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Abstract — Operating systems play a key role in providing 
general purpose services to upper layer applications at the highest 
available performance level. The two design requirements —
 generality and performance — are however in contention: the 
more general purpose a service layer is, the more overhead it 
incurs in accessing domain-specific high-performance features 
provided by the layers beneath it. This trade-off comes to manifest 
in modern computer systems as the state-of-the-art has evolved 
from architectures with a few number of cores to systems 
employing a very large number of cores (many-core systems). 
Such evolution has rendered the networking layer in current 
operating systems inefficient as its general purpose design 
deprives it from a proper use of the large number of cores. In this 
paper we introduce DNAC (Dynamic Network Acceleration for 
Many-Core), a high-performance abstraction layer designed to 
target the maximum network performance available from the 
network interface in many-core general purpose operating 
systems. 
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1. INTRODUCTION 
Computers are systems of growing complexity that combine 
sophisticated hardware engines (processors, memory modules, 
network interfaces, etc.) with a vast number of software modules 
(operating systems, drivers, applications, etc.). As one strategy to 
deal with such complexity, computers are implemented using a 
layering approach, whereby services are organized into N layers, 
with each layer leveraging the services provided by the level 
beneath to deliver new services to the level above. Although not 
necessarily always true, users typically interface with computers 
via the top layer (layer N), while computers interact with other 
computers most normally via the lowest layer (layer 1). This 
approach enables the separation of concerns, a design principle 
that keeps the implementation modular and general, simplifying 

development and maintenance. 
While layering is a powerful strategy upon which many successful 
general-purpose architectures depend, it comes at a performance 
cost, as every layer adds computing distance between the 
application and the hardware. Take for instance a read operation 
on a file. The execution path needs to cross the user-space file 
system API layer, the system call layer, the kernel-space file 
system layer and the driver layer in order to retrieve the requested 
data from storage. The higher the layer is, the richer and more 
general its services are, albeit at a slower performance. This trade-
off of generality versus performance is illustrated in Figure 1. 
Within computer architectures, one area that has been the subject 
of much research and development is the network layer. In a 
traditional architecture, applications interface with the network via 
the standard sockets API. This approach provides great flexibility 
but requires the processing of several layers before data can be 
transferred between the network and the application, including the 
socket layer in user space, the system call layer, the socket layer 
in kernel space, the network layer also in the kernel (e.g., the 
TCP/IP stack or the PCAP layers), and the lower level 
driver / direct memory access (DMA) layer. This architecture not 
only adds excessive amounts of overhead for high-performance 
computing (HPC) applications, but it also lacks scalability in 
systems with a  large number of cores, as packets need to be 
demultiplexed and distributed across all cores by the kernel, 
inducing unnecessary packet copies and creating a kernel 
bottleneck. 

 
Figure 1. A layered architecture faces the generality versus 

performance trade-off. The lower level, closer to the physical 
layer, provides the absolute maximum performance. New 

layers add more functionality, adding generality to the system, 
at the expense of losing (at each level) a certain degree of 

performance. 
In our work we present DNAC, Dynamic Network Acceleration 
for Many-Core, a design and implementation to resolve the HPC 
problems faced by a general-purpose OS when running on many-
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core systems. We argue that an optimized packet handling layer 
should consider three design requirements: 
- Performance. The implementation should be able to transfer 

packets as efficiently as possible, minimizing compute cycles 
and memory bandwidth spent on each packet. 

- Dynamic packet forwarding. The optimal forwarding action 
applied to each packet should in general be dynamic and 
dependent on the system’s current state. For instance, the 
optimal packet actions taken on a system that is running at 
10% of its capacity are in general not the same as those that 
ought to be taken when the system is running at 100% or 
above its capacity.  

- Visibility. In order to make proper packet handling decisions, 
it is crucial to have a precise and fine grain knowledge of the 
system’s state. For instance, the packet forwarding layer 
should know whether the system is currently dropping packets 
and if so, the degree of congestion, in order to make a proper 
packet forwarding decision. 

