
1

High-Performance Many-Core Networking: Design and
Implementation

Jordi Ros-Giralt, Alan Commike, Dan Honey, Richard Lethin
Reservoir Labs

632 Broadway, Suite 803
New York, NY 10012

Abstract — Operating systems play a key role in providing
general purpose services to upper layer applications at the highest
available performance level. The two design requirements —
 generality and performance — are however in contention: the
more general purpose a service layer is, the more overhead it
incurs in accessing domain-specific high-performance features
provided by the layers beneath it. This trade-off comes to manifest
in modern computer systems as the state-of-the-art has evolved
from architectures with a few number of cores to systems
employing a very large number of cores (many-core systems).
Such evolution has rendered the networking layer in current
operating systems inefficient as its general purpose design
deprives it from a proper use of the large number of cores. In this
paper we introduce DNAC (Dynamic Network Acceleration for
Many-Core), a high-performance abstraction layer designed to
target the maximum network performance available from the
network interface in many-core general purpose operating
systems.

CCS Concepts

• Computer systems organization~Multicore architectures

• Security and privacy~Network security

Keywords
High-performance networking; closed-loop control systems

1. INTRODUCTION
Computers are systems of growing complexity that combine
sophisticated hardware engines (processors, memory modules,
network interfaces, etc.) with a vast number of software modules
(operating systems, drivers, applications, etc.). As one strategy to
deal with such complexity, computers are implemented using a
layering approach, whereby services are organized into N layers,
with each layer leveraging the services provided by the level
beneath to deliver new services to the level above. Although not
necessarily always true, users typically interface with computers
via the top layer (layer N), while computers interact with other
computers most normally via the lowest layer (layer 1). This
approach enables the separation of concerns, a design principle
that keeps the implementation modular and general, simplifying

development and maintenance.
While layering is a powerful strategy upon which many successful
general-purpose architectures depend, it comes at a performance
cost, as every layer adds computing distance between the
application and the hardware. Take for instance a read operation
on a file. The execution path needs to cross the user-space file
system API layer, the system call layer, the kernel-space file
system layer and the driver layer in order to retrieve the requested
data from storage. The higher the layer is, the richer and more
general its services are, albeit at a slower performance. This trade-
off of generality versus performance is illustrated in Figure 1.
Within computer architectures, one area that has been the subject
of much research and development is the network layer. In a
traditional architecture, applications interface with the network via
the standard sockets API. This approach provides great flexibility
but requires the processing of several layers before data can be
transferred between the network and the application, including the
socket layer in user space, the system call layer, the socket layer
in kernel space, the network layer also in the kernel (e.g., the
TCP/IP stack or the PCAP layers), and the lower level
driver / direct memory access (DMA) layer. This architecture not
only adds excessive amounts of overhead for high-performance
computing (HPC) applications, but it also lacks scalability in
systems with a large number of cores, as packets need to be
demultiplexed and distributed across all cores by the kernel,
inducing unnecessary packet copies and creating a kernel
bottleneck.

Figure 1. A layered architecture faces the generality versus

performance trade-off. The lower level, closer to the physical
layer, provides the absolute maximum performance. New

layers add more functionality, adding generality to the system,
at the expense of losing (at each level) a certain degree of

performance.
In our work we present DNAC, Dynamic Network Acceleration
for Many-Core, a design and implementation to resolve the HPC
problems faced by a general-purpose OS when running on many-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
INDIS2015, November 15-20, 2015, Austin, TX, USA
© 2015 ACM. ISBN 978-1-4503-4002-1/15/11 $15.00
DOI: http://dx.doi.org/10.1145/2830318.2830319

2

core systems. We argue that an optimized packet handling layer
should consider three design requirements:
- Performance. The implementation should be able to transfer

packets as efficiently as possible, minimizing compute cycles
and memory bandwidth spent on each packet.

