
Maximizing the Performance of Scientific Data Transfer by Optimizing the Interface
Between Parallel File Systems and Advanced Research Networks

Nicholas Millsa,∗, F. Alex Feltusb, Walter B. Ligon IIIa

aHolcombe Department of Electrical and Computer Engineering, Clemson University, Clemson, SC
bDepartment of Genetics and Biochemistry, Clemson University, Clemson, SC

Abstract

The large amount of time spent transferring experimental data in fields such as genomics is hampering the ability of
scientists to generate new knowledge. Often, computer hardware is capable of faster transfers but sub-optimal transfer
software and configurations are limiting performance. This work seeks to serve as a guide to identifying the optimal
configuration for performing genomics data transfers. A wide variety of tests narrow in on the optimal data transfer
parameters for parallel data streaming across Internet2 and between two CloudLab clusters loading real genomics data
onto a parallel file system. The best throughput was found to occur with a configuration using GridFTP with at least 5
parallel TCP streams with a 16 MiB TCP socket buffer size to transfer to/from 4–8 BeeGFS parallel file system nodes
connected by InfiniBand.

Keywords: Software Defined Networking, High Throughput Computing, DNA sequence, Parallel Data Transfer,
Parallel File System, Data Intensive Science

1. Introduction

Solving scientific problems on a high-performance com-
puting (HPC) cluster will happen faster by taking full ad-
vantage of specialized infrastructure such as parallel file
systems and advanced software-defined networks. The first
step in a scientific workflow is the transfer of input data
from a source repository onto the compute nodes in the
HPC cluster. When the amount of data is small enough
it is possible to store datasets within the local institution
for quick retrieval. However, for certain domains ranging
from genomics to social analytics the amount of data is
becoming too large to store locally. In such cases the data
must be optimally transferred from an often geographically
distant central repository.

In genomics, our primary area of interest, the veloc-
ity of data accumulation due to high-throughput DNA se-
quencing should not be underestimated, as data accumu-
lation is accelerating into the Exascale. As of this writing
there are six quadrillion base pairs in the sequence read
archive database at NCBI [1] with each A,T,G,C stored as
at least two bytes. These data represent publicly mineable
DNA datasets across the Tree of Life from viruses to rice
to humans to elephants. New powerful genetic datasets
such as The Cancer Genome Atlas [2] contain deep se-
quencing from tumors of over 11,000 patients; sequences

∗Corresponding author
Email addresses: nlmills@g.clemson.edu (Nicholas Mills),

ffeltus@clemson.edu (F. Alex Feltus), walt@clemson.edu (Walter
B. Ligon III)

of over 2,500 human genomes from 26 populations have
been determined (The 1000 Genomes Project [3]); genome
sequences have been produced for 3,000 rice varieties from
89 countries (The 3000 Rice Genomes Project [4]). These
raw datasets are but a few examples that aggregate into
petabytes with no end of growth in sight. In fact, if DNA
sequencing technology continues to improve in terms of
resolution and cost, one could view DNA sequencing as an
Internet of Things application with associated computa-
tional challenges across the DNA data life cycle [5].

Domain scientists who are not experts in computing
often resort to transferring these large datasets using FTP
over the commodity Internet at frustratingly slow speeds.
Even if a fast network is available, large transfers can take
on the order of several days to complete if the correct
transfer techniques are not used. The HPC and Big Data
communities have developed several tools for fast data
transfers but these tools are often not utilized. Several
factors contribute to the lack of utilization by scientists of
the proper tools. First, awareness of the proper tools in
the community is lacking to the point where researchers re-
sult to familiar but technically inferior tools such as FTP.
Old habits are hard to break. Second, a lack of adequate
documentation means even when researchers are pointed
to the right tools they are lost in a maze of configuration
options. Manuals give an overview of various parameters
but fail to explain what parameter values are suitable for
high-performance data transfers.

An end-to-end data transfer involves at least three ma-
jor components: a high-performance storage system, a
high-performance network, and the software to tie it all

Preprint submitted to Future Generation Computer Systems October 25, 2016



together. The various research communities have all ex-
amined optimized performance parameters for their re-
spective components. Unfortunately, our experience has
been that independently optimizing a single component
leads to slower performance in the system as a whole.
This work attempts to fill the gaps by suggesting opti-
mized transfer parameters based on experimentally mea-
sured end-to-end transfer performance. Where possible
the experimentally-determined parameters are supported
with appropriate theory.

1.1. Storage component

When considering storage requirements it is important
to remember that data transfer is only the first step in
an HPC workflow. Presumably there will later be a sig-
nificant amount of computation performed on the data
in parallel. While technologies such as large single-node
flash storage arrays may provide the highest raw storage
throughput during a transfer, those arrays will quickly be-
come a bottleneck during the computation phase of the
workflow as multiple compute nodes compete for access to
the centralized storage component. Instead, a parallel file
system (PFS) provides a good compromise between raw
storage bandwidth and parallel processing scalability.

A PFS is a special case of a clustered file system, where
the data files are stored on multiple server nodes. Storing
a file on n nodes where the nodes can be accessed simulta-
neously theoretically allows for a speedup of n times over
the single-node case. In practice, the achievable speedup
is often much less than n and depends on both the parallel
file system implementation and the access patterns of the
application performing I/O. It is therefore advantageous
to evaluate multiple parallel PFSs to find the one most
suited to a particular workload.

In this paper some of the more popular PFSs are eval-
uated. Among the file systems compared are BeeGFS [6],
Ceph [7], GlusterFS [8], and OrangeFS [9]. BeeGFS is
later used for file transfer tests once it is determined to
have the best performance in a benchmark. Lustre is an-
other popular PFS that was not evaluated because it is
not supported for the Ubuntu operating system [10].

1.2. Network component

Access to a fast network with plenty of excess capac-
ity is essential for high performance data transfers. The
Science DMZ model [11] is well suited to data transfers
because of its support for the long-lived elephant flows
typical of large transfers. In particular the lack of fire-
walls in the model prevents slowdown caused by packet
processing overhead. The network infrastructure for our
experiments is provided as a part of the CloudLab envi-
ronment [12, 13, 14].