Much of the work on HPC networking for general computer 
architectures has focused on performance, leaving a void in the 
area of optimal packet handling and visibility. Our work provides 
a comprehensive solution to HPC networking by approaching the 
problem as a closed-loop control system, integrating visibility and 
feedback into the packet forwarding engine (control plane), while 
leveraging all the bare metal acceleration features provided by the 
underlying hardware (data plane). 
The rest of the paper is organized as follows. In Section 2 we 
introduce the current state-of-the-art by summarizing prior 
background work. Section 3 introduces the main body of this 
work with the proposed architecture design and implementation. 
Section 5 provides some benchmark measurements of the 
proposed solution, and we conclude in Section 6 with some final 
remarks and future work. 

2. BACKGROUND WORK 
High-performance networking in general-purpose computer 
systems has been the subject of extensive research. For the most 
part, work has focused on resolving well-known system 
bottlenecks introduced by the network stack as part of the 
operating system (OS). Consider for instance the sequence of 
steps that an incoming packet must follow to reach an application. 
Starting from the wire, the network interface card (NIC) first 
captures the packet and transfers it to a buffer in kernel memory 
using direct memory access (DMA). The NIC then interrupts the 
CPU which stops its current task in order to serve the associated 
interrupt service routine (ISR). The ISR performs some light-
weight housekeeping work and hands the newly arrived packet to 
the upper layer before returning control of the CPU. A kernel 
thread is then responsible to walk the packet through the various 
network layers prior to reaching the socket. For instance, a 
TCP/IP packet will first go through the IP layer, then the TCP 
layer, and finally be delivered to a socket. The socket layer has 
two levels, one living in the kernel space and the other in user 
space. The payload of the incoming packet is pushed into the 
kernel socket, at which point the kernel thread completes its job. 
Then, the application running in user space issues a read() system 
call to copy the packet payload from the kernel socket into the 
user space socket, from where it can finally read its content. 
Figure 2 provides a diagram of the incoming packet flow, from 
the wire to the application processes. Notice that a similar set of 
operations with the same overheads take place when packets are 
transmitted. 

A good number of techniques have been developed to reduce 
some of the overheads incurred by the OS in receiving and 
transmitting packets. mmap() can be used to map buffers allocated 
in user space down into the kernel space in a way that the OS can 
eliminate the extra packet copies incurred at the socket layer, 
saving both CPU cycles and memory bandwidth. This technique 
requires no hardware cooperation and therefore maintains the 
same degree of generality while improving performance. 
Examples of technologies employing this approach are 
libpcap/mmap and vanilla PF_RING [1]. The performance gains 
are however marginal, and in most HPC applications this 
approach is not enough. If the NIC hardware can cooperate and 
provide supporting features like receive side scaling (RSS), the 
software can be architected to ensure zero-packet copies across 
the whole network stack. In this approach, the application 
registers memory using the NIC’s native API. The NIC transfers 
via DMA incoming packets directly to this memory, allowing 
applications to pull data directly from their buffers. A side benefit 
of this approach is that it eliminates expensive interrupts, as data 
is now pulled from the application side. In addition, if the 
application runs multiple processes and the NIC supports RSS, 
this approach allows for packets of the same flow to be directly 
DMA transferred to the right application process, enabling zero-
copy load balancing. This approach is implemented in 
architectures such as PF_RING ZC [2], Intel’s DPDK [3], or in 
other off-the-shelf HPC NIC vendors that provide a native API. 

 
Figure 2. Incoming packets in a general-purpose OS 

architecture have to traverse many software layers before 
they can reach their application socket. 

Most prior work has focused on the high-performance aspects of 
the problem. Being able to run applications closer to the hardware 
layer brings however another relevant advantage: timely fine-
grained visibility. This opens up the possibility of incorporating 
real-time feedback and control to optimize the packet forwarding 
routines in order to attain higher levels of system performance. 
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3. ARCHITECTURE 
In this section we introduce DNAC, Dynamic Network 
Acceleration for Many-Core, an architecture and implementation 
of a high-performance network layer designed to efficiently steer 
packets from the wire to the application in many-core 
architectures. While some of the concepts described in this section 
apply to both the receive and transmit data paths, currently DNAC 
focuses on applications that only require the processing of 
incoming packets. Examples of applications that DNAC can 
support includes network tapping technologies, such as intrusion 
detection systems, full packet capture engines, or applications 
dealing with network analysis and monitoring in general. 
We structure the architecture discussion in four sections: (1) HPC 
features and APIs, (2) steering of packets at line rates, (3) 
visibility and dynamic packet control, and (4) implementation 
notes. 

