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Abstract

Complex science workflows usually involve very large data demands and resource-intensive computations. These
demands need a reliable high-speed network to continually optimize its performance for the application data flows.
Characterizing these flows into large flows (elephant) versus small flows (mice) can allow networks to optimize their
performance by detecting and handling these demands in real-time. However, predicting elephant versus mice flows
is extremely difficult as their definition varies based on networks.

Machine learning techniques can help classify flows into two distinct clusters to identify characteristics of transfers.
In this paper, we investigate unsupervised and semi-supervised machine learning approaches to classify flows in real
time. We develop a Gaussian Mixture Model combined with an initialization algorithm, to develop a novel general-
purpose method to help classification based on network sites (in terms of data transfers, flow rates and durations). Our
results show that despite of variable flows at each site, the proposed algorithm is able to cluster elephants and mice
with accuracy rate of 90%. We analyzed NetFlow reports of 1 month from 3 ESnet site routers to train the model and

predict clusters.
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1. Introduction

Scientific networks host applications which process
complex climate models, nuclear research and ge-
nomics data. These applications require high network
capacity, high speed data delivery and guaranteed con-
nectivity, to ensure all scientists communicate as effi-
ciently as possible. For example, the Large Hadron Col-
lider produces data at the order of petabytes per sec-
ond, and usually requires high-speed transfers to multi-
ple research sites and storage facilities across the world
[1]. In another example, genomics use cases require
advanced bandwidth reservation across network links
for dedicated quality for their data delivery. As net-
works and number of applications grow and become
more complex, managing the diverse demands across
distributed networking sites in becoming increasingly
cumbersome. Researchers are investigating software
defined networking (SDN) to provide flexible and ag-
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ile networks being controlled via centralized software.
However, SDN uses specific protocols (e.g. Open-
Flow) that can configure only some devices via special
forwarding rules [2]. SDN capabilities can be lever-
aged with active monitoring, prediction and informed
decision-making to pre-compute and anticipate network
service demands to intelligently support complex dis-
tributed science applications.

To understand application demands, an additional
precursor is required to study and analyze traffic flow
patterns across various network links and sites. Re-
searchers have been trying to understand flows by
exploring network statistics, combined with machine
learning algorithms to predict traffic patterns at vari-
ous times of the day [3]. This analysis is fundamen-
tal to developing self-optimizing network architectures
that can recognize and predict traffic demands for di-
verse applications. For example, simple calls send short
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(mice) flows in a data center, that are bursty and latency-
sensitive applications, whereas big data file transfers
tend to have long-lived (elephant) flows where transfer
throughput in more important than latency. If not man-
aged efficiently, elephant flows can fill network buffers,
causing queuing delays and packet drops. On the other
hand, mice flows are more difficult to predict and more
dynamic in nature.

Network routing protocols such as shortest path first
or multi-path routing are being used to optimize path
usage based on arriving flow sizes. Researchers usually
identify elephant versus mice flows, to apply different
routing approaches to manage their transfers. These in-
clude assigning different flows to different queues [4],
splitting flows across links [5] or applying policy-based
routing which is provided as rules [6]. However, accu-
rately predicting what is an elephant versus a mice flow,
as they arrive is nearly impossible due to the different
kinds of experiments sending data across the networks.

In the past, machine learning techniques have been
used to automate and classify traffic for intrusion de-
tection and traffic profiling. Researchers classify traf-
fic based on number of packets transfered, IP addresses,
TCP traces, file sizes and flow durations [7]. These tech-
niques include Naive Bayes Theorem, decision trees,
support vector machines and random forest. Classifying
host traffic and flows can be coupled with tools to per-
form real-time path optimization [8] [9]. These results
can statistically characterize small and large flows, but
most current research is based on simplistic file trans-
fer experiments or simulation results. It is increasingly
difficult to obtain real traffic logs from network admin-
istrators due to security and industry policies.

Apart for commercial networks, in research net-
works, such as ESnet (Energy Sciences Network) and
Internet2, the challenge goes further where large data
transfers across multiple sites are more common and can
throttle the network if not managed. Scientists located
at different sites send variable flows across the network
topology. This topology is usually pre-decided which is
difficult to dynamically change depending on the traffic
demands during the day.

The aim of this work is to develop a flow character-
ization technique that can classify traffic patterns based
on site behaviors. We predict that different sites re-
ceive different kinds of traffic during the day, month and
year. Where other approaches have used a pre-decided
threshold to predict flows [10], these thresholds will not
be able to hold for all sites in general. Because each
site is different, we propose to investigate unsupervised
machine learning techniques to help classify elephant
and mice flows per site. Unsupervised classification can

create traffic clusters without any predefined notions on
how the traffic should look. These results can lead to
unique patterns observed across each site. This work
lays the foundation to design automated tools that can
be applied across all network sites and routers.