CloudLab is a platform for exploring cloud architec-
tures and evaluating design choices that exercise hard-
ware and software capabilities. CloudLab is a great ben-
efit to researchers because it allows them to quickly and

easily test different modern hardware and software con-
figurations without the usual troubles associated with re-
installing the operating system and re-configuring the net-
work [15]. CloudLab allows the allocation of bare metal
machines with no virtualization overhead. Thus, Cloud-
Lab is a realistic experimental environment for moving
real datasets within and between sites before moving al-
gorithms and procedures into production.

A major capability of CloudLab is the ability to con-
nect clusters together over Internet2 using software-defined
networking. Our experiments use two of these clusters: the
Apt cluster in the University of Utah’s Downtown Data
Center in Salt Lake City, and the Clemson cluster of Clem-
son University in Anderson, South Carolina [16].

Communication between the Apt and Clemson Cloud-
Lab clusters occurs over the Internet2 network using the
Advanced Layer-2 Service (AL2S) [17]. AL2S allows nodes
in the two clusters to transparently communicate as if they
were connected to the same switch. That is, they appear
to be on the same IP subnetwork. The only discernible
difference is the relatively high communication latency of
26 ms when compared to a more typical latency of 180 µs.

Configuring a new path over AL2S would normally in-
volve multiple technical and administrative hurdles. The
experimenter would need to contact the appropriate net-
work administrator and convince them to set up a new
path between sites. The network administrator would need
to configure the new path with Internet2 via the Global-
NOC [18]. The delay involved in this process could be
significant. For a production network that may run for
several years or more such a delay may not matter. But
for a temporary experimental network intended to run on
the order of weeks or less the large initial setup delay can
be significant.

A major advantage of CloudLab for multi-site experi-
ments is that the CloudLab software configures new links
over AL2S automatically at the beginning of each experi-
ment. In most cases this process is seamless and requires
only a couple minutes of waiting. A researcher need only
specify the two sites to be connected and the CloudLab
infrastructure handles the rest.

1.3. Software component

Two software tools drive experiments. The first tool,
XDD [19], is used to perform benchmarks of parallel file
systems. As a benchmark tool XDD makes use of its
knowledge of disks to achieve maximum performance by
queueing multiple large I/O requests simultaneously. In
our experiments XDD uses multiple threads to access dif-
ferent regions of the same file in parallel.

The second tool, GridFTP [20], is a well-known appli-
cation for performing large data transfers. GridFTP en-
hances the original FTP protocol with extensions designed
to support faster data transfers. It also has a wide vari-
ety of networking configuration options. GridFTP uses a
client-server model where the server provides access to the

2



…
 

…
 

…

CloudLab 
Clemson 

CloudLab 
Apt 

Internet2 
AL2S 

1–8 
FS nodes 

1 client 

1–8 
FS nodes 

1 client 1–64 
TCP 

streams 

Figure 1: Dataset transfer in the CloudLab environment.
Data are read in parallel from 1–8 file system (FS) nodes to the
Clemson client. The Clemson client transfers the data in parallel
over Internet2 Advanced Layer-2 Service (AL2S) to the Apt client
using 1–64 TCP streams. The Apt client writes the data in parallel
to 1–8 file system nodes.

host file system, and the client can either push or pull data
relative to the server.

2. Materials and methods

2.1. Test dataset

The test dataset used for file transfer experiments is
composed of DNA sequencing data in Sequence Read Archive
format. There are 345 files in the dataset that range in size
from 643 MB to 11 GB. The median file size is 2.4 GB.
Over a quarter of the files are less than 1 GB, and less
than 11% are greater than 4.5 GB.

2.2. Testbed configuration

As seen in Figure 1, a data transfer experiment is com-
posed of nodes in the Apt CloudLab cluster connected to
nodes in the Clemson CloudLab cluster over Internet2’s
Advanced Layer-2 Service. The round-trip time between
these clusters across AL2S is approximately 52 ms. De-
pending on the experiment both clusters have 1–8 parallel
file system nodes, and the number of parallel file system
nodes is the same in both clusters. Communication with
the parallel file systems uses either TCP or InfiniBand
protocols. There is one file system client node per cluster
using GridFTP to transfer data in parallel with 1–64 TCP
streams. The node hardware at each cluster is as follows:

1. Apt: an Intel Xeon E5-2450 8-core CPU at 2.1 GHz
with 16 GiB of main memory. Each node has four
500 GB SATA 2.6 hard disk drives at 7200 RPM.
The network interface card is a Mellanox MX254A
with one port running 56 Gbit/s InfiniBand for com-
munication with the local parallel file system and the
other port running 10 Gbit/s Ethernet for commu-
nication with the Clemson cluster over Internet2.

Table 1: Network tuning parameters.

Parameter Value

Low-latency TCP tuning enabled
Packet queue size 30,000
TCP buffer max 32 MiB
TCP congestion control H-TCP
TCP selective ACK disabled
TCP timestamps option disabled

2. Clemson: two Intel Xeon E5-2660 10-core CPUs at
2.2 GHz with 256 GiB of ECC main memory. Each
node has two 1 TB SATA 3.0 hard disk drives at
7200 RPM. A QLogic QLE7340 40 Gbit/s Infini-
Band HCA is used to communicate with the parallel
file system on the other Clemson nodes, and an Intel
82599ES 10 Gbit/s Ethernet NIC is used to commu-
nicate with the Apt cluster over Internet2.

The total amount of storage available at Apt and Clemson
is similar, but the Apt nodes have twice the number of disk
drives. The Clemson nodes have 2.5 times the number of
cores as the Apt nodes and 16 times as much main memory.

In order to realize the configuration of Figure 1 the
CloudLab graphical configuration tool, Jacks, was used to
configure the two clusters and the connections between
them. Jacks produces a Resource Specification (RSpec)
file that can be used to create identically-configured in-
stances of the same experiment. The RSpec for our exper-
iments is available at [21].

2.3. Installed software

All the bare metal nodes in the experiment are installed
with Ubuntu 14.04.1 LTS running Linux kernel v3.13.0-68-
generic. For file transfers GridFTP client version 9.19 and
server v10.4 were installed from the Ubuntu distribution
repository. For file system benchmarks a modified version
of XDD is used [22]. The various parallel file systems used
are BeeGFS release 2015.03, Ceph v10.2.2-1trusty, Glus-
terFS v3.7, and OrangeFS v2.9.3.