3.1 HPC Features and APIs 
Common HPC NICs and modern operating systems provide 
different acceleration features as well as APIs to accommodate for 
application requirements. We start first by providing a brief 
description of the HPC features available: 
- Receive side scaling (RSS). Symmetric multiprocessing 
applications achieve scalability by running identical processes 
in parallel, each process taking a fair share of the total 
workload. In a standard OS, the task of load balancing network 
traffic to each process is carried out by a kernel thread, 
incurring a critical overhead as the additional CPU cycles and 
the extra per-packet copy needs to be done in the software. 
NICs supporting RSS can perform load balancing of traffic in 
hardware as well as directly DMA transfer packets to the right 
application process according to a predetermined load 
balancing algorithm, effectively eliminating the software traffic 
distribution bottleneck. 

- Kernel bypass. HPC NICs provide a direct data plane path 
between the application and the NIC so that packets can flow 
between these two layers without any kernel intervention. This 
saves a substantial amount of processing and context switching 
overhead. As a side effect of this approach and since the kernel 
is no longer involved, the application is responsible for all 
packet processing. 

- Packet coalescence. An implication of establishing a direct 
communication path between the NIC and the application is 
that the latter needs to be responsible for managing packet 
buffers. For instance, in the receive path, as packets are read by 
the application, new empty packet buffers need to be passed 
down to the NIC to replenish the ring of buffers so that the NIC 
can continue to transfer incoming packets. Packet coalescence 
is a hardware feature that gathers multiple packets together into 
a buffer and then has the application process the buffer at once. 
This allows applications to process and replenish packet buffers 
in larger batches, saving communication overheads between the 
NIC and the application. 

In terms of APIs, applications typically access the HPC NIC 
services via two interfaces: 

- Bare metal native API. The native API provides direct access 
to the NIC’s bare metal functions. Using this interface, 
applications can have access to all the HPC features, albeit at 
the cost of having to port the application. This also means that 
applications need to deal on their own with those services 
otherwise provided by the kernel. For instance, an application 

that needs to send and receive TCP/IP packets will need to 
process the TCP and IP layers. To overcome this limitation, 
some vendors provide as part of their SDK a user-level 
network stack library that applications can link to [4, 5].  

- PCAP API for packet capture applications. Applications that 
only need to capture incoming packets typically use the PCAP 
API, the standard BSD user-level interface providing access to 
raw packets (including all headers of the packet) on the 
receiving end. Because many applications are based on this 
library, most HPC NIC vendors provide their own PCAP 
library implementation leveraging the hardware acceleration 
features. A benefit of this approach is that applications based 
on the PCAP API don’t need to be ported. However, by 
introducing a new layer, this approach adds some additional 
overhead and it often does not support all the available bare 
metal HPC features. 

3.2 Steering Packets at Line Rates 
Figure 3 presents a view of how packets flow from the wire to the 
application in the DNAC architecture. As illustrated, the main 
heavy-lifting work to steer traffic inside the system is carried out 
by RSS. Because RSS is implemented in hardware, the 
application effectively receives traffic at wire speeds without 
incurring any CPU cycles. In comparison with the general purpose 
OS architecture (Figure 2), in the DNAC architecture we have 
that: 

- Packets are delivered without the need to neither interrupt the 
CPU nor invoke any interrupt service routine. Instead, the 
application polls packets from its incoming ring at its own 
natural pace. This eliminates expensive context switching 
operations. 

- Packets are no longer copied into kernel memory and from the 
kernel to userland. Instead, packets are directly transferred to 
the application’s userland memory.  

- The kernel is no longer involved in the processing of packets, 
further reducing the number of cycles required to process each 
packet. 

