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Abstract

Backbone networks are typically overprovisioned in order to sustain peak loads. Research and education networks
(RENs) are designed to operate at 20-30% loads. For example, Internet2 upgrades the backbone interconnects when
the weekly 95th-percentile load is reliably above 30% of link capacity. Our analyses of traffic on ESnet between DOE
facilities also show that there is a huge gap between peak and average utilization. As science data volumes increase
exponentially, it is unclear whether this over provisioning trend will continue in the future. Even if over provisioning is
possible, it may not be the most cost-effective (and desirable) approach going forward. Under the current mode of free
access to RENs, the traffic at peak load may range from flows that need to be transferred in near-real time, for example,
for computation and instrument monitoring and steering, to flows that are less time-critical, for example, archival and
storage replication operations. Thus, peak load does not necessarily indicate the capacity that is absolutely required.
In this paper, we study how data transfers are impacted when the average network load is increased while the network
capacity is kept at the current levels. We also classify data transfers into on-demand (ones that are time-critical) and
best-effort (ones that are less time-critical) and study the impact on both classes for different proportions of both the
number of on-demand transfers and amount of bandwidth allocated for on-demand transfers. We use real transfer logs
from production GridFTP servers for our study. Our results indicate that the average slowdown experienced by the
data transfers is under 1.5x even when the load is doubled with the network capacity fixed at the current levels. When
the transfers are classified into on-demand and best-effort, on-demand transfers experience almost no slowdown and the
slowdown experienced by best-effort transfers is under 2x, even when 50% of transfers were treated as on-demand.
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1. Introduction

Scientific applications in various domains such as high-
energy physics, cosmology, genomics, etc., generate large
data sets that need to be transported over the network for
a variety of reasons. In order to support these applications,
federal agencies in different countries fund organizations to
build and operate high-speed research and education net-
works. These networks are typically overprovisioned in
order to sustain peak loads so that all science users con-
tinue to have adequate network resources for their science
workflows. Thus, they are underutilized most of the time.
Research and education networks (RENs), such as Inter-
net2, have a policy of operating their networks at light
loads (25–30%) to allow the networks to absorb surges in
traffic [1]. Other RENs such as ESnet and GEANT are also
engineered to operate at similar average load levels. Given
predictions of science traffics exponential growth, several
recent studies project that network overprovisioning may
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not continue [2, 3, 4]. Recent reports on science network
requirements note that different transfers have different
needs [5, 6, 7]. Some transfers, such as the ones in use
cases where the remote analysis result of one experiment
is used to guide the next, are time-critical and have tight
constraints. In contrast, some transfer, such as the ones in
certain data replication, backup, archiving use cases, have
more flexibility and may only need to be completed within
a window several times longer than the transfer time un-
der average load. Under the current mode of free access to
RENs, the traffic at peak load may include a combination
of different types of transfers including the ones that are
less time-critical. We argue that measures to spread the
load and keep the peak under control are important.

The main contributions of this study are:

• How data transfers are impacted when the average
network load is increased while the network capacity
is kept at the current levels?

• How does the impact change when the data transfers
are classified into on-demand (ones that are time-
critical) and best-effort (ones that are less time-critical)
with on-demand transfers getting a relatively larger
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Figure 1: WAN traffic pattern of HPC facilities (source: my.es.net)

share of the bandwidth?

We use real transfer logs from production GridFTP
servers for our study. Our results indicate that the aver-
age slowdown experienced by the data transfers is under
1.5x even when the load is doubled with the network ca-
pacity fixed at the current level for all the four GridFTP
server logs we studied. For the logs where the peak load
is 5x or more than the average load, average slowdown ex-
perienced by the data transfers is under 1.1x. Under the
same scenario of doubled network load with same network
capacity, when the transfers are classified into on-demand
and best-effort, on-demand transfers experience almost no
slowdown and the slowdown experienced by best-effort
transfers is under 2x, even when 50% of transfers were
treated as on-demand and on-demand transfers are given
a reasonably higher share (70%) of the bandwidth. For
the logs where the peak load is 5x or more than the av-
erage load, average slowdown experienced by best-effort
data transfers is under 1.2x.

