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Abstract

The increasing size, variety, rate of growth and change, and complexity of network data has warranted
advanced network analysis and services. Tools that provide automated analysis through traditional or
advanced signature-based systems or machine learning classifiers suffer from practical difficulties. These
tools fail to provide comprehensive and contextual insights into the network when put to practical use in
operational cyber security. In this paper, we present an effective tool for network security and traffic analysis
that uses high-performance data analytics based on a class of unsupervised learning algorithms called tensor
decompositions. The tool aims to provide a scalable analysis of the network traffic data and also reduce
the cognitive load of network analysts and be network-expert-friendly by presenting clear and actionable
insights into the network.

In this paper, we demonstrate the successful use of the tool in two completely diverse operational cyber
security environments, namely, (1) security operations center (SOC) for the SCinet network at SC16 -
The International Conference for High Performance Computing, Networking, Storage and Analysis and (2)
Reservoir Labs’ Local Area Network (LAN). In each of these environments, we produce actionable results
for cyber security specialists including (but not limited to) (1) finding malicious network traffic involving
internal and external attackers using port scans, SSH brute forcing, and NTP amplification attacks, (2)
uncovering obfuscated network threats such as data exfiltration using DNS port and using ICMP traffic,
and (3) finding network misconfiguration and performance degradation patterns.
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1. Introduction

Network analysis and network threat identifi-
cation are notoriously difficult problems to solve.
Traditional signature-based approaches are often
thwarted by the ever-changing nature of modern
cyber threats. It is nearly impossible to define sig-
natures for what is or is not normal that generalize
across many networks. Even on a given network,
expected behaviors might change from day to day.
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Furthermore, it might not be possible to write co-
herent rules that capture all activities of concern.

The application of cutting-edge data analytics to
network traffic logs has struggled to surpass the
shortcomings of classical signature-based systems.
Supervised techniques run afoul of the same key
problem – it is not realistic to specify normal versus
abnormal behavior upfront. Other approaches that
rely on training a model based on large volumes
of historical data are hindered by another issue –
because of the sensitive nature of network traffic
there is very little publicly-available training data,
and that data is not guaranteed to generalize in a
meaningful way to the user’s own network.

Tensor decompositions are a class of algorithms
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that provides a new approach for analyzing net-
work traffic data that has been demonstrated to
overcome these traditional shortcomings. A tensor
is a multidimensional array of data – a suitable ab-
straction for structured network metadata collected
in the form of network logs. A tensor decomposi-
tion breaks down a tensor, such as a log, into a
finite set of patterns, called components. In this
way, tensor decompositions perform a form of un-
supervised learning on network traffic that does not
require prior training data.

A tensor-based approach is uniquely better suited
than other classical unsupervised machine learning
approaches for network analysis and cyber security
in that a tensor decomposition can natively capture
patterns that span the entire multidimensional data
space. This can include patterns that reflect mul-
tiple sources, multiple receivers, periodic time in-
tervals, and other complex patterns that cannot be
captured with approaches such as k-means cluster-
ing or Principal Component Analysis (PCA). This
has enabled tensor decompositions to extract ma-
licious behavior that has been intentionally obfus-
cated during our experiments on real network traffic
data. In particular, initial experiments have shown
that tensor decompositions especially excel at iden-
tifying data exfiltration, an activity of special con-
cern in the security community.

We develop and present CANDID, a highly scal-
able and user-friendly network analysis tool for
deeply analyzing network metadata and present-
ing clear and actionable insights. CANDID is
built upon ENSIGN [1], a generic high-performance
tensor analysis tool, developed at Reservoir Labs,
that provides fast, efficient, and scalable tensor de-
compositions. ENSIGN provides novel data struc-
tures [2] for storing tensors and implementations
of multiple tensor decomposition algorithms specif-
ically engineered to scale to large problems [3, 4].

In this paper, we make the following specific
contributions:

• Present a scalable network analysis workflow
starting from tensor construction from net-
work log data to integrating the results of ten-
sor analysis into widely-used data management
platforms such as Splunk.

• Present the use of tensor decompositions in
large-scale operational cyber security environ-
ments.

• Present concrete, actionable discoveries using
this approach.

The remainder of the paper is organized as fol-
lows. Section 2 provides an overview of tensors,
tensor decompositions, and how to interpret their
results. Section 3 discusses some related research
work on applying tensor decompositions for cyber
security. Section 4 discusses the workflow of our
CANDID network analysis tool. Sections 5 and 6
detail the practical deployment of our tool at SC16
SCinet network and Reservoir Labs’ LAN, respec-
tively, and discuss some of the significant results
from the deployment. Section 7 discusses our plan
for using and demonstrating CANDID/ENSIGN on
SC17 SCinet network. Section 8 summarizes our
work with a foreword on our ongoing work.

2. Tensor Analysis and Tensor Decomposi-
tions

2.1. Representing Multidimensional Data as Ten-
sors

Tensors (aka multidimensional arrays) are a nat-
ural fit for representing data with multiple associ-
ated attributes such as network traffic data. Con-
sider a sample data log of network traffic messages.
For each message, let us assume that the log records
the timestamp of the message, IP address that sent
the message, TCP/UDP port that the IP address
used, and IP address that the message is sent to.
This dataset can be formed into a four-dimensional
tensor with the dimensions (“modes” in the tensor
analysis parlance) being timestamp, sender IP, re-
ceiver IP, and port. For each (timestamp, sender
IP, receiver IP, port) tuple, the tensor contains the
count of the number of messages sent at that time,
by that sender IP, on that port, to the receiver IP.

