high-performance challenges of data transfer in big data era 
for the following reasons: 
• Existing data transfer tools are unable to fully exploit 

multicore hardware under the default OS support, 
especially on NUMA systems. 

• Existing data transfer tools are unable to effectively 
address the lots of small files (LOSF) problem [16]. 
The state-of-the-art solutions to the LOSF problem—
pipelining, concurrency, and tar-based solution—are 
either inefficient, or do not scale well. 

To address these challenges, we have developed and 
implement mdtmFTP: A High-performance Data Transfer 
Tool in Big Data Era. mdtmFTP has been extensively 
tested and evaluated within the ESNET 100G testbed. Our 
evaluations show mdtmFTP can achieve higher 
performance than existing data transfer tools.  

DOE’s Advanced Scientific Computing Research 
(ASCR) office has funded Fermilab to work on Multicore-
Aware Data Transfer Middleware (MDTM) [11]. 



mdtmFTP is the latest outcome of this research effort. 
mdtmFTP software is available at http://mdtm.fnal.gov. 

2. mdtmFTP 
mdtmFTP is a high-performance data transfer tool that 
builds upon the MDTM middleware (Figure 1). It has the 
following salient features:  
• It adopts a pipelined I/O-centric architecture to execute 

data transfer tasks. Dedicated I/O threads are spawned 
to perform network and disk I/O operations.  

• It utilizes MDTM middleware services to make 
optimal use of the underlying multicore system.  

• It implements a large virtual file mechanism to address 
the LOSF problem.  

• Zero copy, asynchronous I/O, pipelining, batch 
processing, and buffer pools mechanisms are applied 
to optimize  performance. 
 

 

 
Figure 2 A Pipelined I/O Centric Design 

 
2.1 A pipelined I/O centric design 
Multicore has become the norm of high-performance 
computing. In order to take full use of the underlying 
multicore processing capability, mdtmFTP adopts a 
pipelined I/O centric design. A data transfer task is carried 
out in a pipelined manner across multiple cores. Dedicated 
I/O threads are spawned to perform network and disk I/O 
operations in parallel (Figure 2). 

mdtmFTP handles two types of I/O device, 
storage/disk(s) and NIC(s). Depending on a device’s I/O 
capability, one or multiple threads are spawned for each I/O 
device. Typically, four types of I/O threads will be 
spawned: 
• Disk/storage reader threads to read data from disks or 

storage systems. 
• Disk/storage writer threads  to write data to disks or 

storage systems. 

• Network sender threads to send data to networks via 
NIC. 

• Network receiver threads to  receives data from 
network via NIC.	

In addition to the I/O threads, mdtmFTP spawns 
management threads to handle user requests, and 
management-related functions.  
 mdtmFTP calls MDTM middleware scheduling service 
to schedule cores for its threads. For each I/O thread, 
MDTM middleware first selects a core near the I/O device 
(e.g., NIC or disk) the thread uses, and then pins the thread 
to the chosen core. This strategy has two benefits: (1) it 
enforces I/O locality on NUMA systems; (2) it avoids I/O 
thread migrations, thus providing core affinity for I/O 
operations. Therefore, mdtmFTP performance can be 
significantly improved. Typically, an I/O thread is 
dedicated with a single core. No other threads will be 
scheduled to a core that an I/O thread has been assigned to. 

In addition, MDTM middleware partitions system 
cores into two zones – MDTM zone and non-MDTM zone. 
mdtmFTP runs in the MDTM-zone while other applications 
are confined within the non-MDTM-zone. This strategy 
reduces other applications’ interference to mdtmFTP, thus 
resulting in optimum data transfer performance. 