- Dynamic packet forwarding. The optimal forwarding action
applied to each packet should in general be dynamic and
dependent on the system’s current state. For instance, the
optimal packet actions taken on a system that is running at
10% of its capacity are in general not the same as those that
ought to be taken when the system is running at 100% or
above its capacity.

- Visibility. In order to make proper packet handling decisions,
it is crucial to have a precise and fine grain knowledge of the
system’s state. For instance, the packet forwarding layer
should know whether the system is currently dropping packets
and if so, the degree of congestion, in order to make a proper
packet forwarding decision.

Much of the work on HPC networking for general computer
architectures has focused on performance, leaving a void in the
area of optimal packet handling and visibility. Our work provides
a comprehensive solution to HPC networking by approaching the
problem as a closed-loop control system, integrating visibility and
feedback into the packet forwarding engine (control plane), while
leveraging all the bare metal acceleration features provided by the
underlying hardware (data plane).
The rest of the paper is organized as follows. In Section 2 we
introduce the current state-of-the-art by summarizing prior
background work. Section 3 introduces the main body of this
work with the proposed architecture design and implementation.
Section 5 provides some benchmark measurements of the
proposed solution, and we conclude in Section 6 with some final
remarks and future work.

2. BACKGROUND WORK
High-performance networking in general-purpose computer
systems has been the subject of extensive research. For the most
part, work has focused on resolving well-known system
bottlenecks introduced by the network stack as part of the
operating system (OS). Consider for instance the sequence of
steps that an incoming packet must follow to reach an application.
Starting from the wire, the network interface card (NIC) first
captures the packet and transfers it to a buffer in kernel memory
using direct memory access (DMA). The NIC then interrupts the
CPU which stops its current task in order to serve the associated
interrupt service routine (ISR). The ISR performs some light-
weight housekeeping work and hands the newly arrived packet to
the upper layer before returning control of the CPU. A kernel
thread is then responsible to walk the packet through the various
network layers prior to reaching the socket. For instance, a
TCP/IP packet will first go through the IP layer, then the TCP
layer, and finally be delivered to a socket. The socket layer has
two levels, one living in the kernel space and the other in user
space. The payload of the incoming packet is pushed into the
kernel socket, at which point the kernel thread completes its job.
Then, the application running in user space issues a read() system
call to copy the packet payload from the kernel socket into the
user space socket, from where it can finally read its content.
Figure 2 provides a diagram of the incoming packet flow, from
the wire to the application processes. Notice that a similar set of
operations with the same overheads take place when packets are
transmitted.

A good number of techniques have been developed to reduce
some of the overheads incurred by the OS in receiving and
transmitting packets. mmap() can be used to map buffers allocated
in user space down into the kernel space in a way that the OS can
eliminate the extra packet copies incurred at the socket layer,
saving both CPU cycles and memory bandwidth. This technique
requires no hardware cooperation and therefore maintains the
same degree of generality while improving performance.
Examples of technologies employing this approach are
libpcap/mmap and vanilla PF_RING [1]. The performance gains
are however marginal, and in most HPC applications this
approach is not enough. If the NIC hardware can cooperate and
provide supporting features like receive side scaling (RSS), the
software can be architected to ensure zero-packet copies across
the whole network stack. In this approach, the application
registers memory using the NIC’s native API. The NIC transfers
via DMA incoming packets directly to this memory, allowing
applications to pull data directly from their buffers. A side benefit
of this approach is that it eliminates expensive interrupts, as data
is now pulled from the application side. In addition, if the
application runs multiple processes and the NIC supports RSS,
this approach allows for packets of the same flow to be directly
DMA transferred to the right application process, enabling zero-
copy load balancing. This approach is implemented in
architectures such as PF_RING ZC [2], Intel’s DPDK [3], or in
other off-the-shelf HPC NIC vendors that provide a native API.

Figure 2. Incoming packets in a general-purpose OS

architecture have to traverse many software layers before
they can reach their application socket.

Most prior work has focused on the high-performance aspects of
the problem. Being able to run applications closer to the hardware
layer brings however another relevant advantage: timely fine-
grained visibility. This opens up the possibility of incorporating
real-time feedback and control to optimize the packet forwarding
routines in order to attain higher levels of system performance.