2.4. Node network configuration

The operating system’s network layer is configured based
on recommendations from the ESnet Fasterdata Knowl-
edge Base [23], which provides advice for tuning hosts for
maximum network performance. All nodes are configured
via the Linux sysctl interface according to Table 1.

InfiniBand drivers are installed from the operating sys-
tem’s package repository. CPU frequency scaling is dis-
abled to prevent measurement errors caused by the pro-
cessor speed changing dynamically. An InfiniBand subnet
manager is running on the InfiniBand switch.

The CloudLab infrastructure attempts to reserve band-
width across the experimental network using traffic shap-
ing in the Linux kernel. The traffic shaper is configured to
begin dropping packets when the outbound flow rate ex-
ceeds a certain threshold. This traffic shaping was disabled

3



Table 2: XFS mount options for transfers with BeeGFS.

Option Value

allocsize 131072k
logbsize 256k
logbufs 8
atime off
barrier off
diratime off
largeio on

on all nodes in the experiment in order to help achieve the
maximum possible throughput.

2.5. File system configuration

The parallel file systems used to store data for exper-
iments must in turn store their data on the local file sys-
tem of each node. XFS [24] is configured as the local file
system for each experiment. For file systems other than
BeeGFS the default XFS creation and mount options are
used. For BeeGFS the default mount options are used in
the file system benchmark tests, but in dataset transfer
tests the optimized mount options shown in Table 2 are
used. These tuning parameters follow the recommenda-
tions of the BeeGFS tuning guide [25].

The local file system in turn stores its data on a block
device. This device can either be a virtual device created
by the logical volume manager or a raw disk device. A
virtual disk device is created by using the Linux Logical
Volume Manager to stripe data across the available data
partitions on all disks. Striping, also known as RAID 0,
combines disk storage and in theory increases throughput
by allowing disks to be accessed in parallel transparent to
the application program. GlusterFS and OrangeFS always
use a virtual disk device. Ceph always uses a raw disk de-
vice. BeeGFS uses a striped virtual disk in the file system
benchmark test and a raw disk device in all other tests.

Further configuaration details depend on the parallel
file system being used. The file systems were configured
as follows:

1. BeeGFS: BeeGFS was installed with one data server
per node. The first node runs the management dae-
mon and metadata server in addition to the data
server. A single client mounts the file system. The
network transport is switched between InfiniBand
and TCP depending on the experiment. A connec-
tion filter file is used to limit communication of the
BeeGFS servers to the experimental network inter-
face (either Ethernet or InfiniBand). The filter file
prevents the client and servers from communicat-
ing over the slower management interfaces. In order
to achieve the maximum amount of parallelism the
BeeGFS administration tool beegfs-ctl is used to tell
the file system to stripe every file across all available
storage devices on all storage nodes.

2. Ceph: The ceph-deploy tool was used to install and
configure Ceph on four nodes using all available data
partitions. A Ceph file system was created with a
single metadata server running on the first file sys-
tem node. In order to save space the pool size was
changed so that only one copy of every object is
stored. The number of placement groups for all pools
was set to 360. A single client mounts the file system.

3. GlusterFS: GlusterFS was installed and a striped
GlusterFS volume using TCP as a transport was cre-
ated on four nodes. A single client mounts the file
system.

4. OrangeFS: OrangeFS was installed with one data
server per node. There is a single metadata server
on the first node. The network transport used was
TCP. The file system was mounted on one client node
by installing the kernel module included in the Or-
angeFS distribution. The configuration file was gen-
erated with the standard pvfs2-genconfig script with
default configuration options. This default configu-
ration stripes file data across all storage nodes.

Several experiments using BeeGFS or OrangeFS re-
quire changing the number of server nodes over the course
of the experiment, an expensive operation whose proce-
dure varies depending on the type of server. The number
of storage nodes is typically reduced from 8 down to 1.
For BeeGFS, the built-in administration tool is run from
the client to migrate data off the node being removed onto
the remaining nodes, and the BeeGFS server process is
stopped on the node to prevent new data from being placed
there. In the case of OrangeFS the file system is created
from scratch each time because there is no built-in mi-
gration tool. Unfortunately this technique requires all the
data to be copied to the new OrangeFS file system.

2.6. Software configuration

File system benchmark tests use XDD to measure the
throughput when reading and writing a parallel file sys-
tem. XDD has a plethora of configuration options, but for
these experiments the chief options are the target of the
I/O operation and its size, the block size, and the number
of parallel I/O threads. In the file system benchmarks the
only option that changes is the operation (read or write).
The target is always a single file filled with random data,
the block size is always 4 MiB, and the number of I/O
threads is always 4.

The dataset transfer tests use GridFTP to transfer
data. GridFTP has both a client and a server, so there
are both client options and server options. The server is
always run in anonymous mode (no authentication) with
a block size equal to the TCP socket buffer size and the
number of threads equal to the number of parallel TCP
streams. The client is run in fast mode with a block size
equal to the TCP socket buffer size. The number of paral-
lel data connections and the exact value of the buffer sizes
depend on the particular experiment.

4



2.7. Experiments

All experimental measurements are in units of time.
The average throughput is calculated by dividing the total
number of bytes transferred by the wall time. For XDD
the time value is output as the end of the benchmark. For
GridFTP the time is calculated using the elapsed run time
output by the standard UNIX time tool.

The first experiment in Figure 2 was a benchmark of
the BeeGFS, Ceph, GlusterFS, and OrangeFS file sys-
tems on the Apt cluster. BeeGFS was configured to use a
striped virtual disk for storage and TCP for the network.
All file systems used four nodes for the server plus one
node as a client. The client node mounted the parallel
file system and used XDD to benchmark read and write
throughput when operating on a single approximately 864-
gigabyte random test file. The read and write performance
of each file system was tested 3 times. The test file was
deleted between runs of the write test.

The second experiment in Figure 3 was a comparison
between BeeGFS and OrangeFS for transfers of the actual
dataset. For this experiment BeeGFS was configured to
use an XFS file system on the raw disk devices while Or-
angeFS was configured the same as the first experiment.
Files in the test dataset were transferred using GridFTP
from Clemson to Apt with 4 parallel TCP streams and
varying the number of servers from 1 to 8 with a 4 MiB
TCP socket buffer. Each test was run 3 times. Test files
were deleted from the Apt cluster between runs.