High-performance data transfer involves a significant 
amount of memory buffer operations. To avoid costly 
memory allocation/deallocation in the critical data path of 
data transfer,  mdtmFTP pre-allocates multiple data buffers, 
and manages them in a data buffer pool. Data buffers are 
pinned and locked so as to avoid being paged to the swap 
area and memory migration. Data buffers are recycled and 
reused. 

mdtmFTP executes data transfers in a pipelined 
manner. In the sender, management threads first preprocess 
data transfer requests. A data transfer task is typically split 
into multiple subtasks. A subtask can comprise file 
segments, a group of files, or file folders. Subtasks are then 
put in a task queue. Disk/storage reader threads keep 
fetching subtasks from the task queue. For each subtask, 
data will be first fetched from storage/disk(s) into empty 
buffers. Filled data buffers are temporarily put in a buffer 
queue. Concurrently, network sender threads continue 
fetching filled data buffers from the buffer queue, and send 
data to the network in parallel on multiple TCP streams. In 
the receiver, data will be received into empty buffers via 
network receiver threads; afterwards, the filled buffers will 
be passed over to storage/disk writer threads to store data 
into storage/disk(s). 
 

2.2 MDTM middleware service 
To achieve higher scalability and efficiency, most existing 
OS schedulers  use a distributed run-queue model, in which 
the scheduler maintains one run queue per core. The 
scheduler applies a thread-independent scheduling policy, 
which schedules threads independently, regardless of 
application types and dependencies. Periodically, the 
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Figure 1 The MDTM Architecture 



scheduler balances the load across cores to facilitate load 
balance. In the case of NUMA systems, the balancing is 
across all NUMA nodes. When data transfer applications 
run on multicore systems, dynamic load balancing may 
result in frequent thread migration, or leading to high-
latency inter-node communications, which would 
significantly degrade the overall data transfer performance. 
Furthermore, I/O devices (e.g., NIC and storage) on 
NUMA systems are connected to processor sockets in a 
NUMA manner. This results in NUMA effects for transfer 
between I/O devices and memory banks, as well as CPU 
I/O access to I/O devices. Investigations show that I/O 
throughputs can be significantly improved if applications 
can be placed on cores near the I/O device they use (i.e., 
I/O locality) [19, 20]. However, existing OSes have very 
limited supports for such IO locality. Processes/threads 
may end up being scheduled on cores that are distant from 
the I/O devices they use, leading to high-latency inter-node 
I/O operations and incurring extra communication 
overheads. Bulk data transfers involve significant network 
and disk I/O operations. Using default OS scheduling can 
lead to significant inter-node I/O operations and severely 
degrade the overall data transfer performance.   

MDTM middleware has been developed to address 
these problems. It is a user-space resource scheduler that 
harnesses multicore parallelism to scale data movement 
toolkits at multicore systems.  

MDTM middleware is implemented as a system 
daemon. Periodically, the daemon collects, monitors, and 
caches information about the multicore system physical 
layout (e.g., NUMA topology), configurations, and system 
loads. Using this information, MDTM middleware will 
provide query and scheduling services to the data transfer 
tool, mdtmFTP. 

Today, MDMT middleware supports the following 
features: 
• Computer system layout profiling. 
• Real-time system status monitoring: (a) CPU usage of 

each core, and (b) memory load latency of each 
NUMA node. This feature allows mdtmFTP to use 
system resources (cores and data buffers) intelligently 
to avoid overloading particular cores or NUMA nodes. 

• NUMA topology-based core scheduling, which 
supports I/O locality (see section 2.1). 

• Supporting core affinity on I/Os 
• System zoning,	 which	 partitions	 system	 cores	 into	

two	 zones	 –	 MDTM	 zone	 and	 non-MDTM	 zone.	
mdtmFTP	 runs	 in	 the	 MDTM-zone	 while	 other	
applications	are	confined	to	run	in	the	non-MDTM-
zone. 

• Data buffer allocation and pinning capability				
 
MDTM middleware was designed to support mdtmFTP. 
However, it can be readily extended to support other types 
of applications. Or, it can be used to study advanced 
scheduling algorithms and policies on NUMA systems. 
 