The rest of the paper is organized as follows. Section
2 introduces the two aspects that motivated our research.
Section 3 presents the problem our research addresses and
the metrics we use to evaluate our results. Section 4 de-
fines the algorithm we developed for our research. Section
5 evaluates the results from our experiments. Section 6
examines the related work. Section 7 discusses the conclu-
sions from our research.

2. Background and Motivation

We describe two aspects that inform our work.

2.1. Gap between Peak and Average Network Load

Figure 1 shows the wide-area traffic for a one-month pe-
riod for two HPC facilities. This data was obtained from
the website: my.es.net. It can be noticed that there is a
huge gap between average and peak loads. We obtained
logs from the anonymized usage statistics that Globus
GridFTP servers send to a usage collector. These logs
include transfer size, start time, and end time. We col-
lected the logs of the 4 servers that transferred the most
bytes in a one month period. For each of those servers,
we then picked the log for the day in that month in which
the most bytes were transferred by those servers. Figure 2
shows the aggregate throughput over that 24-hour period
for each of the 4 trace logs. It can be noted that the peak
throughput is approximately 4x, 8x, 5x, and 6x compared
to the mean throughput for trace1, trace2, trace3, and
trace4 respectively.

2.2. Some Transfers can Tolerate Delays

While certain transfer requests are time-sensitive, oth-
ers can tolerate larger delays. Science communities repli-
cate large quantities for performance [8, 9], fault toler-
ance [10], and/or preservation [11] and this replication is
often cited as a common relatively time-insensitive data
transfer use case [5, 6, 7]. Replicating TB datasets overnight
is cited as one of the use cases, which can be done in a much
less time in todays REN and HPC environments. Because
subsequent processing involves manual steps, there is no
advantage in completing the transfer earlier. Replicating
100TB within a month is another use case cited. For these
use cases, transfer times can vary by at least an order of
magnitude without compromising science goals.

3. Problem Statement and Goals

In this section, we formally define the problem to be
addressed and the associated terms used throughout this
paper. We also describe the goals from the perspective of
our performance metrics.

3.1. Problem Statement

Our target networks are wide-area networks composed
of many components such as switches, data transfer nodes
(DTNs), etc. The networks can be either circuit-switched
networks where paths are reserved ahead of data transfers
or packet-oriented networks where the packets from mul-
tiple data transfers can share links on the networks. In
reality, most networks used by data transfer users such as
scientists are packet-switched networks except special net-
works such as ESnet [12] and Internet2 [13] which support
circuits. However, we assume that both kinds of networks
offer ways (e.g. tc in linux) to do traffic engineering on
each flow.

In general, network traffic or data transfers can be cat-
egorized into multiple classes ranging from near-real time
traffic to best-effort traffic depending on the importance of
response time. In this paper, only two classes, on-demand
(OD) data transfer and best-effort (BE) data transfer, are
of our interest. OD data transfers have higher priority
than BE data transfers since we assume that OD data
transfers have stricter timing constraints than BE data
transfers. However, our data transfer model does not have
explicit timing constraints other than data transfer type.
Thus, one transfer can be described by a five-tuple (source,
destination, transfer type, data size, requested rate) where
source is a data sender, destination is a data receiver,
transfer type is either OD or BE, data size is size of data
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Figure 2: Network Demand for trace1, trace2, trace3, trace4.

to send, and requested rate is the estimated throughput of
the data transfer when there is no network contention.

Another important assumption in this paper is that
a single centralized controller is responsible for admission
control and scheduling of all the data transfer requests.
The single centralized controller thus has a single data
transfer request queue and sequentially selects the next
data transfer to schedule/perform. In order to properly
schedule/perform the next data transfer, the controller will
check the available bandwidth of the path for the data
transfer. The available bandwidths of links in the net-
works that the controller is responsible for are assumed to
be monitored periodically using some mechanisms such as
SNMP. Without any congestion or failures, the path taken
for a certain data transfer will remain the same throughout
the data transfer even in packet-switched networks.