Elephant flows can pose a serious problem for net-
works where they can slow down transfers and impede
service quality for real-time mice flows. However, most
research uses predefined rules to classify these flows.
Table 1 shows the variability among flows across three
different sites. Having one algorithm that can classify
flows, unbiased based on the individual sites is a chal-
lenge. Machine learning algorithms have been success-
ful in vision and text recognition by deducing common
images and patterns across multiple pictures. These
techniques can be employed in network traffic analysis
to understand how flows differ across sites and whether
commonalities can be found. Our specific contributions
in this paper are as follows:

e We design and implement a machine learning al-
gorithm which can perform traffic cluster analy-
sis based on Netflow records from three different
site routers over the ESnet network. The algorithm
uses the Gaussian Mixture Model coupled with
a novel initialization algorithm to identify cluster
patterns across WANs. The proposed algorithm is
a generalized algorithm that can be applied across
different sites with varying flows. It accounts for
the flow distribution and trains itself uniquely per
site behavior.

e We investigate unsupervised and semi-supervised
machine learning techniques in terms of their suit-
ability to traffic cluster analysis. Our results are
able to show that unsupervised learning is benefi-
cial for traffic analysis where little prior knowledge
is known. This can help find patterns which net-
work administrators are unaware of, for how their
networks are being used.

Our results have shown that this work is impera-
tive to lay the foundational research for develop self-
autonomous networks. Allowing networks to self-learn
and understand their own traffic can help optimize their
behavior for future flows. This paper has been orga-
nized as follows: Section 2 presents the motivation of
this work and the impact these methods will have on
flows. Section 3 discusses the background and related
work in the area of flow classification. This section also
discusses the different kinds of machine learning clus-
tering algorithms and their suitability to different prob-
lems. Section 4 presents the proposed methodology, ex-



plaining the algorithm developed and how it is applied
on Netflow records. Section 5 presents the results of
the clustering analysis along with a comparison to K-
means clustering analysis to show the suitability of the
algorithm. Finally, Section 6 presents a discussion and
conclusions with how this work is applicable to future
research in developing self-autonomous networks.

Site Mean (Sz) Max (Sz) Mean (Dur)
Routerl  0.1547 25.6 23.1965
Router2 0.0313 36.4 4.1433
Router3  0.0238 72.5 6.6344

Table 1: Variability of flows across sites. Size (Sz) is in GB, Duration
(Dur) is in seconds. The router names have been anonymized.

2. Motivation

Research-based networks such as Internet2, GEANT
and ESNet host users that regularly move exceptionally
large datasets to local supercomputing clusters for fur-
ther analysis or simply storing data. These experiments
are computationally expensive and highly dependent on
the time for processing and data arrival speeds. Any dis-
crepancies across the network can compromise the ex-
periments hindering research. Characterizing elephant
and mice flows in these WANs can lead to following
benefits:

e In cases of substandard network performance,
managing elephant flows could lead to faster and
more efficient diagnosis of source(s) of the prob-
lem. This allows network engineers to figure out
the problem causing elephant flows and rectify any
buffering or slow quality at the client-end.

o Smaller size flows are bursty and cause inadver-
tent jitter leading to delays in the network. If these
flows are identified, they can be subjected to band-
width throttling or be isolated from other real-time
flows to allow for higher network utilization and
shorter delays.

Currently, flow classification is either done based on
human experience or using thresholds based on file size
and bytes transfered, to identify what is a big versus
a small flow. This leads to knowledge and architec-
ture dependency and sometimes unoptimized networks
that are difficult to grow as number of users and devices
increase. Automating the classification can allow for
more advanced tools to be developed which can train
and learn based on their own unique traffic patterns on

how to manage networks efficiently. This requires a
general model that can learn and train efficiently, requir-
ing less processing time and improved accuracy results.

3. Background and Related Work

Elephant flows or long-lived TCP flows, even if less
in number can potentially fill network buffers end-to-
end [11]. These can lead to queuing delays, affect
latency-sensitive flows and smaller bursty flows (known
as mice). Strategies in traffic engineering often propose
to optimize network links by identifying and handling
elephant and mice flows differently [12]. Some of these
approaches include sorting flows into different queues,
applying different routing approaches or even splitting
longer flows into smaller ones [11, 13].

Zhang et al. [14] showed a correlation between flow
sizes and rates. Therefore, the idea that Elephant or
high-rate flows could be identified using flow sizes is
well founded and theoretically correct [11].