3

3. ARCHITECTURE
In this section we introduce DNAC, Dynamic Network
Acceleration for Many-Core, an architecture and implementation
of a high-performance network layer designed to efficiently steer
packets from the wire to the application in many-core
architectures. While some of the concepts described in this section
apply to both the receive and transmit data paths, currently DNAC
focuses on applications that only require the processing of
incoming packets. Examples of applications that DNAC can
support includes network tapping technologies, such as intrusion
detection systems, full packet capture engines, or applications
dealing with network analysis and monitoring in general.
We structure the architecture discussion in four sections: (1) HPC
features and APIs, (2) steering of packets at line rates, (3)
visibility and dynamic packet control, and (4) implementation
notes.

3.1 HPC Features and APIs
Common HPC NICs and modern operating systems provide
different acceleration features as well as APIs to accommodate for
application requirements. We start first by providing a brief
description of the HPC features available:
- Receive side scaling (RSS). Symmetric multiprocessing
applications achieve scalability by running identical processes
in parallel, each process taking a fair share of the total
workload. In a standard OS, the task of load balancing network
traffic to each process is carried out by a kernel thread,
incurring a critical overhead as the additional CPU cycles and
the extra per-packet copy needs to be done in the software.
NICs supporting RSS can perform load balancing of traffic in
hardware as well as directly DMA transfer packets to the right
application process according to a predetermined load
balancing algorithm, effectively eliminating the software traffic
distribution bottleneck.

- Kernel bypass. HPC NICs provide a direct data plane path
between the application and the NIC so that packets can flow
between these two layers without any kernel intervention. This
saves a substantial amount of processing and context switching
overhead. As a side effect of this approach and since the kernel
is no longer involved, the application is responsible for all
packet processing.

- Packet coalescence. An implication of establishing a direct
communication path between the NIC and the application is
that the latter needs to be responsible for managing packet
buffers. For instance, in the receive path, as packets are read by
the application, new empty packet buffers need to be passed
down to the NIC to replenish the ring of buffers so that the NIC
can continue to transfer incoming packets. Packet coalescence
is a hardware feature that gathers multiple packets together into
a buffer and then has the application process the buffer at once.
This allows applications to process and replenish packet buffers
in larger batches, saving communication overheads between the
NIC and the application.

In terms of APIs, applications typically access the HPC NIC
services via two interfaces:

- Bare metal native API. The native API provides direct access
to the NIC’s bare metal functions. Using this interface,
applications can have access to all the HPC features, albeit at
the cost of having to port the application. This also means that
applications need to deal on their own with those services
otherwise provided by the kernel. For instance, an application

that needs to send and receive TCP/IP packets will need to
process the TCP and IP layers. To overcome this limitation,
some vendors provide as part of their SDK a user-level
network stack library that applications can link to [4, 5].

- PCAP API for packet capture applications. Applications that
only need to capture incoming packets typically use the PCAP
API, the standard BSD user-level interface providing access to
raw packets (including all headers of the packet) on the
receiving end. Because many applications are based on this
library, most HPC NIC vendors provide their own PCAP
library implementation leveraging the hardware acceleration
features. A benefit of this approach is that applications based
on the PCAP API don’t need to be ported. However, by
introducing a new layer, this approach adds some additional
overhead and it often does not support all the available bare
metal HPC features.

3.2 Steering Packets at Line Rates
Figure 3 presents a view of how packets flow from the wire to the
application in the DNAC architecture. As illustrated, the main
heavy-lifting work to steer traffic inside the system is carried out
by RSS. Because RSS is implemented in hardware, the
application effectively receives traffic at wire speeds without
incurring any CPU cycles. In comparison with the general purpose
OS architecture (Figure 2), in the DNAC architecture we have
that:

- Packets are delivered without the need to neither interrupt the
CPU nor invoke any interrupt service routine. Instead, the
application polls packets from its incoming ring at its own
natural pace. This eliminates expensive context switching
operations.

