
mdtmFTP	and	Its	Evaluation	on	
ESNET	SDN	Testbed

Liang	Zhang*,	Wenji	Wu*,	Phil	DeMar*,	Eric	Pouyoul+

Fermilab*,	ESNET+

Funded	by	DOE/SC/ASCR	Network	Research		Program

Big	data	transfer	challenges

10 Gbps
40 Gbps

100 Gbps

1 Tbps

400 Gbps

Throughput

High-Performance Challenge

Time

Real-time
data transfer
(200-500ms)

Time Constraints on Data Transfer Challenge

Deadline-bound
data transfer

(application specific)

Background
data transfer

(no explicit deadline)

Data	transfer	– state	of	the	art

• Advanced	data	transfer	tools	and	services	developed
• GridFTP,	BBCP
• PhEDEx,	LIGO	Data	Replicator,	Globus	Online

• Numerous	enhancements
• Parallelism	at	all	levels

• Multi-stream	parallelism
• Multicore	parallelism
• Multi-path	parallelism

• Science	DMZ	architecture
• Terabit	networks

Problems	with	existing	data	
transfer	tools

• Unable	to	fully	exploit	multicore	hardware	under	
default	OS	support,	especially	on	NUMA	systems

• Unable	to	effectively	address	the	lots	of	small	files	
(LOSF)	problem
• Either	inefficient,	or	don’t	scale	well:
• Pipelining
• Concurrency
• Tar-based	solution

mdtmFTP:	a	high-performance	
data	transfer	tool

• Pipelined	I/O-centric	design	to	streamline	data	transfer
• Multicore-aware	data	transfer	middleware	(MDTM)	
optimizes	use	of	underlying	multicore	system
• Extremely	efficient	in	transferring	of	Lots	Of	Small	Files
• Various	optimization	mechanisms
• Zero	copy	
• Asynchronous	I/O
• Batch	processing

A	DOE/SC/ASCR-sponsored	research	project
Software	is	available	at:	http://mdtm.fnal.gov

MDTM Middleware Services

OS Services

mdtmFTP

Hardware

Access services

Access services

Access
services

A	pipelined	I/O	centric	design	- 1

• Dedicated	I/O	threads	to	perform	network	&	disk	I/O	
operations	in	parallel
• MDTM	middleware	to	schedule	cores	for	I/O	threads	
• Each	I/O	thread	pinned	to	a	core	near	the	I/O	device	the	
thread	uses
• I/O	locality
• Core	affinity	for	I/O	operations

• An	I/O	thread	is	typically	dedicated	with	a	single	core
• System	zoning	to	avoid	interference	with	other	applications	

• MDTM-zone	for	mdtmFTP
• Non-MDTM-zone	for	other	applications

A	pipelined	I/O	centric	design	- 2

• Advanced	data	buffer	mechanism	to	improve	I/O	
performance
• Pre-allocated	data	buffers	to	avoid	costly	memory	
allocation/deallocation	in	the	critical	data	path	of	data	
transfer
• Data	buffers	are	pinned	and	locked	to	avoid	memory	swap	
and	migration

A	pipelined	I/O	centric	design	- 3

• Data	transfers	are	executed	in	a	pipelined	manner
• A	data	transfer	task	is	split	into	multiple	subtasks
• Subtasks	are	executed	in	parallel

MDTM	middleware	– why?

• Default	OSes	cannot	support	data	transfer	tools	on	
multicore	systems	well,	especially	NUMA	systems:
• Dynamic	load	balancing	may	degrade	data	transfer	
performance
• Frequent	thread	migration

• No	core	affinity	for	I/O	operations
• Inefficient	use	of	cache

• High-latency	inter-node	communication
• Limited	support	for	I/O	locality

• I/O	throughputs	can	be	significantly	improved	if	I/O	locality	is	
available

• Other	applications’	interferences
• CPU,	MEM,	I/O

What	is	MDTM	middleware?

