
mdtmFTP and Its Evaluation on ESNET SDN Testbed

Liang Zhang, Wenji Wu, Phil DeMar
Fermilab

{liangz, wenji, demar}@fnal.gov

Eric Pouyoul
ESNET

lomax@es.net

ABSTRACT
To address the high-performance challenges of data
transfer in the big data era, we are developing and
implementing mdtmFTP: a high-performance data transfer
tool for big data. mdtmFTP has four salient features. First,
it adopts an I/O centric architecture to execute data transfer
tasks. Second, it more efficiently utilizes the underlying
multicore platform through optimized thread scheduling.
Third, it implements a large virtual file mechanism to
address the lots-of-small-files (LOSF) problem. Finally,
mdtmFTP integrates multiple optimization mechanisms,
including—zero copy, asynchronous I/O, pipelining, batch
processing, and pre-allocated buffer pools—to enhance
performance. mdtmFTP has been extensively tested and
evaluated within the ESNET 100G testbed. Evaluations
show that mdtmFTP can achieve higher performance than
existing data transfer tools, such as GridFTP, FDT, and
BBCP.

Categories and Subject Descriptors
C.2.2 [Network Protocols]: Applications;
C.2.4 [Distributed Systems]: Client/server

General Terms
Algorithms, Performance, Design

Keywords
Multicore, data transfer, high-speed networking.

1. Introduction
Big data has emerged as a driving force for scientific
discoveries [1]. Large scientific instruments (e.g., colliders,
light sources, and telescopes) generate exponentially
increasing volumes of data. Currently, Large Hadron
Collider (LHC) experiments generate hundreds of petabytes
of data per years. The aggregated amount of climate
science data is projected to exceed 100 exabytes by 2020.
To enable scientific discovery, science data must be
collected, indexed, archived, shared, and analyzed,
typically in a widely distributed, highly collaborative
manner [2-7]. At present, computing facilities for large-
scale science, such as ALCF, OLCF, and NERSC, offer the
types of computing and storage resources needed to process
and analyze science data. The efficient movement of
science data from their sources into processing and storage
facilities and ultimately to user analysis is critical to the
success of any such endeavor. Data transfer is now an

essential function for science discoveries, particularly
within big data environments.

Within the DOE research community, the emergence
of distributed, extreme-scale science applications is
generating significant performance challenges regarding
data transfer [2-7]. First, it is becoming essential to transfer
data at the highest possible throughputs to deal with
exponentially growing volumes of science data. Second,
DOE is in the process of deploying extreme-scale
supercomputer facilities to support its extreme-scale
science applications. To maximize utilization of these very
high cost computing facilities, ultra-high-throughput data
transfer capabilities will be required to move data in and
out of them.

To date, several data transfer tools (e.g., GridFTP [8-9]
and BBCP [10]) have been developed to support bulk data
movement. Advanced data transfer features, such as
transfer resumption, partial transfer, third-party transfer,
and security, have been implemented in these tools and
services. There have also been numerous enhancements to
speed up data transfer performance. Parallelism at all levels
(e.g., multi-stream parallelism [8] and multi-path
parallelism [12-15]) is now widely implemented in bulk
data movement, providing significant improvement in
aggregate data transfer throughput.

Although significant improvements have been made in
the area of bulk data transfer, the currently available data
transfer tools will not be able to successfully address the
high-performance challenges of data transfer in big data era
for the following reasons:
• Existing data transfer tools are unable to fully exploit

multicore hardware under the default OS support,
especially on NUMA systems.

• Existing data transfer tools are unable to effectively
address the lots of small files (LOSF) problem [16].
The state-of-the-art solutions to the LOSF problem—
pipelining, concurrency, and tar-based solution—are
either inefficient, or do not scale well.

To address these challenges, we have developed and
implement mdtmFTP: A High-performance Data Transfer
Tool in Big Data Era. mdtmFTP has been extensively
tested and evaluated within the ESNET 100G testbed. Our
evaluations show mdtmFTP can achieve higher
performance than existing data transfer tools.

DOE’s Advanced Scientific Computing Research
(ASCR) office has funded Fermilab to work on Multicore-
Aware Data Transfer Middleware (MDTM) [11].

mdtmFTP is the latest outcome of this research effort.
mdtmFTP software is available at http://mdtm.fnal.gov.