- Packets are no longer copied into kernel memory and from the
kernel to userland. Instead, packets are directly transferred to
the application’s userland memory.

- The kernel is no longer involved in the processing of packets,
further reducing the number of cycles required to process each
packet.

- Expensive system calls to read traffic from the input socket
are also eliminated.

- The decision to forward each packet to the right destination
process is done in hardware, offloading this task from the
CPU. In RSS, packets are forwarded to each process
according to the hash value of the IP tuple, in a way that
packets of the same flow are forwarded to the same
destination process.

DNAC also leverages packet coalescence, which helps reduce
per-packet handling costs by delivering packets to the application
in batches. The processing of packets using this feature is
illustrated in Figure 4 and it works as follows:
1. The application allocates large buffers (typically using Huge

Pages from the OS) capable of holding multiple packets and
registers them to the NIC. Arriving packets are transferred into
a buffer. When the buffer is full or when a timeout since the
last packet arrived expires, the NIC posts the event "coalesced
packets ready" into a queue of events.

2. The application process reads from the queue to get the new
event, and gets a pointer to the buffer holding the batch of
packets that triggered the event.

3. The application process dispatches all packets in the buffer
until completion.

4

The application process replenishes a new empty buffer so that the
NIC can continue to fill more buffers at line rate.

Figure 3. General view of the packet flow in the many-core

system, leveraging RSS to bring packets from the wire directly
into each process memory at wire speed.

Packet coalescence helps improve performance in two ways: first,
the cost of generating and processing each event is amortized
across all the packets contained in one batch; second, the
application only needs to replenish buffers on a per batch basis,
rather than for each packet. These overheads can be important in
achieving line rates because both of them involve interactions
between the application and the NIC.

Figure 4. Packet coalescence is used to process packets in batches

helping reduce per-packet overheads.

3.3 Visibility and Dynamic Packet
Forwarding
Delivering packets at the highest speed available is crucial in
order to maximize the total system performance. However,
delivering all packets as fast as possible to the application does
not always deliver optimal performance. For instance, suppose
that the application is overwhelmed to the point that it needs to
drop packet P without processing it. Then, rather than delivering

packet P to the application, a better strategy is to drop packet P as
soon as possible. Another example is a scenario in which by
investing a small amount of compute cycles performing some
simple operations, the network layer can detect whether a packet
is relevant to the application. For instance, it is better to drop all
traffic on TCP port 443 as early as possible if it is known that the
application is not capable of processing HTTPS traffic. These two
examples are in fact part of two general classes of scenarios in
which performing dynamic packet forwarding decisions provides
a superior strategy. We refer to them as packet congestion and
packet relevance, respectively, and summarize their definition in
Table 1.
Depending on the type of scenario, the optimal packet forwarding
decision may or may not involve real time feedback from the
current state of the system. For instance, the packet congestion
scenario requires real time information on the degree of
congestion the system is experiencing at the time a packet
forwarding decision is made. This leads to a closed-loop
controller design. On the other hand, certain packet relevance
scenarios such as the case of dropping encrypted traffic do not
require feedback, leading to an open-loop controller design.
Further, not all packet relevance scenarios lead to open-loop
systems; for instance, some applications may dynamically decide
that a certain type of traffic is no longer relevant, conveying such
information in the form of feedback to the network layer, which
then can drop the traffic. Table 1 adds a third column for the
controller type used in each scenario.

Table 1. Types of scenarios in which dynamic packet
forwarding delivers better performance.