• A	user-space	resource	scheduler
• Implemented	as	a	system	daemon
• Periodically,	collects,	monitors,	and	caches	
information	about	the	multicore	system	
• Physical	layout	(e.g.,	NUMA	topology)	
• Configurations
• System	loads

• Upon	requests,	provide	middleware	services	to	
mdtmFTP
• Query	service
• Scheduling	service

MDTM	middleware	– key	features
• Key	Features

• Computer	system	layout	profiling
• Real-time	system	status	monitoring

• CPU	usage	of	each	core
• Memory	load	latency	of	each	NUMA	node

• NUMA	topology-based	core	scheduling
• Support	I/O	locality

• Support	core	affinity	on	I/Os
• System	zoning

• MDTM	Zone	and	Non-MDTM	zone
• Data	buffer	allocation	and	pinning	capability

• MDTM	middleware	can	be	readily	extended	to	support	
other	types	of	applications
• E.g.,	as	a	research	tool	to	study	advanced	scheduling	
algorithms	and	policies	on	NUMA	systems

A	large	virtual	file	mechanism	to	
address	the	LOSF	problem
Key	idea:	
• Treat	a	dataset	as	a	large	“virtual	file”.	
• Each	file	in	the	dataset	is	treated	as	a	file	segment	in	the	virtual	
file,	and	sequentially	“added”	to	the	virtual	file.

• The	virtual	file	is	logically,	instead	of	physically,	created.
• Different	than	Tar-based	solutions

• The	whole	data	set	is	transferred,	continuously	&	seamlessly,	as	a	
single	virtual	file.
• Different	than	GridFTP’s	per-file-based	mechanisms	(e.g.,	pipelining,	
concurrency)

Major	advantages:
• Avoid	protocol	processing	on	a	per-file	basis
• Allow	for	batch	processing	small	files	in	the	sender/receiver	to	
optimize	I/O	performance

Large	virtual	file	transfer	mechanism

mdtmFTP	evaluation	@	ESnet	testbed

• Test	and	evaluate	mdtmFTP	at	WAN	environment
• Test	and	evaluate	mdtmFTP	at	high-performance	
DTN	environment
• Compare	mdtmFTP	with	other	data	transfer	tools

ESNET	testbed	- 1

100G

Alcatel-
Lucent
100G

SR7750
Router

 4x10GE (MM)

 5x 10GE (MM)

NERSC
Site

Router

star-tbn-2

star-tbn-1

NERSC StarLight

Star-cr5
core router

100G

Alcatel-
Lucent
100G

SR7750
Router

100G

100G

star-tbn-1 NICs:
4x10G Myricom
1x10G Mellanox

To Esnet
Production

Network

star-tbn-2 NICs:
4x10G Myricom

nersc-tbn-1

nersc-tbn-2

 3x40GE

2x40GE
nersc-tbn-1 NICs:
 2x40G Mellanox
 1x40G Chelsio
 2x10G Myricom
Disk: 24 HDDs

nersc-tbn-2 NICs:
 4x40G Mellanox
 1x40G Chelsio
 2x10G Myricom
Disk: 24 SSDs

100G

100G Component of Esnet SDN Testbed

StarLight
100G

switch

100G

Dedicated 100G
Network

exoGENI

Rack

 1x40GE

 10GE (MM)

VLANS:
4012: All hosts
4020: Loop from NERSC
to Chicago and back, all
NERSC hosts

exoGENI
Rack

 1x40GE

 2x10GE (MM)

40GE

 5x10GE (MM)

star-tbn-3

star-tbn-3 NICs:
4x10G Myricom
1x10G Mellanox

Note: These hosts have
no data disks

 2x10GE (MM)

Corsa SDN switch
to SDN Testbed

(coming Summer 2015)

8x10GE (MM)

Data transfer:
• DTN “nersc-tbn-2” à “nersc-tbn-1”.
• 95ms RTT loop between nersc-tbn-1 and nersc-tbn-2.

nersc-tbn-1
• 2xIntel	HaswellXeon	E5-2643	6	cores
• Motherboard:	superMicro	X10DRi	(PCIe	Gen3)
• 2x40G	Mellanox	NICs
• Support	high	performance	I/O	operation	(Write)

• An	array	of	24	HDDs

nersc-tbn-2
• 2xIntel	HaswellXeon	E5-2643	6	cores
• Motherboard:	superMicro	X10DRi	(PCIe	Gen3)
• 2x40G	Mellanox	NICs
• Support	high	performance	I/O	operation	(Read)

• An	array	of	12	SSDs

Note:	Thanks	to	ESNET	Brian	Tierney	and	Eric	Pouyoul

Evaluation	methodology	- 1
• Transfer	data	from	nersc-tbn-2	to	nersc-tbn-1
• Performance	metric:	Time-to-Completion
• Data	transfer	tool

• mdtmFTP	(developed	by	FNAL)
• http://mdtm.fnal.gov

• FDT	(developed	by	CalTech)
• http://monalisa.cern.ch/FDT/

• BBCP	(developed	by	SLAC)
• https://www.slac.stanford.edu/~abh/bbcp/

• GridFTP	(developed	by	University	of	Chicago)
• http://toolkit.globus.org/toolkit/docs/latest-stable/gridftp/