The third experiment in Figure 4 compares the per-
formance of a GridFTP dataset transfer from Clemson to
Apt with BeeGFS when using InfiniBand versus TCP for
the local cluster network. The number of servers is varied
from 1 to 8 and the number of streams is 1–16, 32, and
64. When the number of servers is varied the number of
streams is fixed at 4, and when the number of streams is
varied the number of servers is fixed at 5. The Internet2
connection always uses TCP with a socket buffer size of
4 MiB. Each test was run 3 times. Test files were deleted
from the Apt cluster between runs.

The fourth experiment in Figure 5 compares 4 MiB
and 16 MiB TCP buffers when transferring with 8 BeeGFS
servers running InfiniBand and 1–16, 32, 64 streams. Test
files were deleted from the Apt cluster between runs.

The final experiment in Figure 6 uses BeeGFS over
InfiniBand and a 16 MiB TCP buffer size. The throughput
is measured with 1–16, 32, 64 streams and 2–6, 8 servers.
Test files were deleted from the Apt cluster between runs.

3. Experimental results

In this study we wanted to identify optimal data trans-
fer parameters for parallel data streaming across AL2S and
between two CloudLab sites loading real genomics data
onto a parallel file system. The key parameters modified
were the file system type, number of file system nodes,
network transport protocol, and number of parallel TCP

0

250

500

750

1000

1250

BeeGFS Ceph GlusterFS OrangeFS
Parallel file system

Th
ro

ug
hp

ut
 (M

B
/s

)

read

write

Figure 2: Comparing parallel file system read/write bench-
marks. A single client performs I/O to a single file on 4 servers
using 4 parallel application threads. Benchmark tool is XDD. Error
bars show the standard error of the mean. MB/s = millions of bytes
per second.

0

100

200

300

1 2 3 4 5 6 7 8
Number of file system server nodes

Th
ro

ug
hp

ut
 (M

B
/s

)

BeeGFS

OrangeFS

Figure 3: Comparing transfer rates between BeeGFS and
OrangeFS parallel file systems. For a dataset transfer with 4
parallel TCP streams using GridFTP. TCP socket buffer sizes set to
4 MiB. Error bars show the standard error of the mean. MB/s =
millions of bytes per second.

streams. These parameters are of high interest for ge-
nomics and other domain scientists across the technical
skill spectrum who need to move massive data sets.

3.1. Parallel file system configuration

The first choice that had to be made with respect to
parallel file transfers was the parallel file system imple-
mentation to use for storage of the dataset. Because ac-
tual transfer tests can take a long time to run a faster and
more simple benchmark comparison was performed. The
first test compared the BeeGFS, Ceph, GlusterFS, and Or-
angeFS parallel and distributed file systems when reading

5



and writing a single large file.
According to the benchmark results in Figure 2, BeeGFS

has the fastest read throughput, and its write throughput
is faster than Ceph but slower than GlusterFS and Or-
angeFS. Ceph has both the slowest read throughput and
the slowest write throughput. The read throughput of
GlusterFS is faster than Ceph but slower than BeeGFS
and OrangeFS, and its write throughput is faster than
BeeGFS and Ceph but slower than OrangeFS. The read
throughput of OrangeFS is faster than Ceph and Glus-
terFS but slower than BeeGFS. OrangeFS has the fastest
write throughput. For all file systems except for BeeGFS
write throughput is greater than read throughput. For
BeeGFS read throughput is greater than write through-
put.

After examining the results of the file system bench-
mark it appeared that no file system has both the best
read throughput and the best write throughput. BeeGFS
has the best read throughput but the third-best write
throughput. OrangeFS has the best write throughput but
the second-best read throughput. Finding the highest-
performing file system for the purpose of parallel file trans-
fers required further testing.

In order to decide between BeeGFS and OrangeFS an-
other experiment was conducted to compare the through-
put of the two file systems during an actual transfer of the
test dataset. Figure 3 shows the results of this transfer
test. In this test BeeGFS has consistently higher through-
put than OrangeFS from 1 to 8 server nodes. BeeGFS
reaches 99% of its maximum throughput at 2 nodes while
OrangeFS requires 5 nodes. Additionally, OrangeFS shows
a slight drop in throughput from 1 to 2 nodes before climb-
ing steadily at 3 and 4 nodes. Based upon the results of
this test we concluded that BeeGFS was the best file sys-
tem for parallel file transfers.

3.2. Network configuration

The preferred parallel file system, BeeGFS, has the
ability to communicate over the network using both TCP
and InfiniBand. The experimental hardware used for In-
finiBand has a at least a 4x higher theoretical through-
put (40 Gbps) compared to the hardware used for TCP
(10 Gbps), but it was desired to see if the difference dur-
ing an actual dataset transfer was large enough to justify
the substantially higher complexity and cost of InfiniBand
when compared to 10 Gb Ethernet.

Figure 4a shows the results of comparing the Infini-
Band and TCP transports for a dataset file transfer with
BeeGFS. In this test the number of Internet2 TCP streams
is held constant at 4 while the number of servers changes.
The results show that using TCP as a transport outper-
forms InfiniBand for 1 to 8 servers.

Figure 4b also compares InfiniBand and TCP trans-
ports, but in this experiment the number of servers is held
constant at 5 while the number of parallel TCP streams
varies. For 1 to 8 streams the throughput with TCP is

0

250

500

750

1000

0 20 40 60
Number of parallel TCP streams

Th
ro

ug
hp

ut
 (M

B
/s

)

4 MiB

16 MiB

Figure 5: Comparing dataset transfer rates with 4 MiB and
16 MiB TCP socket buffer sizes. For a dataset transfer with
GridFTP. Parallel file system is BeeGFS over InfiniBand on 8 server
nodes. Error bars show the standard error of the mean. MB/s =
millions of bytes per second. 1 MiB = 1,048,576 bytes.

higher than the throughput with InfiniBand. However, at
9 streams the throughput with InfiniBand overtakes the
throughput with TCP and remains higher all the way to
64 streams. Altogether the maximum InfiniBand through-
put of 880 MB/s at 16 streams is over 40% higher than the
maximum TCP throughput of 601 MB/s at 13 streams.
Because of the higher peak throughput with InfiniBand
compared to TCP, InfiniBand was used for the remainder
of the experiments.