Feedback Description Controller

Packet
congestion:

Packets are dropped by the
application as a consequence of the
application being congested.

closed-
loop
control

Packet
relevance:

Packets are dropped by the
application as a consequence of the
packet not being relevant to the
application.

open- or
closed-
loop
control

It is well known from control theory that a key to performance is
timely and accurate visibility and feedback of the system’s state.
This observation provides an important justification for basing the
design of DNAC on the NIC’s native bare metal API. (See
Section 3.1 for a description of the NIC API's choices.) By
running closer to the hardware, not only can we more efficiently
steer packets to the application, but we can also improve visibility
and accuracy in measuring the current state of the system. For
instance, the alternative PCAP API provides a method to extract
statistics, pcap_stats(), such as packet drops. However, this
function runs with the full overhead of a system call and the
lower-level PCAP layer only refreshes the statistics once a
second. On a 10Gbps, up to 15 million small-size packets arrive in
one second, rendering pcap_stats() an unfeasible API to
implement the closed-loop controller.
The design of the DNAC open- and close-loop controllers is
introduced in Figure 5. Packets are first DMA transferred (1) to
the process memory as described in Section 3.2. A packet
forwarder is located between the incoming ring and the
application to make low computational and quick packet steering

5

decisions. The forwarder utilizes three sources of information to
make such decisions: the current level of congestion (5) seen in
the ring (feedback type: packet congestion; controller type:
closed-loop), any feedback (6) directly received from the
application (feedback type: packet relevance; controller type:
closed-loop control), and pre-established rules (7) configurable by
the network operator (feedback type: packet relevance; controller
type: open-loop control). With this feedback, the forwarder then
makes a per-packet binary decision: it either forwards the packet
to the application or it drops it.

Figure 5. Zoom into the internal architecture of each process

in the DNAC architecture: (1) packets are directly DMA
transferred to the right core, (2) a forwarder (F) provides

intelligent packet dropping decisions based on both open- and
closed-loop control; (3) packets are processed by the

application (A) running in its own core.

3.4 Implementation Notes
We have implemented DNAC to enable high-performance packet
injection into Bro [6], the advanced network monitoring system
(NMS) actively developed by computer scientists at the
International Computer Science Institute (ICSI) and the National
Center for Supercomputing Applications (NCSA). Bro provides a
mode of operation called cluster in which multiple workers are
run in parallel, each processing a fair share of the total traffic. In
this mode, a Bro worker fits the definition of our application
building block (represented with the block "A" in Figure 5).
Our implementation of DNAC is architecture independent,
providing an abstraction layer between the application and the
hardware NIC, and requires no changes to Bro. While it is
designed to support multiple NIC vendors, we are currently
running DNAC on the SolarFlare SFN7000 series, a 10Gbps HPC
network adapter. Our choice for the SFN7000 is based on its
support for all the most advanced HPC features described in this
paper, including RSS, packet coalescing and support for a bare

metal native API. The Solarflare native API is open sourced and
available as part of the OpenOnload.org project [4].
The implementation of our closed- and open-loop controllers
makes use of several techniques to help substantially improve the
performance of the overall system. Table 2 summarizes these
techniques and algorithms.

Table 2. Implementation of the control loops

Feedback: packet congestion | Controller: closed-loop
Algorithm: TED Queuing. Tail early dropping is a queuing
policy that, upon congestion, drops packets from the tails of each
connection, preserving the heads, by dynamically computing a
connection cut threshold. This optimization leverages the well-
known heavy-tailed nature of traffic [8], which states that on
average, connection heads carry higher degrees of information
than connection tails. TED queuing is an algorithm developed by
the authors and formally presented in [9].

Feedback: packet relevancy | Controller: closed-loop
Algorithm: Packet shunting. The Bro workers have an API that
can be used to communicate packet shunting decisions to the
forwarder. For instance, if a Bro worker comes to the conclusion
that a certain connection is no longer relevant, it can tell the
forwarder to drop any future packets from that connection.

Feedback: packet relevancy Controller: open-loop
Algorithm: Packet prioritization. Due to the way protocols are
constructed, there exist certain packets that carry higher degrees
of information. For instance, dropping a FIN packet not only has
semantic implications at the protocol level, but it impacts
performance as the upper layer needs to rely on expensive
timeouts and hold context information in memory for unnecessary
longer periods of time prior to deallocating the connection data
structure. DNAC allows network operators to specify fixed rules
to prioritize such type of packets.