- Expensive system calls to read traffic from the input socket 
are also eliminated. 

- The decision to forward each packet to the right destination 
process is done in hardware, offloading this task from the 
CPU. In RSS, packets are forwarded to each process 
according to the hash value of the IP tuple, in a way that 
packets of the same flow are forwarded to the same 
destination process. 

DNAC also leverages packet coalescence, which helps reduce 
per-packet handling costs by delivering packets to the application 
in batches. The processing of packets using this feature is 
illustrated in Figure 4 and it works as follows: 
1. The application allocates large buffers (typically using Huge 

Pages from the OS) capable of holding multiple packets and 
registers them to the NIC. Arriving packets are transferred into 
a buffer. When the buffer is full or when a timeout since the 
last packet arrived expires, the NIC posts the event "coalesced 
packets ready" into a queue of events. 

2. The application process reads from the queue to get the new 
event, and gets a pointer to the buffer holding the batch of 
packets that triggered the event. 

3. The application process dispatches all packets in the buffer 
until completion. 
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The application process replenishes a new empty buffer so that the 
NIC can continue to fill more buffers at line rate. 

 
Figure 3. General view of the packet flow in the many-core 

system, leveraging RSS to bring packets from the wire directly 
into each process memory at wire speed. 

 
Packet coalescence helps improve performance in two ways: first, 
the cost of generating and processing each event is amortized 
across all the packets contained in one batch; second, the 
application only needs to replenish buffers on a per batch basis, 
rather than for each packet. These overheads can be important in 
achieving line rates because both of them involve interactions 
between the application and the NIC. 
 

 
Figure 4. Packet coalescence is used to process packets in batches 

helping reduce per-packet overheads. 

3.3 Visibility and Dynamic Packet 
Forwarding 
Delivering packets at the highest speed available is crucial in 
order to maximize the total system performance. However, 
delivering all packets as fast as possible to the application does 
not always deliver optimal performance. For instance, suppose 
that the application is overwhelmed to the point that it needs to 
drop packet P without processing it. Then, rather than delivering 

packet P to the application, a better strategy is to drop packet P as 
soon as possible. Another example is a scenario in which by 
investing a small amount of compute cycles performing some 
simple operations, the network layer can detect whether a packet 
is relevant to the application. For instance, it is better to drop all 
traffic on TCP port 443 as early as possible if it is known that the 
application is not capable of processing HTTPS traffic. These two 
examples are in fact part of two general classes of scenarios in 
which performing dynamic packet forwarding decisions provides 
a superior strategy. We refer to them as packet congestion and 
packet relevance, respectively, and summarize their definition in 
Table 1. 
Depending on the type of scenario, the optimal packet forwarding 
decision may or may not involve real time feedback from the 
current state of the system. For instance, the packet congestion 
scenario requires real time information on the degree of 
congestion the system is experiencing at the time a packet 
forwarding decision is made. This leads to a closed-loop 
controller design. On the other hand, certain packet relevance 
scenarios such as the case of dropping encrypted traffic do not 
require feedback, leading to an open-loop controller design. 
Further, not all packet relevance scenarios lead to open-loop 
systems; for instance, some applications may dynamically decide 
that a certain type of traffic is no longer relevant, conveying such 
information in the form of feedback to the network layer, which 
then can drop the traffic. Table 1 adds  a third column for the 
controller type used in each scenario. 

Table 1. Types of scenarios in which dynamic packet 
forwarding delivers better performance. 

Feedback Description Controller 

Packet 
congestion: 

Packets are dropped by the 
application as a consequence of the 
application being congested. 

closed-
loop 
control 

Packet 
relevance:  

Packets are dropped by the 
application as a consequence of the 
packet not being relevant to the 
application. 