The last network configurations investigated before run-
ning a full parameter sweep were the TCP send and receive
socket buffer sizes. The size of these buffers influences the
TCP window size which can have a large effect on the per-
formance of long distance transfers [26]. As previous tests
all used a buffer size of 4 MiB, a larger size of 16 MiB was
chosen because it was believed to be much closer to the
bandwidth-delay product of the network.

Figure 5 shows a comparison between transfers with
4 MiB and 16 MiB TCP socket buffer sizes. From 1 to
13 streams the throughput with 16 MiB buffer size is sig-
nificantly larger than the throughput with 4 MiB buffer
size. The maximum throughput with 4 MiB buffer size
of 898 MB/s occurs at 16 streams, while the maximum
throughput with 16 MiB buffer size of 934 MB/s occurs
at 7 streams. Future experiments used the 16 MiB buffer
size, because based on these results it is possible to reach
a higher throughput with fewer streams.

3.3. Parameter sweep of streams and server nodes

Up to this point BeeGFS was chosen for the parallel file
system, InfiniBand for the network transport, and 16 MiB
for the TCP socket buffer size. The major parameters
left to investigate are the number of parallel TCP streams

6



0

100

200

300

400

1 2 3 4 5 6 7 8
Number of file system server nodes

Th
ro

ug
hp

ut
 (M

B
/s

)

InfiniBand

TCP

(a) Number of parallel TCP streams held constant
at 4.

0

250

500

750

1000

0 9 20 40 60
Number of parallel TCP streams

Th
ro

ug
hp

ut
 (M

B
/s

)

InfiniBand

TCP

(b) Number of server nodes held constant at 5.

Figure 4: Comparing InfiniBand and TCP for dataset transfers. Datasets transferred with GridFTP. Parallel file system is BeeGFS.
TCP socket buffer sizes set to 4 MiB. Error bars show the standard error of the mean. MB/s = millions of bytes per second. 1 MiB =
1,048,576 bytes.

0

250

500

750

1000

0 5 20 40 60
Number of parallel TCP streams

Th
ro

ug
hp

ut
 (M

B
/s

)

2 nodes

3 nodes

4 nodes

5 nodes

6 nodes

8 nodes

Figure 6: Dataset transfer while varying the number of
TCP streams and file system server nodes. For a dataset
transfer using GridFTP. Parallel file system is BeeGFS over Infini-
Band. TCP socket buffer sizes set to 16 MiB. Error bars show the
standard error of the mean. MB/s = millions of bytes per second.

and the number of parallel file system data server nodes.
Figure 6 shows the results of sweeping these parameters.

The curves for 4–8 nodes are more or less overlapping.
The only exceptions may be 4 servers, 16 streams and
5 nodes, 32 streams. These two points have a large amount
of error. At 3 nodes the curve has the same general shape
but the throughput is less than the curve for 4–8 nodes.
The throughput at 2 nodes is less than the throughput
at 3 nodes. The highest average throughput of 940 MB/s
occurs at 5 nodes and 7 streams.

4. Discussion

4.1. File system comparison

The goal of the test results in Figure 2 was to predict
the throughput of various parallel file systems during a
dataset transfer by benchmarking their performance dur-
ing a read/write benchmark. The benchmark leaves out
any Internet2 network traffic and focuses only on the local
performance of the parallel file system and its client. Be-
cause there is no long distance communication involved in
this test we believe the benchmark approximates the upper
bound of the throughput during an actual dataset trans-
fer. We expected the throughput during an actual dataset
transfer to be significantly lower than the throughput of
the corresponding benchmark. Our experience has been
that for a long distance data transfer the performance of
the transfer as a whole is lower than the performance of
the components of that transfer.

Before discussing the actual results we first explain
what we perceive as limitations in the test itself. First,
because the full dataset transfer test was not run for ev-
ery file system, we cannot prove that lower throughput on
the benchmark correlates to lower throughput in an ac-
tual file transfer. We believe the benchmark is still useful
as a guide for determining the parallel file system to use
for subsequent tests. Second, the benchmark test by de-
sign runs only within a local cluster with no long distance
network access. We have chosen to run the benchmark
test on the Apt cluster in Utah. In contrast, an actual
file transfer involves both the Apt cluster and the Cloud-
Lab cluster at Clemson. As described in section 2.2, these
two clusters have different hardware characteristics, espe-
cially when it comes to disk storage and main memory. We

7



suspect, however, that the relative performance levels of
the parallel file systems would be the same on both clus-
ters. Third, out of necessity the benchmark uses different
software from the actual file transfer. However, both the
benchmark tool (XDD) and the transfer tool (GridFTP)
are optimized for high disk throughput. Last, and per-
haps most important, the benchmark uses a single large
863 GB file whereas an actual transfer uses 345 files rang-
ing in size from 0.6 GB to 11 GB and an aggregate size of
863 GB. Parallel file systems are known to have vastly dif-
ferent performance with large files compared to small files
[27]. Parallel file systems also have different performance
characteristics with a large number of files compared to
a small number of files. However, we believe the number
of files during an actual transfer to be small enough and
the median file size of 2.4 GB to be large enough to avoid
causing performance issues.

4.1.1. BeeGFS

BeeGFS is notable for having the highest read through-
put of the file systems tested. Interestingly, it was also the
only file system whose read throughput was higher than
its write throughput. The higher read throughput could
be a result of read-ahead by the BeeGFS server nodes.

4.1.2. Ceph

Ceph had the lowest throughput of any file system
in this benchmark. The read throughput of Ceph was
207 MB/s less than the throughput of the next-slowest
file system for read, GlusterFS. The write throughput of
Ceph was 509 MB/s less than the next-slowest file system
for write, BeeGFS. It’s possible that changing the default
configuration of Ceph by storing only one copy of each
object caused a drop in performance. However, the fact
remains that there was not enough storage to contain the
default of three copies of each object. It’s also possible
that Ceph, as an object store, may not be well suited to
the type of workload tested by our experiment.

4.1.3. GlusterFS

GlusterFS has the second-highest write throughput af-
ter OrangeFS, but its read throughput is the second-lowest
after Ceph. GlusterFS also has the biggest gap between
read and write throughput—the read throughput is only
36% of the write throughput.