Evaluation	methodology	- 2
• Transfer	Mode
• Client-Server	data	transfer
• 3rd-Party	data	transfer

• Data	Transfer	Scenarios:
• Large	file	transfer:	Transferring	a	100GB	large	file	from	
nersc-tbn-2	to	nersc-tbn-1.
• Folder	transfer	1:	Transferring	a	folder	that	has	30	10G	
files	from	nersc-tbn-2	to	nersc-tbn-1
• Folder	transfer	2:	Transferring	a	Linux-3.18.21	folder	
from	nersc-tbn-2	to	nersc-tbn-1

Evaluation	Methodology	- 3
• Data	transfer	tool	configuration

Data	Transfer	tools # of	Parallel	
Streams

Pipelining Currency TCP parameters

FDT 4 N/A N/A System configuration
GridFTP 4 -PP -CC	8 System	configuration
BBCP 4 N/A N/A System configuration
mdtmFTP 4 N/A 2 I/O	threads System	configuration

Note:	when	#	of	parallel	streams	>	4,	data	transfer	performance	has	negligible	changes

Result	– Client/Server
mdtmFTP FDT GridFTP BBCP

Time-to-Completion	(seconds) 74.18 79.89 91.18 Poor performance

Larger	file	data	transfer	– 1	x	100G	(Smaller	is	better)

Folder	data	transfer	– 30	x	10G	(Smaller	is	better)

Folder	data	transfer	– Linux	3.12.21	(Smaller	is	better)

mdtmFTP FDT GridFTP BBCP
Time-to-Completion	(seconds) 192.19 217 320.17 Poor performance

mdtmFTP FDT GridFTP BBCP
Time-to-Completion	(seconds) 10.51 - 1006.02 Poor performance

Note	1:	“-”	indicates	inability	to	get	transfer	to	work
Note	2:	BBCP	performance	is	very	poor,	we	do	not	list	its	results	here

Result	– Client/Server

0

0.5

1

1.5

mdtmFTP FDT GridFTP

Relative	performance	
improvement	(base:	GridFTP)

Large	File	Data	Transfer	(1x100G) Folder	Data	Transfer	(30x10G)

0
0.5
1

1.5
2

mdtmFTP FDT GridFTP

Relative	performance	
improvement	(base:	GridFTP)

0
50
100
150

mdtmFTP GridFTP

Relative	performance	
improvement	(Base:	

GridFTP)

Folder	Data	Transfer	(Linux	3.12.21)

Note:	Larger	is	better

Relative	performance	improvement	(base:	GridFTP)	=
other	tools’	Time-to-Completion

GridFTP’s	Time-to-Completion

Result	– 3rd party	data	transfer
mdtmFTP FDT GridFTP BBCP

Time-to-Completion	(seconds) 34.976 N/A 106.84 N/A

Larger	file	data	transfer	– 1	x	100G	(Smaller	is	better)

Folder	data	transfer	– 30	x	10G	(Smaller	is	better)

Folder	data	transfer	– Linux	3.12.21	(Smaller	is	better)

mdtmFTP FDT GridFTP BBCP
Time-to-Completion	(seconds) 95.61 N/A - N/A

mdtmFTP FDT GridFTP BBCP
Time-to-Completion	(seconds) 9.68 N/A - N/A

Note	1:	“-”	indicates	inability	to	get	transfer	to	work
Note	2:	:	BBCP	and	FDT	support	3rd party	data	transfer.	But	BBCP	and	FDT
Couldn’t	run	3rd party	data	transfer	on	ESNET	testbed	due	to	testbed	limitation

Result	– 3rd party	data	transfer	

0
1
2
3
4

mdtmFTP GridFTP

Relative	performance	improvement	
(Base:	GridFTP)

Large	File	Data	Transfer	(1x100G)

Note:	Larger	is	better

Relative	performance	improvement	(base:	GridFTP)	=
other	tools’	Time-to-Completion

GridFTP’s	Time-to-Completion

Summary

•mdtmFTP	is	a	high-performance	data	transfer	tool
• Pipelined	I/O-centric	design	to	streamline	data	
transfer
• Multicore-aware	data	transfer	middleware	(MDTM)	
optimizes	use	of	underlying	multicore	system
• Extremely	efficient	in	transferring	of	Lots	Of	Small	
Files

• Evaluations	show	that	mdtmFTP	can	achieve	
higher	performance	than	existing	data	transfer	
tools.	

Acknowledgement

We	would	like	to	thank	Brian	Tierney	who	
contributed	to	mdtmFTP	evaluation	@	ESnet	testbed