4. MEASUREMENTS
In this section, we present some initial tests and measurements of
the DNAC architecture focusing on two aspects of the solution:
(1) single-node performance and (2) the value of closed- and
open-loop control. In a forthcoming paper, we will present a more
comprehensive set of tests and benchmarks of the proposed
solution.
To illustrate the value of dynamic packet forwarding in HPC
networking, we define a test that will stress the packet congestion
closed-loop controller. This controller implements TED queuing
(See Table 2), a technique that dynamically reacts to system
congestion by dropping connection tails. Using httperf [7], we
synthetically create a packet trace consisting of a population of
clients downloading a 1MB file from 25 servers using the HTTP
protocol. With this setup, we collect a 65GB trace which we use
to stress our implementation by replaying it at various speed-up
rates.
Our application runs Bro, a network monitor system that generates
logs containing real-time information of events detected from the
incoming traffic. We measure performance in terms of the number
of events that Bro can detect on the given input trace. While Bro
generates events for a large variety of protocols and network
analytics, we focus on three types of events:

6

- http events: generated every time an HTTP transaction is
detected.

- files events: generated every time a file download is detected.
- http_track events: generated every time a pair of HTTP

REQUEST/REPLY within the same transaction is detected.
The http and file analytics come with stock bro, whereas
http_track is a simple analytic that the authors wrote and which
can be downloaded from https://github.com/reservoirlabs/bro-
scripts/blob/master/bench/benchHttp.bro.
We start by feeding the trace to our system at a rate of 500Mbps.
This rate is low enough to ensure that there are no packet drops in
the system so that we can take some initial measurements of the
trace. Then we run the same test at an input rate of 5Gbps, and
measure the effect of enabling DNAC’s dynamic packet control
versus disabling it. The results are presented in Table 3 and Figure
6.
As shown, at 500Mbps (no congestion scenario), both DNAC and
no DNAC configuration perform equally well. Increasing the
input rate to 5Gbps triggers the closed-loop control in DNAC to
proactively drop connection tails as a function of the congestion
level. As a result, system level performance increases by about 3
times (between 2.5X and 3.2X depending on the analytic.)

Table 3. Number of events detected

500Mbps input rate

5Gbps input rate

http f iles http_track

http f iles http_track

w/ DNAC 42449 39594 31300

38425 33137 28400

w/o DNAC 42434 39314 31200

15314 10376 8700

gain 1 1 1

2.5 3.2 3.2

Figure 6. Number of events detected by a single Bro worker
when running the input trace at 500Mbps (upper graph) and

at 5Gbps (lower graph). At 5Gbps and without dynamic
packet forwarding, the system cannot keep up.

For the case of 5Gbps input traffic, Figure 7 presents the number
of packets received, dropped and forwarded per second with or
without dynamic packet forwarding (marked with the labels ‘w/

DNAC’ and ‘w/o DNAC’) as a function of time. Notice that in the
‘w/o DNAC’ case, all received packets are forwarded to the
application, so that the curves for packets received and forwarded
collide into a single curve, whereas the number of dropped
packets is zero.
We observe the following:
- Both systems (‘w/ DNAC’ and ‘w/o DNAC’) start at the same

level of performance, accepting about 200,000 packets per
second and forwarding all the received traffic to the
application.

- Because the system is congested (at 5Gbps a single worker
cannot keep up with all packets), DNAC reacts by starting to
cut connection tails. The size of the tails cut by the TED
algorithm increases until system congestion is eliminated. As
indicated by the ‘packets dropped w/ DNAC’ curve, DNAC
intentionally drops packets until reaching a steady state.

- Because DNAC reacts to congestion by proactively dropping
packets as soon as congestion is detected, the overall system
health increases in that the system can accept about 400,000
packets per second, twice as many as without DNAC at
200,000 packets per second.