2. mdtmFTP
mdtmFTP is a high-performance data transfer tool that
builds upon the MDTM middleware (Figure 1). It has the
following salient features:
• It adopts a pipelined I/O-centric architecture to execute

data transfer tasks. Dedicated I/O threads are spawned
to perform network and disk I/O operations.

• It utilizes MDTM middleware services to make
optimal use of the underlying multicore system.

• It implements a large virtual file mechanism to address
the LOSF problem.

• Zero copy, asynchronous I/O, pipelining, batch
processing, and buffer pools mechanisms are applied
to optimize performance.

Figure 2 A Pipelined I/O Centric Design

2.1 A pipelined I/O centric design
Multicore has become the norm of high-performance
computing. In order to take full use of the underlying
multicore processing capability, mdtmFTP adopts a
pipelined I/O centric design. A data transfer task is carried
out in a pipelined manner across multiple cores. Dedicated
I/O threads are spawned to perform network and disk I/O
operations in parallel (Figure 2).

mdtmFTP handles two types of I/O device,
storage/disk(s) and NIC(s). Depending on a device’s I/O
capability, one or multiple threads are spawned for each I/O
device. Typically, four types of I/O threads will be
spawned:
• Disk/storage reader threads to read data from disks or

storage systems.
• Disk/storage writer threads to write data to disks or

storage systems.

• Network sender threads to send data to networks via
NIC.

• Network receiver threads to receives data from
network via NIC.	

In addition to the I/O threads, mdtmFTP spawns
management threads to handle user requests, and
management-related functions.
 mdtmFTP calls MDTM middleware scheduling service
to schedule cores for its threads. For each I/O thread,
MDTM middleware first selects a core near the I/O device
(e.g., NIC or disk) the thread uses, and then pins the thread
to the chosen core. This strategy has two benefits: (1) it
enforces I/O locality on NUMA systems; (2) it avoids I/O
thread migrations, thus providing core affinity for I/O
operations. Therefore, mdtmFTP performance can be
significantly improved. Typically, an I/O thread is
dedicated with a single core. No other threads will be
scheduled to a core that an I/O thread has been assigned to.

In addition, MDTM middleware partitions system
cores into two zones – MDTM zone and non-MDTM zone.
mdtmFTP runs in the MDTM-zone while other applications
are confined within the non-MDTM-zone. This strategy
reduces other applications’ interference to mdtmFTP, thus
resulting in optimum data transfer performance.

High-performance data transfer involves a significant
amount of memory buffer operations. To avoid costly
memory allocation/deallocation in the critical data path of
data transfer, mdtmFTP pre-allocates multiple data buffers,
and manages them in a data buffer pool. Data buffers are
pinned and locked so as to avoid being paged to the swap
area and memory migration. Data buffers are recycled and
reused.

mdtmFTP executes data transfers in a pipelined
manner. In the sender, management threads first preprocess
data transfer requests. A data transfer task is typically split
into multiple subtasks. A subtask can comprise file
segments, a group of files, or file folders. Subtasks are then
put in a task queue. Disk/storage reader threads keep
fetching subtasks from the task queue. For each subtask,
data will be first fetched from storage/disk(s) into empty
buffers. Filled data buffers are temporarily put in a buffer
queue. Concurrently, network sender threads continue
fetching filled data buffers from the buffer queue, and send
data to the network in parallel on multiple TCP streams. In
the receiver, data will be received into empty buffers via
network receiver threads; afterwards, the filled buffers will
be passed over to storage/disk writer threads to store data
into storage/disk(s).

2.2 MDTM middleware service
To achieve higher scalability and efficiency, most existing
OS schedulers use a distributed run-queue model, in which
the scheduler maintains one run queue per core. The
scheduler applies a thread-independent scheduling policy,
which schedules threads independently, regardless of
application types and dependencies. Periodically, the

Reader

...