In our scheduling framework, all transfers have 2 rates
associated with them: current rate, and requested rate.
The current rate is the transfer rate or bandwidth cur-
rently allocated to the transfer by a centralized controller.
The requested rate is the estimated throughput provided
in the data transfer request information. For our simula-
tions, the requested rate is set to the transfer rate in the
original trace log. The scheduling framework operates un-
der the assumption that we can selectively limit the band-
width allocated to an individual transfer at any given time.
It also assumes that a transfer’s requested rate represents
the transfer throughput when there is no limiting external
load and so the requested rate is the highest bandwidth
that the transfer could achieve. Thus, a transfers current
rate can never be higher than its requested rate.

3.2. Goals and Performance Metrics

The goals in our work are two-fold. First, we would
like to reduce the gap between the peak link utilization
and the average link utilization on the path so that ef-
ficient network utilization can prevent expensive network
planning for upgrade, e.g. 100Gbps to 1Tbps. Second,
we would like to ensure that OD data transfers can be
initiated immediately without much delay while BE data
transfers suffer only reasonable amount of delays.

For such reasons, we use two performance metrics: 1)
slowdown and 2) gap of the peak rate and the average
rate. Slowdown, commonly used in the context of paral-
lel transfer scheduling [14], indicates the factor by which
a data transfer is slowed relative to the actual trans-
fer time it takes. Slowdown is generally defined to be
Waittime+Runtime

Runtime where waittime is the time between the
transfer’s arrival time and scheduled time. However, Slow-
down may become so large for a tiny data transfer with
a large wait time that it can distort the overall slowdown
average. Bounded slowdown is introduced to bound such
cases to some extent using max operation, and the for-
mal definition for an individual data transfer is defined
as Equation 1. Bound is a user-defined threshold used to
limit the influence of very short transfers on slowdown.

BS =
Waittime + max(Simulation Runtime,Bound)

max(Log Runtime,Bound)
(1)

Since we do simulations with real data trace logs, we make
several tweaks in the original slowdown equation. Runtime
in the numerator is replaced by simulation runtime, which
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is the transfer’s runtime in the simulation. Runtime in the
denominator is replaced by log runtime, which is the trans-
fer’s runtime in the original data transfer log. Waittime is
the time difference between when the transfer started in
the original log and in the simulation, For our simulations,
bound is set to be equal to the scheduling interval used for
scheduling the transfers, which is 1 second.

For the simulations, we actually use a total of four
different bounded slowdown metrics.
• Avg BSOD: Average bounded slowdown of all OD

data transfers, defined as Equation 2.
• Max BSOD: Maximum bounded slowdown among

all OD data transfers, defined as Equation 3.
• Avg BSBE : Average bounded slowdown of all BE

data transfers, defined likewise as Avg BSOD.
• Max BSBE : Maximum bounded slowdown among

all BE data transfers, defined likewise as Max BSOD.

Avg BSOD =

(∑
∀t

(Bounded Slowdown)t

)
/T (2)

Max BSOD = max
∀t

(Bounded Slowdown)t (3)

where t ∈ OD transfers in a trace log,

T is the total number of OD transfers.

4. Scheduling Algorithm

After presenting our formal problem statement and
goals, we now present the algorithm we have developed
for scheduling OD and BE data transfers to achieve the
goals within our simulation framework. Table 1 summa-
rizes the terminology used in our algorithm.

Table 1: Summary of terminology

Item Description

OD transfers On-demand transfers
BE transfers Best-effort transfers

transfer.rate Bandwidth transfer is currently allo-
cated

transfer.
requestRate

Bandwidth transfer has requested as an
estimated throughput; In simulation,
this is set to the transfer throughput in
the original trace log

requestLoadOD

∑
∀running OD transfers

transfer.requestRate

requestLoadBE

∑
∀running BE transfers

transfer.requestRate

availBWOD Bandwidth available for OD transfers
availBWBE Bandwidth available for BE transfers

netCap Maximum bandwidth for the network
netCapOD Bandwidth allocated for OD transfers
netCapBE Bandwidth allocated for BE transfers

Listing 1: Scheduling Heuristic

1 # 1. Start OD transfers and BE transfers

2 for transfer in OD transfer queue:

3 start transfer
4 for transfer in BE transfer queue

5 start transfer
6
7 # 2. Compute BE transfers available bandwidth

8 if requestLoadOD < netCapOD:

9 availBWBE = netCap - requestLoadOD

10 else:

11 availBWBE = netCapBE

12
13 # 3. Update BE transfer rates

14 for transfer in BE running transfers:

15 fairshareBandwidth = transfer.requestRate /

requestLoadBE × availBWBE

16 transfer.rate = min(fairshareBandwidth,
transfer.requestedRate)

17
18 # 4. Compute OD transfers available bandwidth

19 if requestLoadBE < netCapBE:

20 availBWOD = netCap - requestLoadBE

21 else:

22 availBWOD = netCapOD

23
24 # 5. Update OD transfer rates

25 for transfer in OD running transfers:

26 fairshareBandwidth = transfer.requestRate /

requestLoadOD × availBWOD

27 transfer.rate = min(fairshareBandwidth,
transfer.requestedRate)

4.1. Overview of Algorithm

Our scheduling algorithm works with two distinct cat-
egories of data transfers, OD and BE. Our scheduling al-
gorithm does not give any implicit priority or scheduling
advantage to either type of transfer. Instead it is though
explicitly setting the allocated OD bandwidth (netCapOD)
and BE bandwidth (netCapBE) values that priority is
given to one transfer type over another. For the sake of
clarity, we define netCapOD and netCapBE in terms of
a percentage of the total netCap, and since netCapOD +
netCapBE = netCap, the two percentages always sum to
1. In our work, OD transfers are designated as being more
time critical than BE transfers. To account for this in our
simulations, we allocate OD transfers a netCapOD that
is a higher percentage of the total netCap than the per-
centage of OD transfers in the simulation. For instance,
consider a simulation in which OD transfers make up 30%
of all the transfers and BE transfers account for the re-
maining 70%. By allocating OD transfers a guaranteed
bandwidth that is more than 30% of the total network
bandwidth, such as setting netCapOD = netCap × 40%
and netCapBE = netCap × 60%, we indirectly give OD
transfers a higher priority in our scheduling algorithm.

The detailed algorithm is elaborated in Listing 1. The
scheduling cycle repeats every n seconds; OD transfer

queue and BE transfer queue contain any new trans-
fers that arrived in those n seconds. (In our implemen-
tation, n = 1.) At the start of each cycle, the scheduler
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starts any OD and BE transfers that are in OD transfer

queue and BE transfer queue respectively. Next, the al-
gorithm computes the available bandwidth for BE trans-
fers (availBWBE) by comparing requestLoadOD with
netCapOD. If the requested OD bandwidth is less than
the the allocated OD bandwidth, then there is extra band-
width that was allocated for OD transfers but is now avail-
able for BE transfers. Thus, availBWBE is equal to the
difference between total bandwidth and the bandwidth
requested by OD transfers (netCap − requstedLoadOD).
Otherwise, the available BE bandwidth is equal to the al-
located BE bandwidth (netCapBE).

Then, for every active BE transfer, the scheduler cal-
culates the transfer’s fairshareBandwidth:

FairshareBandwidth =
transfer.requestRate× availBW

requestLoad
(4)

where requestLoad is the requested bandwidth for all ac-
tive transfers of the same type as the current transfer,
and availBW is the bandwidth available to transfers of
the same type as the current transfer. As noted above,
transfer.currentRate is capped by transfer.requestRate,
and so a transfer’s current rate is the minimum of its
fairshareBandwidth and requested rate.

After updating the transfer rates for all BE transfers,
the process is repeated for OD transfers. First, the sched-
uler computes the available bandwidth for OD transfers
(availBWOD). If requestLoadBE is less than netCapBE ,
then there is extra BE bandwidth available for OD trans-
fers, and availBWOD equals the difference between to-
tal bandwidth and the bandwidth requested by BE trans-
fers (netCap−requstedLoadBE). Otherwise, availBWOD

equals the allocated OD bandwidth (netCapOD). Then,
for every active OD transfer, the algorithm computes its
fairshareBandwidth as defined above, and sets the trans-
fer’s current rate to be the minimum of its fairshareBand-
width and requested rate.

Our algorithm is focused only on two end points and
we assume that the path between two end points does not
change over time and no abrupt data transfer sharing the
links on the path takes place. The sophisticated algorithm
on the general network topology will be left as future work
and in this paper we aim to verify that capping the link
utilization is feasible through well-designed data transfer
scheduling.