4.1.4. OrangeFS

OrangeFS is notable for having the highest write through-
put and the second-highest read throughput. The write
throughput alone is impressive for reaching close to 90%
of the maximum throughput on a 10 gigabit/s network.
OrangeFS may be the only file system to hit a network
bottleneck instead of a disk bottleneck for writes.

4.2. BeeGFS vs. OrangeFS

The goal of the BeeGFS vs. OrangeFS comparison test
of Figure 3 was to determine which of the two file systems
supported faster data transfers. This experiment varies
the number of parallel file system server nodes, and at the
time the experiment was designed we believed the number
of nodes to be the most important factor in determining
the throughput of the file transfer. However, later tests
seem to show that the number of nodes is the least impor-
tant variable.

Both BeeGFS and OrangeFS are layered on top of a lo-
cal file system on each node. We chose to use the XFS file
system [24] in both cases. For the XFS file system used in
OrangeFS tests we used the default mount options. How-
ever, for the XFS file system used in BeeGFS tests we
used the optimized mount options in Table 2 that were
suggested by the BeeGFS documentation [25]. The differ-
ent local file system mount options could be responsible
for the relative performance of BeeGFS and OrangeFS.

A limitation of the BeeGFS vs. OrangeFS compari-
son test may be that the disk configuration was different
for the two tests, although both file systems were config-
ured for the best performance. BeeGFS does not make use
of any RAID configuration while OrangeFS uses striped
RAID. Striped RAID is currently the only option for Or-
angeFS because it is not possible to configure OrangeFS
to use multiple data storage targets. RAID 0 striping was
not used for BeeGFS in this test and all further tests be-
cause during a benchmark it was discovered to have lower
performance than the configuration that used the drives
independently. For unknown reasons the throughput of a
transfer with OrangeFS drops from 1 to 2 nodes. This
drop could be explained by an increase in network over-
head when contacting more than one server.

4.3. Network configuration

After selecting BeeGFS as the parallel file system there
were two major choices for the network transport. The
first choice was the very popular and well-supported TCP.
The second choice was InfiniBand which has a 4–5.6x higher
theoretical maximum throughput but is significantly more
expensive than the 10 GigE used for TCP. It was desired
to determine if the higher theoretical throughput of In-
finiBand translated to an actual increase in throughput
during a data transfer.

Another possible protocol that could have been tested
is IP over InfiniBand (IPoIB). As the name implies, IPoIB
allows IP (and its associated protocols such as TCP) to be
carried over InfiniBand hardware. However, the native IB
protocol offers benefits such as lower latency and support
for remote direct memory access. As long as the software
is capable of supporting native IB protocol there is little
reason to use legacy IPoIB.

The results of the test that varied the number of servers
shown in Figure 4a suggest that InfiniBand in fact has
lower throughput compared to TCP. But the test that var-
ied the number of streams in Figure 4b showed that after

8



8 streams InfiniBand has higher throughput than TCP.
It is possible that some overhead causes InfiniBand to be
slower than TCP up to 8 streams. After 8 streams, the
higher theoretical throughput of InfiniBand allows it to
surpass TCP.

Figure 5 shows the results of increasing the socket buffer
size to 16 MiB and compares it to the results with a 4 MiB
socket buffer size. A larger socket buffer size allows for
a larger TCP window, and a larger TCP window poten-
tially allows for a more continuous stream of data flowing
through the network. The fact that throughput increases
with the socket buffer size suggests that the initial size of
4 MiB was too small for the test network.

4.4. Parameter sweep
The parameter sweep in Figure 6 explores the effects

of the number of parallel TCP streams and the number of
parallel file system server nodes on throughput when the
socket buffer size is 16 MiB. It was expected that when the
number of storage nodes decreased the throughput curve
would lower as the storage system would not have enough
available throughput to feed the data transfer. The curves
for 4–8 nodes are similar, but as predicted at 3 nodes
the performance drops sharply by about 345 MB/s at 4
streams. There is another large drop of about 176 MB/s
from 3 to 2 nodes at 4 streams.

4.5. Maximizing throughput
By examining the results in Figure 5 a pattern emerges

with respect to the maximum throughput, the TCP buffer
size, and the number of parallel streams. In Figure 5 when
the buffer size is 4 MiB the peak throughput occurs at
16 streams. Similarly, when the buffer size is 16 MiB the
peak (within error) occurs at 4 streams. In other words,
changing the buffer size by a factor of 4 changed the num-
ber of streams by a factor of 1/4.

Further insight can be made with additional background
information. The maximum amount of data that can be
“in flight” in a network is its bandwidth-delay product,
or BDP. As the name suggests, the BDP is calculated by
multiplying the link speed of the network by the round-
trip delay time (RTT). The experimental network has a
bandwidth of 10 gigabits/s and an RTT of approximately
52 ms as measured by the ping tool. The BDP is there-
fore 10 gigabits/s × 0.052 s = 0.52 gigabits. Converting
the units yield a value of 62 MiB.

Therefore, in order to expect the maximum through-
put from the experimental network we must ensure the
amount of data available to be transmitted is at least
62 MiB. The amount of data that can be transmitted is
the TCP window size, estimated by the TCP buffer size,
times the number of streams. This formula matches with
the experimental data: the maximum throughput occurs
at 4 MiB × 16 = 64 MiB and 16 MiB × 4 = 64 MiB. This
relation between BDP, buffer size, and RTT that gives
maximum throughput is given in Equation 1.

BDP ≤ buffer × streams (1)

In Equation 1, the BDP is usually a property of the
network and should not change. An exception to this rule
may be when there are multiple paths connecting nodes
in the network. In that case it can be expected that each
path might have a different BDP. It is far more useful to
manipulate the other two parameters. The TCP socket
buffer size is relatively easy to set on Linux systems. A
possible constraint might be the maximum buffer size de-
fined by the system administrator. The number of parallel
TCP streams can be easy or difficult to change depending
on the application. For GridFTP changing the number
of TCP streams is as simple as setting a command line
option, but other applications may need to be completely
redesigned to incorporate thread-level parallelism. Addi-
tionally, the number of practical parallel TCP streams is
likely bounded by the number of physical CPU cores.