open- or 
closed-
loop 
control 

It is well known from control theory that a key to performance is 
timely and accurate visibility and feedback of the system’s state. 
This observation provides an important justification for basing the 
design of DNAC on the NIC’s native bare metal API. (See 
Section 3.1 for a description of the NIC API's choices.) By 
running closer to the hardware, not only can we more efficiently 
steer packets to the application, but we can also improve visibility 
and accuracy in measuring the current state of the system. For 
instance, the alternative PCAP API provides a method to extract 
statistics, pcap_stats(), such as packet drops. However, this 
function runs with the full overhead of a system call and the 
lower-level PCAP layer only refreshes the statistics once a 
second. On a 10Gbps, up to 15 million small-size packets arrive in 
one second, rendering pcap_stats() an unfeasible API to 
implement the closed-loop controller.  
The design of the DNAC open- and close-loop controllers is 
introduced in Figure 5. Packets are first DMA transferred (1) to 
the process memory as described in Section 3.2. A packet 
forwarder is located between the incoming ring and the 
application to make low computational and quick packet steering 
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decisions. The forwarder utilizes three sources of information to 
make such decisions: the current level of congestion (5) seen in 
the ring (feedback type: packet congestion; controller type: 
closed-loop), any feedback (6) directly received from the 
application (feedback type: packet relevance; controller type: 
closed-loop control), and pre-established rules (7) configurable by 
the network operator (feedback type: packet relevance; controller 
type: open-loop control). With this feedback, the forwarder then 
makes a per-packet binary decision: it either forwards the packet 
to the application or it drops it. 

 
Figure 5. Zoom into the internal architecture of each process 

in the DNAC architecture: (1) packets are directly DMA 
transferred to the right core, (2) a forwarder (F) provides 

intelligent packet dropping decisions based on both open- and 
closed-loop control; (3) packets are processed by the 

application (A) running in its own core. 

3.4 Implementation Notes 
We have implemented DNAC to enable high-performance packet 
injection into Bro [6], the advanced network monitoring system 
(NMS) actively developed by computer scientists at the 
International Computer Science Institute (ICSI) and the National 
Center for Supercomputing Applications (NCSA). Bro provides a 
mode of operation called cluster in which multiple workers are 
run in parallel, each processing a fair share of the total traffic. In 
this mode, a Bro worker fits the definition of our application 
building block (represented with the block "A" in Figure 5). 
Our implementation of DNAC is architecture independent, 
providing an abstraction layer between the application and the 
hardware NIC, and requires no changes to Bro. While it is 
designed to support multiple NIC vendors, we are currently 
running DNAC on the SolarFlare SFN7000 series, a 10Gbps HPC 
network adapter. Our choice for the SFN7000 is based on its 
support for all the most advanced HPC features described in this 
paper, including RSS, packet coalescing and support for a bare 

metal native API. The Solarflare native API is open sourced and 
available as part of the OpenOnload.org project [4]. 
The implementation of our closed- and open-loop controllers 
makes use of several techniques to help substantially improve the 
performance of the overall system. Table 2 summarizes these 
techniques and algorithms. 

Table 2. Implementation of the control loops 

Feedback: packet congestion | Controller: closed-loop 
Algorithm: TED Queuing. Tail early dropping is a queuing 
policy that, upon congestion, drops packets from the tails of each 
connection, preserving the heads, by dynamically computing a 
connection cut threshold. This optimization leverages the well-
known heavy-tailed nature of traffic [8], which states that on 
average, connection heads carry higher degrees of information 
than connection tails. TED queuing is an algorithm developed by 
the authors and formally presented in [9]. 

Feedback: packet relevancy | Controller: closed-loop  
Algorithm: Packet shunting. The Bro workers have an API that 
can be used to communicate packet shunting decisions to the 
forwarder. For instance, if a Bro worker comes to the conclusion 
that a certain connection is no longer relevant, it can tell the 
forwarder to drop any future packets from that connection. 

Feedback: packet relevancy Controller: open-loop  
Algorithm: Packet prioritization. Due to the way protocols are 
constructed, there exist certain packets that carry higher degrees 
of information. For instance, dropping a FIN packet not only has 
semantic implications at the protocol level, but it impacts 
performance as the upper layer needs to rely on expensive 
timeouts and hold context information in memory for unnecessary 
longer periods of time prior to deallocating the connection data 
structure. DNAC allows network operators to specify fixed rules 
to prioritize such type of packets.  