4.2. Illustrative Example

To understand how the dynamic scheduling algorithm
distributes the network bandwidth to OD and BE trans-
fers, consider a simulation in which netCapOD = 30% ×
netCap. In this case, OD transfers are guaranteed access
to 30% of the total bandwidth regardless of the bandwidth
requested by BE transfers. However, this doesnt mean
that the total OD bandwidth will always be 30%. For ex-
ample, if at one point during the simulation,
requestLoadOD = 15% × netCap and requestLoadBE =
100% × netCap. In this case, OD transfers will only use

the bandwidth they requested (15% × netCap), and the
remaining 85% of the bandwidth will be available for BE
transfers. If at another point in the simulation the situ-
ation is reversed and requestLoadOD = 100% × netCap
and requestLoadBE = 15%× netCap. Then BE transfers
will use the bandwidth they requested (15% × netCap),
and OD transfers will use the remaining 85%. In short,
each transfer type is guaranteed a certain percentage of
the netCap. However, if at any point one transfer type re-
quests less bandwidth that it is allocated, any remaining
bandwidth becomes available for the other transfer type.

Next, to understand how the fairshare heuristic allo-
cates bandwidth, consider an example where availBWOD

is 5Mbps and there are 4 active OD transfers. We will
denote the transfers as t1, t2, t3, t4, with requested trans-
fer rates equal to 1Mbps, 2Mbps, 3Mbps, and 4Mbps re-
spectively, and so requestLoadOD is 10Mbps. Calculat-
ing the fairshareBandwidth for the OD transfers we get
t1 = 0.5Mbps (1 × 5 ÷ 10), t2 = 1.0Mbps (2 × 5 ÷ 10),
t3 = 1.5Mbps (3× 5÷ 10), t4 = 2.0Mbps (4× 5÷ 10). In
this case, the transfers’ current rates are limited by their
fairshareBandwidth since availBWOD was less than
requestLoadOD. If availBWOD was higher, for example
20Mbps, then the transfers’ current rates would instead
be limited by the transfer’s requested rates and would be
1Mbps, 2Mbps, 3Mbps, and 4Mbps respectively.

5. Experimental Evaluation

In this section, we present comparative results of our
algorithm with regard to the original transfer trace logs
through extensive simulations and discuss the results at
the end.

5.1. Simulation Environment

We constructed a simulation framework that uses the
transfers in a particular trace log to run simulations based
on a number of user-defined variables. The simulator reads
the logs in an online fashion, meaning that future trans-
fer requests are not known a priori. Our framework is
a discrete event simulator specifically designed to simu-
late transfers between two endpoints based on an inputted
trace log. It operates under the principle that it schedules
and processes transfers based on a user-defined scheduling
interval. For our experiments, the scheduling interval was
set to 1 second which we found provided good performance
and accuracy.

At the start of each scheduling interval, the simulator
updates any transfers from the previous interval and re-
moves any transfers that completed transferring. It then
runs the scheduling algorithm described above before mov-
ing on to the next interval. Each of our experiments con-
sists of a 24 hour simulation from 12:00am to 12:00am the
following day. Since data traffic patterns and quantities
tend to vary over the course of a day, we wanted to ensure
we captured a full days worth of transfers.
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Ultimately our goal is to minimize the gap between the
peak and average throughput for all OD and BE trans-
fers. The mean throughput should remain the same for
all of our simulations, because a different mean would im-
ply that a different amount of total data was transferred.
Therefore, our proposed scheduling algorithm should be
able to minimize the peak throughput, which is limited by
the network capacity, without significantly affecting the
slowdown of transfers. Although our objective is to keep
slowdown values down to a reasonable level for both OD
and BE transfers, since OD transfers are more response
critical than BE transfers, the threshold for impractical
slowdown values is much lower for OD transfers than it is
for BE transfers.