Researchers have argued modifying hardware con-
figurations to dynamically route flows as they arrive.
However, large and small size flows are difficult to pre-
dict in advance and can lead to difficulties in updat-
ing hardware configurations [15, 16, 17, 18, 3]. Other
researchers have proposed using sampling methods to
identify flow characteristics [17, 19, 20, 21]. However,
these sampling algorithms reduce the available memory
and the accuracy achieved is restricted.

To classify elephant flows in particular, a hybrid net-
work traffic engineering system (HNTES) was used to
explore Netflow data to study flow source, destina-
tion addresses and reconfigure firewall filters to redirect
flows over intra-domain virtual circuits. Deployed over
four ESnet routers, HNTES was able to show a 91% im-
provement [22] in redirecting large flows. However, this
approach used an offline training approach to analyze
and make decisions [10]. Liu et al. [23] validated their
results using scientific data transfer logs but showed a
significant throughput variance in flows. These results
also highly depended on the source and destination in-
volved [24]. But, as highlighted in [25], applications
may use different port numbers and protocols depend-
ing on compute resources involved. This makes it un-
reliable to just base the results on the ip addresses in-
volved.

Predicting flow sizes is a difficult problem, especially
as flows vary from site to site. Using thresholds or dif-
ferentiating characteristics can help understand the var-
ious arriving flows, but can lead to extremely biased re-
sults which are not applicable across all sites. Machine



learning methods have been known to learn character-
istics through labeled and unlabeled data sets in image
and text recognition exercises. Similar principles can be
used in network data to identify what are the features of
flows when divided based on flow rates and sizes. Re-
searchers have been exploring these techniques in the
past. Nguyen et al. [26] discussed a survey of statistical
classification techniques in traffic patterns by combining
IP networking and data mining techniques. They high-
lighted the need for reliable data sets and key elements
for accurate classifiers to be developed. Additionally,
Ibrahim et al. [27] discussed the problem of dataset val-
idation and training issues in traffic classification. The
authors discussed the problem of training based on real
online traffic and dependency of where the data is cap-
tured can affect the reliability of WAN results. In terms
of techniques used decision tree classification based on
latency and throughput [28], Naive-Bayes Tree based
on packet-length and payload classification [29], Naive-
Bayes based on applications [30] or using support vec-
tor machines based on packet headers [31] have demon-
strated good results.

In this paper, we particularly explore unsupervised
methods to study traffic patterns and aim to produce a
generalized algorithm to accurate predict classes based
on per site traffic. Our technique is based on bytes sent
and file size, which in comparison to other techniques
is a new method and aims to develop tools that can per-
form real-time classification in the future.

4. Proposed Solution and Contributions

Supervised  Semi-supervised

SVM i
Naive-Bayes K-means

Decision tree GMM

Random Forest

Figure 1: Machine learning techniques ranging between unsupervised
and supervised techniques.

Figure 1 summarizes the various classification tech-
niques used which belong between supervised to unsu-
pervised areas. Supervised techniques use some knowl-
edge about datasets (such as labeled data) to group data
into cluster. Unsupervised techniques start without any

Unsupervised

knowledge of datasets, identify features and cluster sim-
ilar records into unique sets. Algorithms which use a
mix of techniques fall under semi-supervised area.

For flow classification, we assumed to start with un-
supervised techniques to help cluster flows into simi-
lar kinds of two clusters. The aim here is to produce
two distinct cluster, by which we can analyze the dif-
ference between elephant and mice flows. K-means al-
gorithm is easy to understand and sensitive to multiple
data dimensions clustering data sets based on the infor-
mation available in the record. Initial experiments with
k-means showed that this algorithm was not able to pro-
duce two distinct clusters (Figure 2). This is because the
flows contained some information on file sizes which
were difficult to group.

Based on the results, we modified the clustering algo-
rithm with an initialization step to train the data based
on local datasets available. This is shown in Figure 3.
Details of the technique are as follows.

4.1. Terms and Definitions

1. Flows: We define flows as 5-tuple identifier of
Source IP Address, Destination IP Address, Source
Port Number, Destination Port Number and Com-
munication Protocol (TCP, UDP, ICMP). A flow
with a particular set of these parameters is consid-
ered unique and no two flows will possess the same
parameters at any given point of time.

2. NetFlow Record (N,): NetFlow data reports cap-
tured (with the extended option) at the routers pos-
sess the following entries relevant to our problem,

Nl‘:{t’d91PS9PS9IPd3Pdacp7p3b,bps} (1)

where ¢ is the Unix timestamp signifying when the
flow was first seen, d is the duration for which the
flow persisted on the link, {IPy, P, IP4, P4, C,}is
the 5-tuple flow ID (source IP, source port number,
destination IP, destination port number, protocol),
p represents the number of packets, b is the number
of bytes of the transfer and bps represents the bytes
per second. For our work, we use only size (bytes)
of the data transfer and durations as the feature set.