 

4. MEASUREMENTS 
In this section, we present some initial tests and measurements of 
the DNAC architecture focusing on two aspects of the solution: 
(1) single-node performance and (2) the value of closed- and 
open-loop control. In a forthcoming paper, we will present a more 
comprehensive set of tests and benchmarks of the proposed 
solution. 
To illustrate the value of dynamic packet forwarding in HPC 
networking, we define a test that will stress the packet congestion 
closed-loop controller. This controller implements TED queuing 
(See Table 2), a technique that dynamically reacts to system 
congestion by dropping connection tails. Using httperf [7], we 
synthetically create a packet trace consisting of a population of 
clients downloading a 1MB file from 25 servers using the HTTP 
protocol. With this setup, we collect a 65GB trace which we use 
to stress our implementation by replaying it at various speed-up 
rates. 
Our application runs Bro, a network monitor system that generates 
logs containing real-time information of events detected from the 
incoming traffic. We measure performance in terms of the number 
of events that Bro can detect on the given input trace. While Bro 
generates events for a large variety of protocols and network 
analytics, we focus on three types of events: 
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- http events: generated every time an HTTP transaction is 
detected. 

- files events: generated every time a file download is detected.  
- http_track events: generated every time a pair of HTTP 

REQUEST/REPLY within the same transaction is detected.  
The http and file analytics come with stock bro, whereas 
http_track is a simple analytic that the authors wrote and which 
can be downloaded from https://github.com/reservoirlabs/bro-
scripts/blob/master/bench/benchHttp.bro. 
We start by feeding the trace to our system at a rate of 500Mbps. 
This rate is low enough to ensure that there are no packet drops in 
the system so that we can take some initial measurements of the 
trace. Then we run the same test at an input rate of 5Gbps, and 
measure the effect of enabling DNAC’s dynamic packet control 
versus disabling it. The results are presented in Table 3 and Figure 
6. 
As shown, at 500Mbps (no congestion scenario), both DNAC and 
no DNAC configuration perform equally well. Increasing the 
input rate to 5Gbps triggers the closed-loop control in DNAC to 
proactively drop connection tails as a function of the congestion 
level. As a result, system level performance increases by about 3 
times (between 2.5X and 3.2X depending on the analytic.) 

Table 3. Number of events detected 

 

500Mbps input rate 
 

5Gbps input rate 

 

http f iles http_track 
 

http f iles http_track 

w/ DNAC 42449 39594 31300 
 

38425 33137 28400 

w/o DNAC 42434 39314 31200 
 

15314 10376 8700 

gain 1 1 1 
 

2.5 3.2 3.2 

 

 

Figure 6. Number of events detected by a single Bro worker 
when running the input trace at 500Mbps (upper graph) and 

at 5Gbps (lower graph). At 5Gbps and without dynamic 
packet forwarding, the system cannot keep up. 

For the case of 5Gbps input traffic, Figure 7 presents the number 
of packets received, dropped and forwarded per second with or 
without dynamic packet forwarding (marked with the labels ‘w/ 

DNAC’ and ‘w/o DNAC’) as a function of time. Notice that in the 
‘w/o DNAC’ case, all received packets are forwarded to the 
application, so that the curves for packets received and forwarded 
collide into a single curve, whereas the number of dropped 
packets is zero. 
We observe the following: 
- Both systems (‘w/ DNAC’ and ‘w/o DNAC’) start at the same 

level of performance, accepting about 200,000 packets per 
second and forwarding all the received traffic to the 
application. 

- Because the system is congested (at 5Gbps a single worker 
cannot keep up with all packets), DNAC reacts by starting to 
cut connection tails. The size of the tails cut by  the TED 
algorithm increases until system congestion is eliminated. As 
indicated by the ‘packets dropped w/ DNAC’ curve, DNAC 
intentionally drops packets until reaching a steady state. 

- Because DNAC reacts to congestion by proactively dropping 
packets as soon as congestion is detected, the overall system 
health increases in that the system can accept about 400,000 
packets per second, twice as many as without DNAC at 
200,000 packets per second. 