2.3 A large virtual file mechanism to address 
the LOSF problem 
Existing data transfer tools are unable to effectively address 
the LOSF problem. GridFTP uses pipelining and 
concurrency to address the inefficiency in LOSF. However, 
GridFTP’s data transfer performance is not satisfying [see 
section 3.3]. Some data transfer applications such as BBCP 
[10] make a tar ball of the dataset and then transfer the tar 
ball as one file. The problem is the “tar” process might 
involve significant amount of disk/memory operations, 
which is normally costly and slow. FDT adopts a data 
stream mechanism to stream a dataset (list of files) 
continuously, using a managed pool of buffers through one 
or more TCP sockets [18]. However, FDT failed in an 
experiment we designed to evaluate its capability in 
addressing the LOSF problem (see section 3.3).  

mdtmFTP implements a large virtual file mechanism to 
address the LOSF problem. The mechanism works as 
shown in Figure 3. 
1. A mdtmFTP sender receives a request to transfer a 

dataset to a mdtmFTP receiver. The sender quickly 
traverses the dataset, and creates a large “virtual” file 
for the dataset. Logically, each file in the dataset, 
which include regular files, folders, and symbolic 
links, is treated as a file segment in the virtual file. 
Each file in the dataset is sequentially “added” to the 
virtual file with start position and end position. The 
virtual file is not physically created. Instead, a content 
index table is created to maintain metadata for the 
virtual file. The content index table consists of entries. 
Each entry corresponds to a file in the dataset. It 
records the file’s metadata, such as file name, path, 
type, and its start and end positons in the virtual file. 

2. The sender serializes the content index table and 
transmits it to the receiver. 

3. The receiver deserialize and reconstructs the content 
index table, and then asks for data transfer. 

4. Using the content index created earlier, the sender 
continuously reads data blocks from disk and sends 
them out to networks. The whole dataset is transferred 
continuously and seamlessly as a single virtual file in 
one or multiple TCP streams. 

5. When receiving a data block from the sender, the 
receiver first looks up the content index table to 
determine which file the data block belongs to and its 
positon with the file, and then store the data block into 
disk/storage.  

 
Our large virtual file mechanism has two benefits: (1) it 
eliminates protocol processing between the sender and 
receiver on a per-file basis. And (2) it allows for batch 
processing small files in the sender and receiver. Therefore, 
I/O performance can be optimized.  
 



 
Figure 3 Large virtual file transfer mechanism 

 

3. mdtmFTP evaluation @ ESNET testbed 
3.1 ESnet testbed 
We evaluated mdtmFTP within the ESNET 100GE testbed, 
using high performance systems at NERSC (Oakland, CA) 
[17]. This testbed focuses on high performance data plane 
experiments, providing sufficient computing/IO resources. 
The topology of the testbed is shown in Figure 4. 

To emulate a wide area network (WAN) path, our tests 
utilized a path with a latency of 95ms RTT. The path was 
created using a loop on a 100GE circuit between NERSC 
and the StarLight network exchange (Chicago).  

Our tests were run on the testbed performance hosts, 
which were designed to support experimentations that 
require very fast networking or disk operations. Those 
hosts, nersc-tbn-1 and nersc-tbn-2 are located in Oakland, 
California and are typically used as source and sink of data 
between themselves using the 100GE dedicated 95ms loop. 

Those hosts are running Proxmox hypervisors. Users 
are given a dedicated Linux container with root access. 
Network interfaces are attached to the Linux containers. 
Containers are similar to “bare metal” access on a host, and 
have similar performance. The container technology that 
we used on the testbed is called Proxmox, and the 
underlying Operating system was Ubuntu 12. This means 
that no matter what OS is running in the container, the 
experiment will be using the Ubuntu TCP stack. 

 
Figure 4 ESnet Testbed 

3.2 Evaluation methodology 
We ran data transfer from “nersc-tbn-2” to “nersc-tbn-1”. 
In our evaluation, mdtmFTP was compared with FDT, 
GridFTP, and BBCP. For fair comparisons, all the tools 
were configured with the same parameters—I/O block size 
and the number of parallel streams. The detailed 
configurations are listed in Table 1.  
 