Disk/Storage

Sender

...

mdtmFTP Sender (Client/Server)

buffer queue

NICs

Receiver

...
Writer

...

mdtmFTP Receiver (Server/Client)

buffer queue

NICs Disk/Storage

Network

…
empty buffer pool

…
empty buffer pool

Management
threads

subtask…
subtask

Data transfer Tasks

Task Queue

MDTM Middleware Services

OS Services

mdtmFTP

Hardware

Access services

Access services

Access
services

Figure 1 The MDTM Architecture

scheduler balances the load across cores to facilitate load
balance. In the case of NUMA systems, the balancing is
across all NUMA nodes. When data transfer applications
run on multicore systems, dynamic load balancing may
result in frequent thread migration, or leading to high-
latency inter-node communications, which would
significantly degrade the overall data transfer performance.
Furthermore, I/O devices (e.g., NIC and storage) on
NUMA systems are connected to processor sockets in a
NUMA manner. This results in NUMA effects for transfer
between I/O devices and memory banks, as well as CPU
I/O access to I/O devices. Investigations show that I/O
throughputs can be significantly improved if applications
can be placed on cores near the I/O device they use (i.e.,
I/O locality) [19, 20]. However, existing OSes have very
limited supports for such IO locality. Processes/threads
may end up being scheduled on cores that are distant from
the I/O devices they use, leading to high-latency inter-node
I/O operations and incurring extra communication
overheads. Bulk data transfers involve significant network
and disk I/O operations. Using default OS scheduling can
lead to significant inter-node I/O operations and severely
degrade the overall data transfer performance.

MDTM middleware has been developed to address
these problems. It is a user-space resource scheduler that
harnesses multicore parallelism to scale data movement
toolkits at multicore systems.

MDTM middleware is implemented as a system
daemon. Periodically, the daemon collects, monitors, and
caches information about the multicore system physical
layout (e.g., NUMA topology), configurations, and system
loads. Using this information, MDTM middleware will
provide query and scheduling services to the data transfer
tool, mdtmFTP.

Today, MDMT middleware supports the following
features:
• Computer system layout profiling.
• Real-time system status monitoring: (a) CPU usage of

each core, and (b) memory load latency of each
NUMA node. This feature allows mdtmFTP to use
system resources (cores and data buffers) intelligently
to avoid overloading particular cores or NUMA nodes.

• NUMA topology-based core scheduling, which
supports I/O locality (see section 2.1).

• Supporting core affinity on I/Os
• System zoning,	 which	 partitions	 system	 cores	 into	

two	 zones	 –	 MDTM	 zone	 and	 non-MDTM	 zone.	
mdtmFTP	 runs	 in	 the	 MDTM-zone	 while	 other	
applications	are	confined	to	run	in	the	non-MDTM-
zone.

• Data buffer allocation and pinning capability				

MDTM middleware was designed to support mdtmFTP.
However, it can be readily extended to support other types
of applications. Or, it can be used to study advanced
scheduling algorithms and policies on NUMA systems.

2.3 A large virtual file mechanism to address
the LOSF problem
Existing data transfer tools are unable to effectively address
the LOSF problem. GridFTP uses pipelining and
concurrency to address the inefficiency in LOSF. However,
GridFTP’s data transfer performance is not satisfying [see
section 3.3]. Some data transfer applications such as BBCP
[10] make a tar ball of the dataset and then transfer the tar
ball as one file. The problem is the “tar” process might
involve significant amount of disk/memory operations,
which is normally costly and slow. FDT adopts a data
stream mechanism to stream a dataset (list of files)
continuously, using a managed pool of buffers through one
or more TCP sockets [18]. However, FDT failed in an
experiment we designed to evaluate its capability in
addressing the LOSF problem (see section 3.3).

mdtmFTP implements a large virtual file mechanism to
address the LOSF problem. The mechanism works as
shown in Figure 3.
1. A mdtmFTP sender receives a request to transfer a

dataset to a mdtmFTP receiver. The sender quickly
traverses the dataset, and creates a large “virtual” file
for the dataset. Logically, each file in the dataset,
which include regular files, folders, and symbolic
links, is treated as a file segment in the virtual file.
Each file in the dataset is sequentially “added” to the
virtual file with start position and end position. The
virtual file is not physically created. Instead, a content
index table is created to maintain metadata for the
virtual file. The content index table consists of entries.
Each entry corresponds to a file in the dataset. It
records the file’s metadata, such as file name, path,
type, and its start and end positons in the virtual file.

2. The sender serializes the content index table and
transmits it to the receiver.

3. The receiver deserialize and reconstructs the content
index table, and then asks for data transfer.

4. Using the content index created earlier, the sender
continuously reads data blocks from disk and sends
them out to networks. The whole dataset is transferred
continuously and seamlessly as a single virtual file in
one or multiple TCP streams.

5. When receiving a data block from the sender, the
receiver first looks up the content index table to
determine which file the data block belongs to and its
positon with the file, and then store the data block into
disk/storage.