5.2. Data Transfer Workload

We evaluated our algorithm with 4 real traces from
Globus GridFTP servers, each of which contains informa-
tion for all of the transfers that went from a particular pair
of source and destination endpoints on one day. We chose
four trace logs that have varying peak and mean through-
put. The peak throughput for the trace logs varies from
5.7Gbps to 16.0Gbps, and the mean throughput varies
from 1.4Gbps to 2.5Gbps. Though more importantly, all
four trace logs have a mean throughput between 10% and
25% of the peak. We assign each transfer an original trans-
fer throughput, which we refer to as the transfer’s request-
edRate, based on limited information in the trace logs. We
assume that the assigned original throughput is the achiev-
able throughput between two end points when there is no
network contention.

5.3. Simulation Variables

We ran our simulation framework with various param-
eter configurations to assess how our algorithm performs
under different workloads. The variables we adjusted are
% OD transfers, % OD bandwidth, and transfer load ra-
tio. % OD transfers is the percentage of transfers that are
labeled as OD transfers and all other transfers (100% - %
OD transfers) are labeled as BE transfers. When the sim-
ulator reads in a trace log, it randomly splits the transfers
into OD and BE categories based on the % OD trans-
fers. % OD Bandwidth is the percentage of the total path
capacity that is dedicated to OD transfers. Transfer load
ratio is the ratio of the transfer load size used in the simula-
tion compared to the transfer load size used in the original
trace log. This parameter is used to test the simulation
under different intensities of transfer loads. For example,
a simulation with a transfer load ratio of 2, uses the same
transfers as defined in original trace log, but every trans-
fer has double the transfer size and duration resulting in
a total transfer load that is twice as big as the original
transfer load.

We used 4 different % OD transfers, 4 different % OD
bandwidth, and 4 different transfer load ratios, which is a
total of 64 different configurations for each trace log. We

simulated with % OD transfers ∈ {10%, 30%, 50%, 70%}.
For the % OD bandwidth, we varied the values based on
the % OD transfers in order to make the results more
pertinent. In order to give OD transfers a higher prior-
ity than BE transfers as we intended, the percent % OD
bandwidth had to be greater than or equal to the % OD
transfers. Therefore, given the current % OD transfers, we
experimented with % OD bandwidth values that are equal
to the % OD transfers, 10% and 20% greater than the %
OD transfers, and 100% of the total path bandwidth. For
example, simulations where the % OD transfers is 50%, we
evaluated the following percentages for % OD bandwidth
∈ {50%, 60%, 70%, 100%}. Finally, we used the following
transfer load ratios ∈ {1.0x, 1.5x, 2.0x, 2.5x}. Although
the set of transfer load ratios is the same for all trace logs,
the resulting transfer loads are different, since the default
(1.0x) transfer loads vary for each trace log. For instance,
a transfer load resulting from a 2x transfer load ratio for
one trace log is different than the transfer load resulting
from a 2x transfer load ratio for a different trace file

After simulating each configuration, we calculated the
4 performance metrics (i.e. Avg BSOD, Max BSOD,
Avg BSBE , and Max BSBE), defined in Section 3.2.

5.4. Experimental Results

We illustrate our results with a series of figures, which
contains the average and max bounded slowdown results
for trace1, trace2, trace3, and trace4. Due to space con-
straints we only include max slowdown graphs for trace1,
trace2; however, the trends in the max slowdown graphs
for trace1, trace2 were comparable.

In Figures 3 through 6, the top and bottom row show
the average OD bounded slowdown, and average BE bounded
slowdown respectively. Each row is divided into 4 subplots
for simulation runs with different % OD transfers ranging
from 10% to 70%. Then, each individual subplot contains
four separate lines, one for each different % OD bandwidth
value. Finally each % OD bandwidth line within a sub-
plot has 4 datapoints, one for each transfer load ratio. As
a result, the x-axes, indicating the transfer load ratios,
are the same for all subplots in every trace logs, and the
y-axes, which illustrate bounded slowdown using a loga-
rithmic scale, are shared between the columns within a
row.