Tools	 Streams	 Pipelining	 Concurrency	 TCP/IP	
Parameter	

FDT	 4	 N/A	 N/A	 Default*	

GridFTP	 4	 -PP	 -CC	8	 Default*	

BBCP	 4	 N/A	 N/A	 Default*	

mdtmFTP	 4	 N/A	 2	I/O	Threads	 Default*	

*System configuration. 

Table 1 Testing Configuration 

We were investigating two transfer modes: client-server 
and third-party. In the client-server mode, the client starts 
the transfer task and also takes the role as either data source 
or data destination. In the third-party mode, the client starts 
the transfer task but the data is exchanged between two 
other servers. 
 Three data transfer scenarios were evaluated: (1) Large 
file trafer, which transfers a 100GByte large file from 
nersc-tbn-2 to nersc-tbn-1. (2) Folder transfer 1, which 
transfers a folder that has 30 10G files from nersc-tbn-2 to 
nersc-tbn-1.  It aims to evaluate a tool’s capability in 
transferring folders with large files.  And (3) Folder transfer 
2, which tranfers a Linux folder that is ~554 MBytes in 
total, and contains ~50,000 files of various sizes and types. 
It aims to evaluate a tool’s capability in addressing the 
LOSF problem. 
 Time-To-Completion (TTC) is used as the 
performance metric. For better comparion, we used 
GridFTP as base and calculated the Relative Performace 
Improvement (RPI), which is defined as: 
 

100G

Alcatel-
Lucent 
100G 

SR7750
Router

 4x10GE (MM)

 5x 10GE (MM)

NERSC 
Site 

Router

star-tbn-2

star-tbn-1

NERSC StarLight

Star-cr5 
core router

100G

Alcatel-
Lucent 
100G 

SR7750
Router 

100G

100G

star-tbn-1 NICs:
4x10G Myricom
1x10G Mellanox

To Esnet 
Production 

Network

star-tbn-2 NICs:
4x10G Myricom

nersc-tbn-1

nersc-tbn-2

 3x40GE

2x40GE
nersc-tbn-1 NICs:
  2x40G Mellanox
  1x40G Chelsio
  2x10G Myricom
Disk: 24 HDDs

nersc-tbn-2 NICs:
  4x40G Mellanox
  1x40G Chelsio
  2x10G Myricom
Disk: 24 SSDs

100G

100G Component of Esnet SDN Testbed

StarLight 
100G 

switch

100G

Dedicated 100G 
Network

 
exoGENI 

Rack

 1x40GE

 10GE (MM)

VLANS:
4012: All hosts
4020: Loop from NERSC 
to Chicago and back, all 
NERSC hosts

 

exoGENI 
Rack

 1x40GE

 2x10GE (MM)

40GE

 5x10GE (MM)

star-tbn-3

star-tbn-3 NICs:
4x10G Myricom
1x10G Mellanox

Note: These hosts have 
no data disks

 2x10GE (MM)

Corsa SDN switch 
to SDN Testbed 

(coming Summer 2015)

8x10GE (MM)



𝑅𝑃𝐼 =
𝐺𝑖𝑟𝑑𝐹𝑇𝑃!𝑠 𝑇𝑇𝐶
𝑂𝑡ℎ𝑒𝑟 𝑡𝑜𝑜𝑙!𝑠 𝑇𝑇𝐶

 

 

3.3 Evaluation results 
a. Large Single File Transfer: Client-Server 

Mode 
The first comparison is to transfer a single large file with 
the size of 100GB from nersc-tbn-2 to nersc-tbn-1. The 
results are listed in Table 1. The relative performance 
comparison is depicted in Figure 5. It can be seen that 
mdtmFTP is approximately 14% faster than FDT, and 
~20% faster than GridFTP as shown in Figure 4. BBCP 
takes much longer time to finish the transfer and therefore 
is not included in the figure. 

 
 mdtmFTP FDT GridFTP BBCP 

TTC (second) 74 80 91 Poor 

Table 1 TTC - Large file data transfer (smaller is better) 

 
Figure 5 RPI - Large File Transfer (larger is better) 

 

b. Folder Transfer: Client-Server Mode 
For folder transfers, the results are shown in Table 2 and 3. 
The relative performance comparisons are illustrated in 
Figure 6 and 7. 