- In steady state, we have that DNAC forwards about 70,000 
packets per second to the Bro worker, versus 200,000 packets 
per second when DNAC is disabled. Yet as shown in Figure 6, 
DNAC delivers about 3 times better system performance as 
measured by events detected per second. In other words, the 
per-packet productivity increases by a factor of 8.5X. This 
illustrates the value of early packet dropping upon congestion: 
whenever there is congestion, a better strategy is to drop the 
less relevant packets as early in the network stack as possible. 

 

Figure 7. Packets received, forwarded and dropped per 
second with or without the DNAC layer. 

5. CONCLUSIONS 
When it comes to designing a packet dispatching layer for high-
performance computing (HPC) applications, forwarding packets 
as fast as possible in a system agnostic manner can be sub-
optimal. While the network layer is limited in the type of 
operations it can perform on a per-packet basis, there exist certain 
simple actions that it can carry out to proactively react to 
congestion and substantially improve performance. In this work, 
we provide a framework to classify such techniques based on the 
concepts of closed-loop and open-loop feedback control and we 
apply this framework to the problem of HPC networking for 
many-core applications. We illustrate via some initial benchmarks 
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that the overall system performance can be notably increased 
when the network layer is allowed to take an active role in 
managing system congestion. 
In a forthcoming paper, we will provide a comprehensive set of 
tests to evaluate and benchmark the performance of the proposed 
solution in greater detail. 
The work presented in this paper is implemented as  part of the R-
Scope appliance developed by Reservoir Labs [10]. 

6. ACKNOWLEDGMENTS 
The authors want to thank Peter Cullen, Dilip Madathil and Jeff 
Lucovsky for their valuable comments and feedback. 

This work was funded in part by the US Department of Energy 
under Award Numbers DE-SC0004400 and DE-SC0006343. 

7. REFERENCES 
[1] Luca Deri,  Netikos S. P. A , Via Del Brennero Km, Loc La 
Figuretta, “Improving Passive Packet Capture: Beyond Device 
Polling,” Proceedings of SANE 2004. 
[2] Alfredo Cardigliano, Luca Deri, et al.  “vPF_RING: Towards 
Wire-Speed Network Monitoring Using Virtual Machines,” 
Proceedings of IMC 2011, November 2011. 
[3] “High-Performance Multi-Core Networking Software Design 
Options,” Intel, Wind River, White Paper 2011. 

[4] OpenOnload high performance network stack, Solarflare 
Communications, Inc.: http://www.openonload.org/ 
[5] Rump Kernel TCP/IP stack for DPDK: 
https://github.com/rumpkernel/drv-netif-dpdk  
[6] V. Paxson, “Bro: A System for Detecting Network Intruders in 
Real-Time,” Computer Networks, 31(23-24), pp. 2435-2463, 14 
Dec. 1999.  
[7] Mosberger, D. and Jin, T. httperf: A Tool for Measuring Web 
Server Performance". Performance Evaluation Review, 26, 3 
(December 1998), 31-37. 
[8] Paxson, V. “Empirically Derived Analytic Models of Wide-
Area TCP Connections,” IEEE/ACM Transactions on 
Networking, 2, 4 (August 1994), 316-336. 
[9] J. Ros-Giralt, A. Commike, B. Rotsted, “Overcoming 
Performance Collapse for 100Gbps Cyber Security,”, In 
Proceedings of the First Workshop on Changing Landscapes in 
HPC Security, New York, NY, USA, ACM, June, 2013.  

[10] R-Scope: https://www.reservoir.com/product/r-scope/ 
[11] Wenji Wu, Phil DeMar, “WireCAP: a Novel Packet Capture 
Engine for Commodity NICs in High-speed Networks,” IMC'14, 
November 05 – 07 2014, Vancouver, BC, Canada. 
 

 
 

 


	1. INTRODUCTION
	2. BACKGROUND WORK
	3. ARCHITECTURE
	3.1 HPC Features and APIs
	3.2 Steering Packets at Line Rates
	3.3 Visibility and Dynamic Packet Forwarding
	3.4 Implementation Notes

	4. MEASUREMENTS
	5. CONCLUSIONS
	6. ACKNOWLEDGMENTS
	7. REFERENCES