Our large virtual file mechanism has two benefits: (1) it
eliminates protocol processing between the sender and
receiver on a per-file basis. And (2) it allows for batch
processing small files in the sender and receiver. Therefore,
I/O performance can be optimized.

Figure 3 Large virtual file transfer mechanism

3. mdtmFTP evaluation @ ESNET testbed
3.1 ESnet testbed
We evaluated mdtmFTP within the ESNET 100GE testbed,
using high performance systems at NERSC (Oakland, CA)
[17]. This testbed focuses on high performance data plane
experiments, providing sufficient computing/IO resources.
The topology of the testbed is shown in Figure 4.

To emulate a wide area network (WAN) path, our tests
utilized a path with a latency of 95ms RTT. The path was
created using a loop on a 100GE circuit between NERSC
and the StarLight network exchange (Chicago).

Our tests were run on the testbed performance hosts,
which were designed to support experimentations that
require very fast networking or disk operations. Those
hosts, nersc-tbn-1 and nersc-tbn-2 are located in Oakland,
California and are typically used as source and sink of data
between themselves using the 100GE dedicated 95ms loop.

Those hosts are running Proxmox hypervisors. Users
are given a dedicated Linux container with root access.
Network interfaces are attached to the Linux containers.
Containers are similar to “bare metal” access on a host, and
have similar performance. The container technology that
we used on the testbed is called Proxmox, and the
underlying Operating system was Ubuntu 12. This means
that no matter what OS is running in the container, the
experiment will be using the Ubuntu TCP stack.

Figure 4 ESnet Testbed

3.2 Evaluation methodology
We ran data transfer from “nersc-tbn-2” to “nersc-tbn-1”.
In our evaluation, mdtmFTP was compared with FDT,
GridFTP, and BBCP. For fair comparisons, all the tools
were configured with the same parameters—I/O block size
and the number of parallel streams. The detailed
configurations are listed in Table 1.

Tools	 Streams	 Pipelining	 Concurrency	 TCP/IP	
Parameter	

FDT	 4	 N/A	 N/A	 Default*	

GridFTP	 4	 -PP	 -CC	8	 Default*	

BBCP	 4	 N/A	 N/A	 Default*	

mdtmFTP	 4	 N/A	 2	I/O	Threads	 Default*	

*System configuration.

Table 1 Testing Configuration

We were investigating two transfer modes: client-server
and third-party. In the client-server mode, the client starts
the transfer task and also takes the role as either data source
or data destination. In the third-party mode, the client starts
the transfer task but the data is exchanged between two
other servers.
 Three data transfer scenarios were evaluated: (1) Large
file trafer, which transfers a 100GByte large file from
nersc-tbn-2 to nersc-tbn-1. (2) Folder transfer 1, which
transfers a folder that has 30 10G files from nersc-tbn-2 to
nersc-tbn-1. It aims to evaluate a tool’s capability in
transferring folders with large files. And (3) Folder transfer
2, which tranfers a Linux folder that is ~554 MBytes in
total, and contains ~50,000 files of various sizes and types.
It aims to evaluate a tool’s capability in addressing the
LOSF problem.
 Time-To-Completion (TTC) is used as the
performance metric. For better comparion, we used
GridFTP as base and calculated the Relative Performace
Improvement (RPI), which is defined as:

100G

Alcatel-
Lucent
100G

SR7750
Router

 4x10GE (MM)

 5x 10GE (MM)

NERSC
Site

Router

star-tbn-2

star-tbn-1

NERSC StarLight

Star-cr5
core router

100G

Alcatel-
Lucent
100G

SR7750
Router

100G

100G

star-tbn-1 NICs:
4x10G Myricom
1x10G Mellanox

To Esnet
Production

Network

star-tbn-2 NICs:
4x10G Myricom

nersc-tbn-1

nersc-tbn-2

 3x40GE

2x40GE
nersc-tbn-1 NICs:
 2x40G Mellanox
 1x40G Chelsio
 2x10G Myricom
Disk: 24 HDDs

nersc-tbn-2 NICs:
 4x40G Mellanox
 1x40G Chelsio
 2x10G Myricom
Disk: 24 SSDs

100G

100G Component of Esnet SDN Testbed

StarLight
100G

switch

100G

Dedicated 100G
Network

exoGENI

Rack

 1x40GE

 10GE (MM)