A final constraint that occurs during a real data trans-
fer is that the storage system must be able to keep up
with the network throughput. A network that is capable
of 100 gigabits/s is not going to be fully utilized when it
is connected to a storage system capable of only 1 giga-
bit/s. The 2- and 3-node results of Figure 6 show what
happens to throughput when there is not enough storage
bandwidth available. For a large dataset (such as those
seen in genomics) the storage system must be able to sus-
tain a high throughput. This fact is one of the reasons our
transfers were run “at scale” with real data—using small
test files would have not so much tested the full storage
throughput as the throughput of the cache.

5. Conclusion

A wide variety of tests we performed narrowed the op-
timal data transfer parameters for parallel data streaming
across AL2S and between two CloudLab clusters loading
real genomics data onto a parallel file system. The best
throughput was found to occur with GridFTP using at
least 5 parallel TCP streams with a 16 MiB TCP socket
buffer size to transfer to/from 4–8 BeeGFS parallel file
system nodes connected by InfiniBand. An attempt at
generalizing the results was made in Equation 1, where
the TCP buffer size and number of parallel streams were
related to the bandwidth-delay product of the network.

There are a few experimental thrusts available for fur-
ther optimization. First, it is possible that several of the
network settings outlined in Table 1 contributed negatively
to the throughput of the transfer tests. In particular we are
concerned about the TCP timestamps, low-latency, and
selective acknowledgement options because their settings
appear contrary to common sense for a fast network with a
high RTT. Although the settings were based on the ESnet
recommendations, the exact values were copied from an
HPC cluster that we later discovered was tuned for local
low-latency message passing type communication.

Second, an important limitation to Equation 1 may be
that it is appropriate only for networks with very little loss.
In the case of loss, it is likely that more streams should be

9



favored over a larger buffer size, as a greater number of
parallel streams will quicken the recovery of the transfer
in the face of loss.

Third, our experiments are designed such that all data
flow through the clients which act as data transfer nodes
(DTNs). This configuration is common in Science DMZs,
but in CloudLab there is no technical requirement since all
nodes are capable of communicating with each other. Us-
ing n times as many data transfer nodes has the potential
of unlocking n times the performance of the single-node
case as long as the parallel file system is capable of sup-
plying enough storage bandwidth. Fortunately, parallel
file systems are in fact designed for just such a situation.

5.1. Future work

It is important to note that dataset transfers are only
a means to an end and that the actual objective is to run
the genomic analysis workflow. As such, future work will
focus not only on transfers but also on analysis, possibly
both at the same time.

The effects of packet loss on the transfer throughput
need to be more closely examined. Future work will use
the Linux socket statistics tool, ss, to record loss events
such as TCP retransmissions. The loss will be controlled
with Linux traffic shaping. We will then attempt to fit
this loss into our model.

6. Acknowledgements

This work was supported by the National Science Foun-
dation [grant number 1447771].

References

[1] NCBI. Sequence read archive [online] (Aug. 2016). URL: http:
//www.ncbi.nlm.nih.gov/Traces/sra/.

[2] R. N. The Cancer Genome Atlas, J. N. Weinstein, E. A. Collis-
son, G. B. Mills, K. R. M. Shaw, B. A. Ozenberger, K. Ellrott,
I. Shmulevich, C. Sander, J. M. Stuart, The cancer genome at-
las pan-cancer analysis project, Nature genetics 45 (10) (2013)
1113–1120. URL: http://dx.doi.org/10.1038/ng.2764.
URL http://dx.doi.org/10.1038/ng.2764

[3] The 1000 Genomes Project Consortium, A global reference for
human genetic variation, Nature 526 (7571) (2015) 68–74. URL:
http://dx.doi.org/10.1038/nature15393.
URL http://dx.doi.org/10.1038/nature15393

[4] L. Zhi-Kang, G.-Y. Zhang, K. L. McNally, W.-S. Wang, J. Li,
N. A. Alexandrov, J. A. et al., The 3,000 rice genomes project,
GigaScience 3 (1) (2014) 1–6, iD: ref1. URL: http://dx.doi.
org/10.1186/2047-217X-3-7.
URL http://dx.doi.org/10.1186/2047-217X-3-7

[5] F. A. Feltus, J. R. B. III, J. Deng, R. S. Izard, C. A. Konger,
W. B. L. III, D. Preuss, K.-C. Wang, The widening gulf between
genomics data generation and consumption: A practical guide
to big data transfer technology, Bioinformatics and biology in-
sights 9 (Suppl 1) (2015) 9.

[6] J. Heichler. An introduction to beegfs [online] (Nov.
2014). URL: http://www.beegfs.com/docs/Introduction_to_
BeeGFS_by_ThinkParQ.pdf.

[7] S. A. Weil, Ceph: reliable, scalable, and high-performance dis-
tributed storage, Ph.D. thesis, University of California Santa
Cruz (2007).

[8] A. Davies, A. Orsaria, Scale out with glusterfs, Linux Journal
2013 (235).

[9] P. Carns, W. B. L. III, R. B. Ross, R. Thakur, Pvfs: A parallel
file system for linux clusters, in: Proceedings of the 4th annual
Linux Showcase and Conference, 2000, pp. 391–430.

[10] Lustre software release 2.x [online]. URL: http://doc.lustre.
org/lustre_manual.xhtml#installinglustre.

[11] E. Dart, B. Tierney, E. Pouyoul, J. Breen, Achieving the science
dmz, presentation, Joint Techs, Baton Rouge, LA, Jan 2012
(Jan. 2012). URL: http://www.internet2.edu/presentations/
jt2012winter/ScienceDMZ-Tutorial-Jan2012-1.pdf.
URL http://www.internet2.edu/presentations/

jt2012winter/ScienceDMZ-Tutorial-Jan2012-1.pdf

[12] R. Ricci, E. Eide, The CloudLab Team, Introducing Cloud-
Lab: Scientific infrastructure for advancing cloud archi-
tectures and applications, USENIX ;login: 39 (6). URL:
https://www.usenix.org/publications/login/dec14/ricci.
URL https://www.usenix.org/publications/login/dec14/

ricci

[13] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, A. Joglekar, An integrated
experimental environment for distributed systems and net-
works, in: Proceedings of the Fifth Symposium on Operat-
ing Systems Design and Implementation, USENIX Association,
Boston, MA, 2002, pp. 255–270.