- In steady state, we have that DNAC forwards about 70,000
packets per second to the Bro worker, versus 200,000 packets
per second when DNAC is disabled. Yet as shown in Figure 6,
DNAC delivers about 3 times better system performance as
measured by events detected per second. In other words, the
per-packet productivity increases by a factor of 8.5X. This
illustrates the value of early packet dropping upon congestion:
whenever there is congestion, a better strategy is to drop the
less relevant packets as early in the network stack as possible.

Figure 7. Packets received, forwarded and dropped per
second with or without the DNAC layer.

5. CONCLUSIONS
When it comes to designing a packet dispatching layer for high-
performance computing (HPC) applications, forwarding packets
as fast as possible in a system agnostic manner can be sub-
optimal. While the network layer is limited in the type of
operations it can perform on a per-packet basis, there exist certain
simple actions that it can carry out to proactively react to
congestion and substantially improve performance. In this work,
we provide a framework to classify such techniques based on the
concepts of closed-loop and open-loop feedback control and we
apply this framework to the problem of HPC networking for
many-core applications. We illustrate via some initial benchmarks

7

that the overall system performance can be notably increased
when the network layer is allowed to take an active role in
managing system congestion.
In a forthcoming paper, we will provide a comprehensive set of
tests to evaluate and benchmark the performance of the proposed
solution in greater detail.
The work presented in this paper is implemented as part of the R-
Scope appliance developed by Reservoir Labs [10].

6. ACKNOWLEDGMENTS
The authors want to thank Peter Cullen, Dilip Madathil and Jeff
Lucovsky for their valuable comments and feedback.

This work was funded in part by the US Department of Energy
under Award Numbers DE-SC0004400 and DE-SC0006343.

7. REFERENCES
[1] Luca Deri, Netikos S. P. A , Via Del Brennero Km, Loc La
Figuretta, “Improving Passive Packet Capture: Beyond Device
Polling,” Proceedings of SANE 2004.
[2] Alfredo Cardigliano, Luca Deri, et al. “vPF_RING: Towards
Wire-Speed Network Monitoring Using Virtual Machines,”
Proceedings of IMC 2011, November 2011.
[3] “High-Performance Multi-Core Networking Software Design
Options,” Intel, Wind River, White Paper 2011.

[4] OpenOnload high performance network stack, Solarflare
Communications, Inc.: http://www.openonload.org/
[5] Rump Kernel TCP/IP stack for DPDK:
https://github.com/rumpkernel/drv-netif-dpdk
[6] V. Paxson, “Bro: A System for Detecting Network Intruders in
Real-Time,” Computer Networks, 31(23-24), pp. 2435-2463, 14
Dec. 1999.
[7] Mosberger, D. and Jin, T. httperf: A Tool for Measuring Web
Server Performance". Performance Evaluation Review, 26, 3
(December 1998), 31-37.
[8] Paxson, V. “Empirically Derived Analytic Models of Wide-
Area TCP Connections,” IEEE/ACM Transactions on
Networking, 2, 4 (August 1994), 316-336.
[9] J. Ros-Giralt, A. Commike, B. Rotsted, “Overcoming
Performance Collapse for 100Gbps Cyber Security,”, In
Proceedings of the First Workshop on Changing Landscapes in
HPC Security, New York, NY, USA, ACM, June, 2013.

[10] R-Scope: https://www.reservoir.com/product/r-scope/
[11] Wenji Wu, Phil DeMar, “WireCAP: a Novel Packet Capture
Engine for Commodity NICs in High-speed Networks,” IMC'14,
November 05 – 07 2014, Vancouver, BC, Canada.

	1. INTRODUCTION
	2. BACKGROUND WORK
	3. ARCHITECTURE
	3.1 HPC Features and APIs
	3.2 Steering Packets at Line Rates
	3.3 Visibility and Dynamic Packet Forwarding
	3.4 Implementation Notes

	4. MEASUREMENTS
	5. CONCLUSIONS
	6. ACKNOWLEDGMENTS
	7. REFERENCES