4.2. Gaussian Mixture Model (GMM) Description

Gaussian Mixture Models (or Expectation Maximiza-
tion) algorithms are a class of probabilistic unsuper-
vised clustering algorithms. These assume clusters to
belong to normal distributions.

We assume that elephant and mice flows together
form a Gaussian mixture and can be represented as
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Figure 3: Method description.

Gaussian distributions. The probability distribution can
thus be as follows,

PX) = 1 N(Xlue, 2) + N (Xptm, ) 2

where 7. and 7, are the mixture coefficients for ele-
phant and mice flows respectively. u. and pu,, are the
means of the elephant and mice normal distributions.

The next steps is to perform the classification by
implementing the initialization step. The reasons for
GMM initializations are as follows,

e Since the GMM can be understood as a ‘soft” K-
Means algorithm for clustering, initializations can
be similar to the way K-means initializes such as
using a distance metric. Here the initialized cluster
centers are chosen to be the samples that are closest
to the randomly chosen centers.

e Cluster centers are also randomly chosen without
any prior distance metrics.

Both reasons for initializing cluster centers prove to
be unsuitable for flow classification. Firstly, if points
are chosen on random, it will cause the clustering to
be random. Secondly, if initialized as K-means using
a distance metric, it does not apply to varying data sets
which lead to different cluster properties across sites.
Therefore we implemented an initialization step which
uses the data records to generate cluster centers.

4.3. Proposed Algorithm

Here X represents the set of all relevant parameters
(sizes and rates) of the flows that are seen by the system
at a given time.

1. Initialization Step: The mixture coefficients initial-
izations are predefined. The covariance are initial-
ized as in regular EM. However, cluster means are
initialized according to the formula,

He = p + me(max(X)) 3)

Hm = pt = Tt (min(X)) “

where y is just the mean of all samples and 7, and
7y are the mixture coefficient initializations.

2. Expectation Step: Responsibility values () are

then computed for all N samples in X and for each

cluster. These signify how strongly the nth sample
belongs to either k cluster.

_ mN(X(n)|uk, 2) 5)
T N(X(M)|te, Z) + TN (X 1), Z)
k= {e,m} (6)

(an



3. Maximization Step: Re-compute values of means,
covariance and mixture coefficients for both clus-
ters through updated values of responsibility using
equations (7-9). Then the log likelihood is com-
puted for all N samples using equation (10). The
likelihood is the probability that the sample be-
longs to the cluster is assigned. Therefore, if the
likelihood converges, the algorithm has finished
running. If not, then it goes back to the Expec-
tation Step.

N
2 DuX
' = — @
Z:l (an

N : *
X Quic(X () = i )X () = paic IS
T = 2 (8)
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Z Can
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N
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5. Results

We trained the algorithm on 1 month of NetFlow
records collected across 3 site routers. The results are
shown in Figure 4-6.

Here it is important to note that the mixture coeffi-
cients are processed at runtime. We use 7. = 0.9 and
mm = 0.1. This definition is based on the assumption
that approximately 90% of all network traffic is a small
number of large-sized elephant flows and the rest is 10%
which are many in number of small-sized mice flows.

This assumption is also used to validate the algo-
rithm, to prove experimentally that elephant flows al-
ways lie in the top 10% of flows. The GMM algorithm
trains on the size of data transfers and duration. The re-
sults are able to show two distinct clusters of flows such
as an elephant flow being large in size and have long
durations.

Table 2 statistically verifies whether or not the identi-
fied flows are actually in the top 10% of flows that lasted
the longest in the network while having the largest rates.

Router Site Lie in top 10% (size)? Lie in top 10% (rate)?

Routerl Yes Yes
Router2 Yes Yes
Router3 Yes Yes

Table 2: Experimental results on identified Elephant flows.

6. Conclusion

In this paper, we presented a novel machine learning
approach for classifying elephant flows that is agnos-
tic to the variance in flow data. These are preliminary
results on studying the kind of flows observed at differ-
ent sites. Further analysis is needed to study the cluster
properties and development of the definition of what are
elephants versus mice flows.

Based on GMM/EM for unsupervised classification,
it prevents randomness and produces a classifier that can
predict high-rate, large-size elephant flows. The algo-
rithm was validated by statistically checking if identi-
fied flows possess the desired properties of large-rate
and long durations.

Once clusters have been identified, properties of these
clusters can be identified to perform online classifica-
tion as a flow arrives (Figure 7). Traditionally, engineers
would try to recognize flows based on their experience
blems. The GMM model developed is able
to automatically figure out elephant and mice flows spe-
cific to particular sites. This can then be related to the
kind of applications running at the sites which can be re-
sponsible for throttling and avoid congestion over links.
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