
mdtmFTP and Its Evaluation on ESNET SDN Testbed

Liang Zhang^{*}, Wenji Wu^{*}, Phil DeMar^{*}, Eric Pouyoul⁺

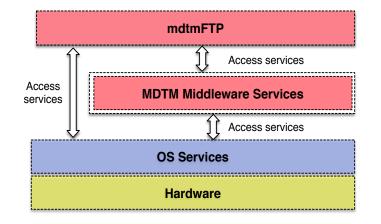
Fermilab^{*}, ESNET⁺

Funded by DOE/SC/ASCR Network Research Program

Big data transfer challenges

Data transfer – state of the art

- Advanced data transfer tools and services developed
 - GridFTP, BBCP
 - PhEDEx, LIGO Data Replicator, Globus Online
- Numerous enhancements
 - Parallelism at all levels
 - Multi-stream parallelism
 - Multicore parallelism
 - Multi-path parallelism
 - Science DMZ architecture
 - Terabit networks


Problems with existing data transfer tools

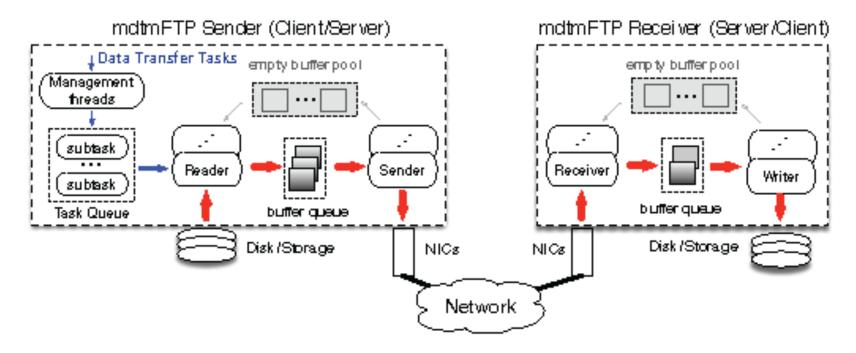
- Unable to fully exploit multicore hardware under default OS support, especially on NUMA systems
- Unable to effectively address the lots of small files (LOSF) problem
 - Either inefficient, or don't scale well:
 - Pipelining
 - Concurrency
 - Tar-based solution

mdtmFTP: a high-performance data transfer tool

- Pipelined I/O-centric design to streamline data transfer
- Multicore-aware data transfer middleware (MDTM) optimizes use of underlying multicore system
- Extremely efficient in transferring of Lots Of Small Files
- Various optimization mechanisms
 - Zero copy
 - Asynchronous I/O
 - Batch processing

A DOE/SC/ASCR-sponsored research project Software is available at: <u>http://mdtm.fnal.gov</u>

A pipelined I/O centric design - 1


- Dedicated I/O threads to perform network & disk I/O operations in parallel
- MDTM middleware to schedule cores for I/O threads
 - Each I/O thread pinned to a core near the I/O device the thread uses
 - I/O locality
 - Core affinity for I/O operations
 - An I/O thread is typically dedicated with a single core
 - System zoning to avoid interference with other applications
 - MDTM-zone for mdtmFTP
 - Non-MDTM-zone for other applications

A pipelined I/O centric design - 2

- Advanced data buffer mechanism to improve I/O performance
 - Pre-allocated data buffers to avoid costly memory allocation/deallocation in the critical data path of data transfer
 - Data buffers are pinned and locked to avoid memory swap and migration

A pipelined I/O centric design - 3

- Data transfers are executed in a pipelined manner
- A data transfer task is split into multiple subtasks
- Subtasks are executed in parallel

MDTM middleware – why?

- Default OSes cannot support data transfer tools on multicore systems well, especially NUMA systems:
 - Dynamic load balancing may degrade data transfer performance
 - Frequent thread migration
 - No core affinity for I/O operations
 - Inefficient use of cache
 - High-latency inter-node communication
 - Limited support for I/O locality
 - I/O throughputs can be significantly improved if I/O locality is available
 - Other applications' interferences
 - CPU, MEM, I/O