VLANS:
4012: All hosts
4020: Loop from NERSC
to Chicago and back, all
NERSC hosts

exoGENI
Rack

 1x40GE

 2x10GE (MM)

40GE

 5x10GE (MM)

star-tbn-3

star-tbn-3 NICs:
4x10G Myricom
1x10G Mellanox

Note: These hosts have
no data disks

 2x10GE (MM)

Corsa SDN switch
to SDN Testbed

(coming Summer 2015)

8x10GE (MM)

𝑅𝑃𝐼 =
𝐺𝑖𝑟𝑑𝐹𝑇𝑃!𝑠 𝑇𝑇𝐶
𝑂𝑡ℎ𝑒𝑟 𝑡𝑜𝑜𝑙!𝑠 𝑇𝑇𝐶

3.3 Evaluation results
a. Large Single File Transfer: Client-Server

Mode
The first comparison is to transfer a single large file with
the size of 100GB from nersc-tbn-2 to nersc-tbn-1. The
results are listed in Table 1. The relative performance
comparison is depicted in Figure 5. It can be seen that
mdtmFTP is approximately 14% faster than FDT, and
~20% faster than GridFTP as shown in Figure 4. BBCP
takes much longer time to finish the transfer and therefore
is not included in the figure.

 mdtmFTP FDT GridFTP BBCP

TTC (second) 74 80 91 Poor

Table 1 TTC - Large file data transfer (smaller is better)

Figure 5 RPI - Large File Transfer (larger is better)

b. Folder Transfer: Client-Server Mode
For folder transfers, the results are shown in Table 2 and 3.
The relative performance comparisons are illustrated in
Figure 6 and 7.

In both folder transfer scenarios, mdtmFTP performs
better than existing data transfer tools. Especially with
folder transfer #2, mdtmFTP is hundreds of times faster
than GridFTP and BBCP. For folder transfer #2, the Linux
folder is ~554 MBytes in total, and contains ~50,000 files
of various sizes and types. This is a tpical LOSF scenario.
The experiment clearly show that mdtmFTP is able to
address the LOSP problem effectively.

To our surprise, FDT crashed in folder transfer #2. It
seems like that FDT has bugs in handling folder data
transfer.

 mdtmFTP FDT GridFTP BBCP
TTC (second) 192 217 320 Poor

Table 2 TTC Folder transfer 1 (smaller is better)

 mdtmFTP FDT GridFTP BBCP
TTC (second) 11 N/A 1006 6274

Table 3 TTC - Folder transfer 2 (smaller is better)

Figure 6 RPI – Folder data transfer 1 (larger is better)

Figure 7 RPI – Folder data transfer 2 (larger is better)

c. Large File Transfer: Third Party Mode
Third party mode enables a client to control file transfer
between two remote servers. It is very useful in a number
of user cases. All these data transfer tools (mdtmFTP,
BBCP, FDT, and GridFTP) all support 3rd party data
transfer. However, only mdtmFTP and GridFTP can run 3rd
party data transfer in ESNET testbed. Note: there is not a
third system in the WAN loop, except nersc-tbn-1 and
nersc-tbn-2. GridFTP and mdtmFTP can start data transfer
on a designated data interface. However, FDT and BBCP
do not have such a feature.

Table 4 and Figure 8 show the resutls for the single
large file transfer in third party mode. mdtmFTP is about
three times faster than GridFTP.

 mdtmFTP FDT GridFTP BBCP

TTC (second) 35 N/A 107 N/A

Table 4 TTC – Large file transfer (smaller is better)

Figure 8 RPI - Large File Transfer (larger is better)

d. Folder Transfer: Third Party Mode
Table 5 and 6 show the results for two folder transfer
secnarios in the third party mode: one contains 30 files with
size of 10GB; the other is the standard Linux source tree.
Only mdtmFTP supports folder transfer in the 3rd party
mode. GridFTP does not support this feature.