In both folder transfer scenarios, mdtmFTP performs 
better than existing data transfer tools. Especially with 
folder transfer #2, mdtmFTP is hundreds of times faster 
than GridFTP and BBCP. For folder transfer #2, the Linux 
folder is ~554 MBytes in total, and contains ~50,000 files 
of various sizes and types. This is a tpical LOSF scenario. 
The experiment clearly show that mdtmFTP is able to 
address the LOSP problem effectively.  

To our surprise, FDT crashed in folder transfer #2. It 
seems like that FDT has bugs in handling folder data 
transfer. 

 mdtmFTP FDT GridFTP BBCP 
TTC (second) 192 217 320 Poor 

Table 2 TTC Folder transfer 1 (smaller is better) 

 mdtmFTP FDT GridFTP BBCP 
TTC (second) 11 N/A 1006 6274 

Table 3 TTC - Folder transfer 2 (smaller is better) 

 
Figure 6 RPI – Folder data transfer 1 (larger is better) 

 
Figure 7 RPI – Folder data transfer 2 (larger is better) 

 

c. Large File Transfer: Third Party Mode 
Third party mode enables a client to control file transfer 
between two remote servers. It is very useful in a number 
of user cases. All these data transfer tools (mdtmFTP, 
BBCP, FDT, and GridFTP) all support 3rd party data 
transfer. However, only mdtmFTP and GridFTP can run 3rd 
party data transfer in ESNET testbed. Note: there is not a 
third system in the WAN loop, except nersc-tbn-1 and 
nersc-tbn-2. GridFTP and mdtmFTP can start data transfer 
on a designated data interface. However, FDT and BBCP 
do not have such a feature.      

Table 4 and Figure 8 show the resutls for the single 
large file transfer in third party mode. mdtmFTP is about 
three times faster than GridFTP. 

 
 mdtmFTP FDT GridFTP BBCP 

TTC (second) 35 N/A 107 N/A 

Table 4 TTC – Large file transfer (smaller is better) 



 
Figure 8 RPI - Large File Transfer (larger is better) 

d. Folder Transfer: Third Party Mode 
Table 5 and 6 show the results for two folder transfer 
secnarios in the third party mode: one contains 30 files with 
size of 10GB; the other is the standard Linux source tree.  
Only mdtmFTP supports folder transfer in the 3rd party 
mode. GridFTP does not support this feature. 

 mdtmFTP FDT GridFTP BBCP 

TTC (second) 96 N/A Not 
Working N/A 

Table 5 TTC - Folder transfer 1 

 mdtmFTP FDT GridFTP BBCP 

TTC (second) 10 N/A Not 
Working N/A 

Table 6 TTC - Folder transfer 2 
 

4. Conclusion 
To address the high-performance challenges of data 
transfer in the big data era, we are, developing and 
implementing mdtmFTP: a high-performance data transfer 
tool for big data. mdtmFTP has several salient features. 
First, it adopts an I/O centric architecture to execute data 
transfer tasks. Second, it can fully utilize the underlying 
multicore system. Third, it implements a large virtual file 
mechanism to address the lots-of-small-files (LOSF) 
problem. Finally, mdtmFTP integrates multiple 
optimization mechanisms—zero copy, asynchronous I/O, 
pipelining, batch processing, and pre-allocated buffer 
pools—to optimize performance. mdtmFTP has been 
extensively tested and evaluated at ESNET 100G testbed. 
The evaluation shows that mdtmFTP achieves better 
performance than existing data transfer tools, such as 
GridFTP, FDT, and BBCP. 
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