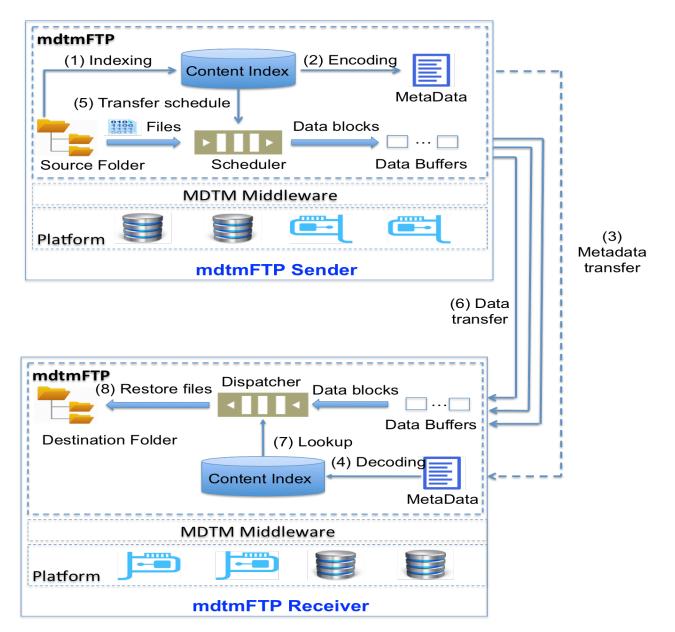
What is MDTM middleware?

- A user-space resource scheduler
- Implemented as a system daemon
 - Periodically, collects, monitors, and caches information about the multicore system
 - Physical layout (e.g., NUMA topology)
 - Configurations
 - System loads
 - Upon requests, provide middleware services to mdtmFTP
 - Query service
 - Scheduling service

MDTM middleware – key features

- Key Features
 - Computer system layout profiling
 - Real-time system status monitoring
 - CPU usage of each core
 - Memory load latency of each NUMA node
 - NUMA topology-based core scheduling
 - Support I/O locality
 - Support core affinity on I/Os
 - System zoning
 - MDTM Zone and Non-MDTM zone
 - Data buffer allocation and pinning capability
- MDTM middleware can be readily extended to support other types of applications
 - E.g., as a research tool to study advanced scheduling algorithms and policies on NUMA systems

A large virtual file mechanism to address the LOSF problem


Key idea:

- Treat a dataset as a large "virtual file".
- Each file in the dataset is treated as a file segment in the virtual file, and sequentially "added" to the virtual file.
- The virtual file is logically, instead of physically, created.
 - Different than Tar-based solutions
- The whole data set is transferred, continuously & seamlessly, as a single virtual file.
 - Different than GridFTP's per-file-based mechanisms (e.g., pipelining, concurrency)

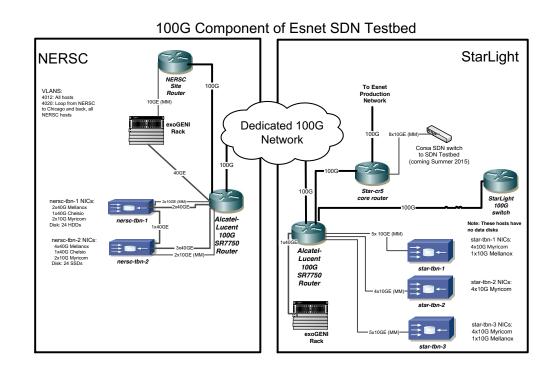
Major advantages:

- Avoid protocol processing on a per-file basis
- Allow for batch processing small files in the sender/receiver to optimize I/O performance

Large virtual file transfer mechanism

mdtmFTP evaluation @ ESnet testbed

- Test and evaluate mdtmFTP at WAN environment
- Test and evaluate mdtmFTP at high-performance DTN environment
- Compare mdtmFTP with other data transfer tools


ESNET testbed - 1

nersc-tbn-1

- 2xIntel HaswellXeon E5-2643 6 cores
- Motherboard: superMicro X10DRi (PCIe Gen3)
- 2x40G Mellanox NICs
- Support high performance I/O operation (Write)
 - An array of 24 HDDs

nersc-tbn-2

- 2xIntel HaswellXeon E5-2643 6 cores
- Motherboard: superMicro X10DRi (PCIe Gen3)
- 2x40G Mellanox NICs
- Support high performance I/O operation (Read)
 - An array of 12 SSDs

Data transfer:

- DTN "nersc-tbn-2" \rightarrow "nersc-tbn-1".
- 95ms RTT loop between nersc-tbn-1 and nersc-tbn-2.