 mdtmFTP FDT GridFTP BBCP

TTC (second) 96 N/A Not
Working N/A

Table 5 TTC - Folder transfer 1

 mdtmFTP FDT GridFTP BBCP

TTC (second) 10 N/A Not
Working N/A

Table 6 TTC - Folder transfer 2

4. Conclusion
To address the high-performance challenges of data
transfer in the big data era, we are, developing and
implementing mdtmFTP: a high-performance data transfer
tool for big data. mdtmFTP has several salient features.
First, it adopts an I/O centric architecture to execute data
transfer tasks. Second, it can fully utilize the underlying
multicore system. Third, it implements a large virtual file
mechanism to address the lots-of-small-files (LOSF)
problem. Finally, mdtmFTP integrates multiple
optimization mechanisms—zero copy, asynchronous I/O,
pipelining, batch processing, and pre-allocated buffer
pools—to optimize performance. mdtmFTP has been
extensively tested and evaluated at ESNET 100G testbed.
The evaluation shows that mdtmFTP achieves better
performance than existing data transfer tools, such as
GridFTP, FDT, and BBCP.

Acknowledgement
We would like to thank Brian Tienery who contributed to
mdtmFTP evaluation on ESNET testbed. This work is
funded by Network Research Program of DOE’s Advanced
Scientific Computing Research (ASCR).

5 REFERENCES
[1] “Synergistic Challenges in Data-Intensive Science and

Exascale Computing”, DOE ASCR Data Subcommittee

Report 2013.
[2] Eli Dart, Mary Hester, Jason Zurawski, “Basic Energy

Sciences Network Requirements Review - Final Report
2014”, ESnet Network Requirements Review, September
2014, LBNL 6998E

[3] Eli Dart, Mary Hester, Jason Zurawski, “Fusion Energy
Sciences Network Requirements Review - Final Report
2014”, ESnet Network Requirements Review, August
2014, LBNL 6975E

[4] Eli Dart, Mary Hester, Jason Zurawski, Editors, “High
Energy Physics and Nuclear Physics Network
Requirements - Final Report”, ESnet Network
Requirements Workshop, August 2013, LBNL 6642E

[5] Eli Dart, Brian Tierney, Editors, “Biological and
Environmental Research Network Requirements
Workshop, November 2012 - Final Report””, November
29, 2012, LBNL LBNL-6395E

[6] David Asner, Eli Dart, and Takanori Hara, “Belle-II
Experiment Network Requirements”, October
2012, LBNL LBNL-6268E

[7] Eli Dart, Brian Tierney, editors, “Advanced Scientific
Computing Research Network Requirements Review,
October 2012 - Final Report”, ESnet Network
Requirements Review, October 4, 2012, LBNL LBNL-
6109E

[8] W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, L.
Liming, and S. Tuecke, “GridFTP: Protocol Extension to
FTP for the Grid,” Grid Forum Internet-Draft, Mar. 2001.

[9] B. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C.
Dumitrescu, I. Raicu and I. Foster, “The Globus Striped
GridFTP Framework and Server,” SC'2005, 2005.

[10] BBCP, http://www.slac.stanford.edu/~abh/bbcp/
[11] http://mdtm.fnal.gov
[12] Han, Huaizhong, et al. “Multi-path tcp: a joint congestion

control and routing scheme to exploit path diversity in the
internet.” IEEE/ACM Transactions on Networking
(TON) 14.6 (2006): 1260-1271.

[13] Wang, Bing, et al. “Application-layer multipath data
transfer via TCP: schemes and performance
tradeoffs.” Performance Evaluation 64.9 (2007): 965-977.

[14] Iyengar, Janardhan R., Paul D. Amer, and Randall Stewart.
“Concurrent multipath transfer using SCTP multihoming
over independent end-to-end paths.” Networking,
IEEE/ACM Transactions on 14.5 (2006): 951-964.

[15] Gunter, Dan, et al. “Exploiting network parallelism for
improving data transfer performance.” High Performance
Computing, Networking, Storage and Analysis (SCC),
2012 SC Companion:. IEEE, 2012.

[16] Bresnahan, John, et al. "Gridftp pipelining." Proceedings
of the 2007 TeraGrid Conference. 2007.

[17] https://www.es.net/network-r-and-d/experimental-
network-testbeds/100g-sd

[18] http://monalisa.cern.ch/FDT/
[19] S. Akram, M. Marazkis, and A. Bilas, “NUMA

Implications for Storage I/O Throughput in Modern
Servers,” In 3rd Workshop on Computer Architecture and
Operating System co�design (CAOS'12), Paris, France,
January 2012.

[20] S. Moreaud, B. Goglin, “Impact of NUMA Effects on
High-Speed Networking with Multi-Opteron Machines,”
In PDCS 2007, Cambridge, Massachussetts (2007)