To compare the performance of our scheduling heuris-
tic, we also ran simulations without our scheduling heuris-
tic as baselines. These control simulations have 100% BE
transfers and 0% OD transfers, and BE and OD band-
widths are 100% and 0% respectively. For each control ex-
periment, we computed the performance metrics defined
in Section 3.2, and represent these metric values in the
figures with a yellow shaded region on each of the plots.
Almost all of the OD slowdown plot lines fall inside the
shaded region, while the BE slowdown plot lines are above
the shaded region, meaning that our algorithm performed
better for OD slowdown, but worse for BE slowdown com-
pared to the control experiments. Thus, our scheduling

6
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Figure 3: Average Bounded Slowdown for trace1.
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Figure 4: Average Bounded Slowdown for trace2.

algorithm offers improved performance for OD transfer,
but it comes at the expense of BE transfer performance.

OD bandwidth is negatively correlated with OD slow-
down and positively correlated with BE slowdown, mean-
ing that the higher the OD bandwidth, the lower the OD
slowdown, but the higher the BE slowdown. In our exper-
iments, as long as the bandwidth allocated to BE transfers
is comparable to the proportion of BE jobs, such as when
there are 50% BE transfers and they are allocated 30% of
the total bandwidth, the average BE slowdown is less than
2.0x even when the transfer load is doubled. Conversely, in
simulations where OD transfers are allocated 100% of the
bandwidth, and thus BE transfers are only given band-
width when it became available, OD transfers have zero
increase in slowdown, but BE transfers have significantly
higher slowdown. Thus, it is necessary to consider the re-
quirements and relative importance of OD and BE trans-
fers before making a tradeoff between OD and BE perfor-
mance. If the goal is to minimize OD slowdown, it makes
sense to allocate 100% of the bandwidth to OD transfers;
however, if both OD and BE slowdowns are important, it
is necessary to strike a more equal balance between OD
and BE transfer bandwidths. Based on our experiments,
a % OD bandwidth equal to the % of OD transfers + 10%

or 20% results in a reasonable balance between OD and
BE slowdowns.

As shown in Figures 7 and 8, in our control experi-
ments when 100% of transfers are BE, the max OD slow-
down is under 12.0 even under a 2x load. Note that we
present the results for only trace1 and trace2 as the re-
sults of trace3 and trace4 are similar to that of trace1.
When the transfers are categorized into OD and BE, the
max slowdown for BE becomes significantly higher when
BE transfers are only given the leftover bandwidth (OD
Bandwidth = 100% of available bandwidth) and there are
50% or more OD transfers. However, when OD transfers
are only allowed to use 10% or 20% more than their pro-
portion, the max slowdown for OD transfers is under 5.0,
and the max slowdown for BE transfers is under 18.0.

Although there is a correlation between transfer load
ratios and bounded slowdown values (higher transfer load
ratios, results in higher bounded slowdown values), our
results indicate that it is possible to increase the trans-
fer load without significantly affecting transfer slowdown.
For example, in the control experiments, when the transfer
load is doubled and the network capacity fixed at the cur-
rent level, the averaged slowdown for the transfers is under
1.5x, and under our algorithm with 50% OD transfers and
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Figure 5: Average Bounded Slowdown for trace3.
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Figure 6: Average Bounded Slowdown for trace4.

50% of BE transfers, OD transfers experience negligible
average slowdown and BE transfer average slowdown is
under 2x.

Furthermore, simulations from the different trace logs
resulted in a wide range of slowdown values. In partic-
ular, the average slowdowns for trace1 are significantly
higher than for other trace logs, which is likely the result
of trace1 having the highest mean to peak ratio (0.24).
Thus, proportionally it has the least amount of additional
bandwidth available for extra network traffic. This hy-
pothesis is supported by trace2, which has significantly
lower slowdowns than the other trace logs and also has
the lowest mean to peak ratio (0.10) meaning it relatively
has the most bandwidth available for additional network
traffic.

5.5. Coefficient of Variation

As shown in Figure 2, there is a large gap between the
mean and peak demand in the trace logs used in our exper-
iments, which is common for science networks. Of the four
network demand graphs in Figure 2, the bottom two plots
(trace3 and trace4) are relatively similar in terms of mean
and peak demand; however, comparing these two trace logs
raises an interesting inconsistency. Although trace3 has a

higher mean demand, peak demand, and mean to peak ra-
tio than trace4 (Mean: 2.5 Gbps vs. 1.7 Gbps. Peak: 11.2
Gbps vs. 10.6 Gbps. Mean to peak ratio: 0.22 vs. 0.16),
in our experiments trace3 had lower OD and BE slow-
down values. Comparing the network demand graphs for
the two trace logs in Figure 2 show noticeable differences;
while the graph for trace3 is relatively centered around
the mean, the graph for trace4 has a much thicker and
more jagged line indicating rapid and frequent variations
in network demand.