Note: Thanks to ESNET Brian Tierney and Eric Pouyoul

Evaluation methodology - 1

- Transfer data from nersc-tbn-2 to nersc-tbn-1
- Performance metric: Time-to-Completion
- Data transfer tool
 - mdtmFTP (developed by FNAL)
 - http://mdtm.fnal.gov
 - FDT (developed by CalTech)
 - <u>http://monalisa.cern.ch/FDT/</u>
 - BBCP (developed by SLAC)
 - https://www.slac.stanford.edu/~abh/bbcp/
 - GridFTP (developed by University of Chicago)
 - <u>http://toolkit.globus.org/toolkit/docs/latest-stable/gridftp/</u>

Evaluation methodology - 2

- Transfer Mode
 - Client-Server data transfer
 - 3rd-Party data transfer
- Data Transfer Scenarios:
 - Large file transfer: Transferring a 100GB large file from nersc-tbn-2 to nersc-tbn-1.
 - Folder transfer 1: Transferring a folder that has 30 10G files from nersc-tbn-2 to nersc-tbn-1
 - Folder transfer 2: Transferring a Linux-3.18.21 folder from nersc-tbn-2 to nersc-tbn-1

Evaluation Methodology - 3

• Data transfer tool configuration

Data Transfer tools	# of Parallel Streams	Pipelining	Currency	TCP parameters
FDT	4	N/A	N/A	System configuration
GridFTP	4	-PP	-CC 8	System configuration
BBCP	4	N/A	N/A	System configuration
mdtmFTP	4	N/A	2 I/O threads	System configuration

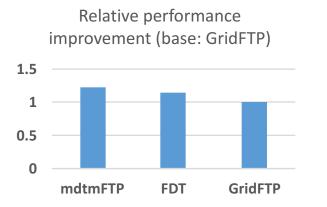
Note: when # of parallel streams > 4, data transfer performance has negligible changes

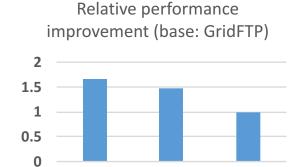
Result – Client/Server

	mdtmFTP	FDT	GridFTP	BBCP
Time-to-Completion (seconds)	74.18	79.89	91.18	Poor performance

Larger file data transfer – 1 x 100G (Smaller is better)

	mdtmFTP	FDT	GridFTP	BBCP
Time-to-Completion (seconds)	192.19	217	320.17	Poor performance


Folder data transfer – 30 x 10G (Smaller is better)


	mdtmFTP	FDT	GridFTP	BBCP
Time-to-Completion (seconds)	10.51	-	1006.02	Poor performance

Folder data transfer – Linux 3.12.21 (Smaller is better)

Note 1: "-" indicates inability to get transfer to work Note 2: BBCP performance is very poor, we do not list its results here

Result – Client/Server

FDT

Relative performance improvement (Base: GridFTP)

Large File Data Transfer (1x100G)

Folder Data Transfer (30x10G)

mdtmFTP

Folder Data Transfer (Linux 3.12.21)

GridFTP's Time-to-Completion

GridFTP

Relative performance improvement (base: GridFTP) =

other tools' Time-to-Completion

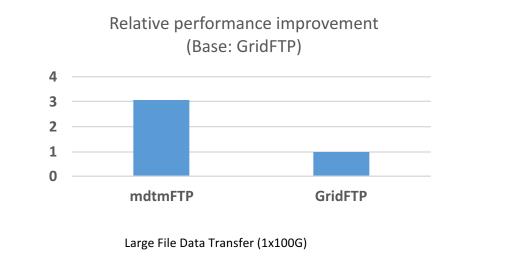
Note: Larger is better

Result – 3rd party data transfer

	mdtmFTP	FDT	GridFTP	BBCP
Time-to-Completion (seconds)	34.976	N/A	106.84	N/A

Larger file data transfer – 1 x 100G (Smaller is better)

	mdtmFTP	FDT	GridFTP	BBCP
Time-to-Completion (seconds)	95.61	N/A	-	N/A


Folder data transfer – 30 x 10G (Smaller is better)

	mdtmFTP	FDT	GridFTP	BBCP
Time-to-Completion (seconds)	9.68	N/A	-	N/A

Folder data transfer – Linux 3.12.21 (Smaller is better)

Note 1: "-" indicates inability to get transfer to work Note 2: : BBCP and FDT support 3rd party data transfer. But BBCP and FDT Couldn't run 3rd party data transfer on ESNET testbed due to testbed limitation

Result – 3rd party data transfer

Relative performance improvement (base: GridFTP) =

GridFTP's Time-to-Completion

other tools' Time-to-Completion

Note: Larger is better

Summary

- mdtmFTP is a high-performance data transfer tool
 - Pipelined I/O-centric design to streamline data transfer
 - Multicore-aware data transfer middleware (MDTM) optimizes use of underlying multicore system
 - Extremely efficient in transferring of Lots Of Small Files
- Evaluations show that mdtmFTP can achieve higher performance than existing data transfer tools.

Acknowledgement

We would like to thank Brian Tierney who contributed to mdtmFTP evaluation @ ESnet testbed