[14] Cloudlab [online] (Sep. 2016). URL: http://cloudlab.us/.
[15] Cloudlab overview [online]. URL: http://cloudlab.us/files/

cloudlab-overview.pdf.
[16] Cloudlab hardware [online] (Sep. 2016). URL: http://docs.

cloudlab.us/hardware.html.
[17] Internet 2 layer 2 services [online] (Sep. 2016).

URL: http://www.internet2.edu/products-services/

advanced-networking/layer-2-services/.
[18] Globalnoc [online]. URL: http://globalnoc.iu.edu/

i2network/index.html.
[19] B. W. Settlemyer, J. D. Dobson, S. W. Hodson, J. A. Kuehn,

S. W. Poole, T. M. Ruwart, A technique for moving large data
sets over high-performance long distance networks, in: 2011
IEEE 27th Symposium on Mass Storage Systems and Technolo-
gies (MSST), 2011, pp. 1–6. doi:10.1109/MSST.2011.5937236.

[20] W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, The globus
striped gridftp framework and server, in: Supercomputing,
2005. Proceedings of the ACM/IEEE SC 2005 Conference, 2005,
pp. 54–54. doi:10.1109/SC.2005.72.

[21] N. Mills. Cloudlab transfer experiment rspec [online]
(Sep. 2016). URL: https://www.cloudlab.us//p/CloudLab/

nlmpfs8xfer.
[22] Xdd [online]. URL: https://github.com/nlmills/xdd/commit/

cdfb9a5a1ba14ca398f621508f7386c9d756322e.
[23] ESnet. Linux tuning [online] (Aug. 2016). URL: http://

fasterdata.es.net/host-tuning/linux/.
[24] C. Hellwig, Xfs: the big storage file system for linux, ; login::

the magazine of USENIX & SAGE 34 (5) (2009) 10–18.
[25] Beegfs tuning and advanced configuration [online]

(Sep. 2016). URL: http://www.beegfs.com/wiki/

TuningAdvancedConfiguration.
[26] N. S. V. Rao, D. Towsley, G. Vardoyan, B. W. Settlemyer, I. T.

Foster, R. Kettimuthu, Sustained wide-area tcp memory trans-
fers over dedicated connections, in: High Performance Com-
puting and Communications (HPCC), 2015, pp. 1603–1606.
doi:10.1109/HPCC-CSS-ICESS.2015.86.

[27] P. Carns, S. Lang, R. Ross, M. Vilayannur, J. Kunkel, T. Lud-
wig, Small-file access in parallel file systems, in: Parallel Dis-
tributed Processing, 2009. IPDPS 2009. IEEE International
Symposium on, 2009, pp. 1–11. doi:10.1109/IPDPS.2009.

5161029.

10

http://www.ncbi.nlm.nih.gov/Traces/sra/
http://www.ncbi.nlm.nih.gov/Traces/sra/
http://dx.doi.org/10.1038/ng.2764
http://dx.doi.org/10.1038/ng.2764
http://dx.doi.org/10.1038/nature15393
http://dx.doi.org/10.1038/nature15393
http://dx.doi.org/10.1186/2047-217X-3-7
http://dx.doi.org/10.1186/2047-217X-3-7
http://dx.doi.org/10.1186/2047-217X-3-7
http://www.beegfs.com/docs/Introduction_to_BeeGFS_by_ThinkParQ.pdf
http://www.beegfs.com/docs/Introduction_to_BeeGFS_by_ThinkParQ.pdf
http://doc.lustre.org/lustre_manual.xhtml#installinglustre
http://doc.lustre.org/lustre_manual.xhtml#installinglustre
http://www.internet2.edu/presentations/jt2012winter/ScienceDMZ-Tutorial-Jan2012-1.pdf
http://www.internet2.edu/presentations/jt2012winter/ScienceDMZ-Tutorial-Jan2012-1.pdf
http://www.internet2.edu/presentations/jt2012winter/ScienceDMZ-Tutorial-Jan2012-1.pdf
http://www.internet2.edu/presentations/jt2012winter/ScienceDMZ-Tutorial-Jan2012-1.pdf
https://www.usenix.org/publications/login/dec14/ricci
https://www.usenix.org/publications/login/dec14/ricci
https://www.usenix.org/publications/login/dec14/ricci
http://cloudlab.us/
http://cloudlab.us/files/cloudlab-overview.pdf
http://cloudlab.us/files/cloudlab-overview.pdf
http://docs.cloudlab.us/hardware.html
http://docs.cloudlab.us/hardware.html
http://www.internet2.edu/products-services/advanced-networking/layer-2-services/
http://www.internet2.edu/products-services/advanced-networking/layer-2-services/
http://globalnoc.iu.edu/i2network/index.html
http://globalnoc.iu.edu/i2network/index.html
http://dx.doi.org/10.1109/MSST.2011.5937236
http://dx.doi.org/10.1109/SC.2005.72
https://www.cloudlab.us//p/CloudLab/nlmpfs8xfer
https://www.cloudlab.us//p/CloudLab/nlmpfs8xfer
https://github.com/nlmills/xdd/commit/cdfb9a5a1ba14ca398f621508f7386c9d756322e
https://github.com/nlmills/xdd/commit/cdfb9a5a1ba14ca398f621508f7386c9d756322e
http://fasterdata.es.net/host-tuning/linux/
http://fasterdata.es.net/host-tuning/linux/
http://www.beegfs.com/wiki/TuningAdvancedConfiguration
http://www.beegfs.com/wiki/TuningAdvancedConfiguration
http://dx.doi.org/10.1109/HPCC-CSS-ICESS.2015.86
http://dx.doi.org/10.1109/IPDPS.2009.5161029
http://dx.doi.org/10.1109/IPDPS.2009.5161029

	Introduction
	Storage component
	Network component
	Software component

	Materials and methods
	Test dataset
	Testbed configuration
	Installed software
	Node network configuration
	File system configuration
	Software configuration
	Experiments

	Experimental results
	Parallel file system configuration
	Network configuration
	Parameter sweep of streams and server nodes

	Discussion
	File system comparison
	BeeGFS
	Ceph
	GlusterFS
	OrangeFS

	BeeGFS vs. OrangeFS
	Network configuration
	Parameter sweep
	Maximizing throughput

	Conclusion
	Future work

	Acknowledgements