To quantify the difference in network demand varia-
tion between the trace logs, we computed concurrency and
throughput coefficient of variation metrics. To do so, we
divided the 24-hour simulation period into 1 minute inter-
vals, and computed the number of transfers that occurred
during each of the intervals (concurrency intervals), and
the total transfer throughput during each of the intervals
(throughput intervals). Then, to calculate the coefficient
of variation metrics, we used the following equations:

Coefficient of Variationconcurrency = (5)

Std.Dev.(Concurrency Intervals)

mean(Concurrency Intervals)
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Figure 7: Max Bounded Slowdown for trace1.
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Figure 8: Max Bounded Slowdown for trace2.

Coefficient of VariationThroughput = (6)

Std.Dev.(Throughput Intervals)

mean(Throughput Intervals)

Concurrency and throughput coefficient of variations for
trace3 were 0.67 and 0.69 respectively, and concurrency
and throughput coefficient of variations for trace4 were
0.87 and 1.07 respectively. We suspect that as the network
demand increases, the number of concurrent or overlap-
ping transfers also increases, which raises slowdown values
since there are more transfers competing for bandwidth.
However, the inverse is not necessarily true, since if the
network demand drops below the available network band-
width, all transfers will have a slowdown of 1, which is
the lowest possible slowdown value, and so even if the net-
work demand continues to decrease, slowdown values will
remain at 1. Since trace4 has a higher variation in con-
currency and throughput, it has more moments of low and
high network demand in comparison to trace3, which has
a network demand that remains more consistently around
the mean. The higher variation and frequent moments of
high network demand result in higher slowdown values and
therefore worse performance in trace4 than in trace3, even
though the mean to peak ratio is higher in trace3.

6. Related Work

Several studies have developed methods of using traf-
fic engineering to improve network performance and effi-
ciency, including locally optimal intradomain traffic engi-
neering [15], globally optimal software driven WAN [16],
and differentiating files transfers based on priority level
[17]. In particular, studies have explored ways to reduce
the adverse efforts of high-rate, bursty traffic associated
with large scientific data transfers. In [18], researchers
used traffic-engineered paths and isolated queues to ac-
complish this. Our research differentiates itself from pre-
vious work by addressing the gap between peak and mean
network loads.

Other research has shown that dynamic link width
management can be an effective way to reduce energy costs
without negatively affecting sensitive applications involv-
ing on-demand network transfers [19]. However, this ap-
proach involves overprovisioning and building a network
to meet the peak demand, and then turning off network
links when not in use. This differs from our research which
minimizes the need to overprovision the network by using
network traffic scheduling to reduce the gap between the
peak and the mean throughput.
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Our research has applications outside of managing traf-
fic on science networks, especially situations that involve a
large disparity between the peak and average demand for
some resource. For example, electric grids are known to ex-
hibit high variability in demand and overall low efficiency.
Several studies have examined how different policies and
pricing models can help reduce the peak-to-mean ratio in
smart electrical grids [20]. Public cloud computing is an-
other active area of research related to improved resource
allocation without overprovisioning, and studies have sug-
gested a number of different price models that can be used
to effectively and fairly reduce the peak demand [21], [22].

7. Conclusions

We presented a study to motivate measures to reduce
the huge gap between peak and average loads in research
and education networks. Using real world logs from pro-
duction GridFTP servers, we simulated high data transfer
loads by keeping the network capacity at current levels and
studied the performance of the data transfers. We showed
that current network capacity can handle up to 2x the cur-
rent load with minimal impact to the data transfers, when
the peak load is 5x or more than the average load. We
also showed that when the transfers are categorized into
on-demand and best-effort, with preferential treatment for
on-demand transfers, the impact on the transfers that re-
ally need on-demand service can be made negligible (while
at the same time keeping the impact on best-effort trans-
fers minimal).
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