2.2. Tensor Decompositions

Tensor decompositions are a valuable, mathemat-
ically sound set of tools for exploratory analysis
of multidimensional data and for capturing under-
lying multidimensional relationships. Tensor de-
compositions separate the input data into patterns
called “components.” Each component represents
a latent behavior or correlation from within the
dataset. This separation into components occurs
without training or upfront specification. There
are two prominent tensor decomposition models,
namely, CANDECOMP/PARAFAC (CP) decom-
position and Tucker decomposition. The particular
decomposition model used in this paper is the CP
decomposition illustrated in Figure 1.
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Figure 1: A CP Decomposition of a 3-dimensional tensor
into R components.

A CP tensor decomposition decomposes a tensor
into a set of components, each of which represents
a different pattern extracted from the original ten-
sor. Each component has a weight and then one
score vector for each tensor mode. The component
weight reflects how large the contribution of this
component is to the original dataset. The length
of the score vector for the ith-mode is equal to the
number of indices in the ith-mode.

In the experiments described in this paper, we
use the Alternating Poisson Regression (APR) al-
gorithm [5] for computing CP decomposition. This
algorithm computes a CP decomposition in a way
that is tailored to work on sparse data that is mod-
eled by a Poisson distribution. It is well known
that real world count/event data is roughly ap-
proximated by a Poisson distribution, and this
method produces good decomposition results for
cyber data.

2.3. Interpreting Decomposition Results

The output components of tensor decompositions
are the core of tensor analysis. Let us consider
again the previous four-mode tensor with the di-
mensions timestamp, sender IP, receiver IP, and
port. Performing a CP decomposition would de-
compose this tensor into components. Each compo-
nent has a weight that corresponds to the volume of
network traffic this component describes. This will
not be the exact number of messages explained by
this component, but an approximate volume (since
sometimes components have non-integer weights).
Higher weight components correspond to large-scale
patterns and low weight components correspond to
more anomalous or specific traffic. Each component
has four score vectors: one for timestamp, one for
sender IP, one for receiver IP, and one for port. The
length of the score vector of each mode will be the
total number of distinct entities in that mode (i.e.,
number of distinct time steps, sender IPs, receiver
IPs, ports).

The individual score values indicate how much a
specific index contributes to this cluster of network
activity. Each score is a continuous value between
0.0 and 1.0. Within each score vector, the scores
are normalized so that they sum to 1.0. Thus a
natural interpretation of the score is what fraction
of the total network messages represented in this
component this index contributes to.

3. Related Work

Some existing work in the literature (e.g., Mul-
tiAspectForensics [6] and MalSpot [7]) has applied
tensor decompositions to network traffic data in or-
der to extract anomalies and malicious patterns.
Unlike the other work, we extend beyond theoret-
ical research and toolbox development to demon-
strate practical operational results. Our experi-
ments are set up in operational cyber security en-
vironments, enabling us to study how tensor de-
compositions fit into a realistic work flow. The
network at SC16 was extremely high volume and
bad actors were common making it a uniquely ideal
data source compared to publicly available network
datasets.

Since the ENSIGN tensor toolbox includes a scal-
able implementation of Poisson regression based CP
algorithm for tensors of arbitrarily many dimen-
sions, we also avoid many of the limitations ex-
isting in other work such as MalSpot. Our Pois-
son regression based tensor decomposition method
produces sparse component vectors with all non-
negative scores. This is critical for network security
analysis because it allows components to be exam-
ined individually for the behavior they represent.
With the commonly used CP algorithm (based on
Alternating Least Squares method), the component
vectors are often dense and have both positive and
negative scores. This means that most entries in
the reconstructed tensor have contributions from
multiple components (some of which might be pos-
itive while others may be negative) that compli-
cates analysis. MalSpot, for example, addresses
this problem by plotting IP address scores between
components and then clustering the points in that
space. However, this creates a proliferation of work
for the analyst. In the case of highly heterogeneous
data such as real network traffic, a day’s worth of
data might take tens to hundreds of components to
accurately decompose. To plot the IP scores be-
tween all possible pairs (or even triples) of compo-
nents is not feasible.
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4. CANDID Workflow

Figure 2 represents the CANDID network analy-
sis workflow. CANDID involves a data transforma-
tion module that transforms network flow logs (cur-
rently Bro [8] logs) into tensors. The data transfor-
mation module can build an arbitrary number of
tensors from network flow logs.

Figure 2: CANDID Workflow

There are multiple Bro log files (such as conn.log,
files.log, dns.log, http.log) and each log file has mul-
tiple fields or attributes. In theory, one could con-
struct an arbitrarily large number of tensors de-
pending upon the choices made in terms of the log
files, log file attributes, and transformations applied
on the attributes. We choose an initial suite of
network tensors that provides visibility into diverse
network traffic patterns. The current version of the
data transformation module takes in four different
kinds of flow and protocol-specific Bro logs, namely,
conn.log, files.log, dns.log, and http.log and pro-
duces a suite of tensors (as shown in Table 1) for
decomposition that gives maximum network visibil-
ity and uncovers network patterns/behaviors and
threats.

The tensors created from the network flow logs
are analyzed using the ENSIGN tensor analysis en-
gine, the core module of the workflow. The results
from tensor analysis are passed on to a tensor out-
put validation module (this module is an optional
module in the workflow and is not a focus of this
paper), from which the tensor decomposition re-
sults are passed on to a Splunk [9] dashboard for
a user-friendly visualization of the results. Devel-
oping the Splunk dashboard is a work in progress.
For the work described in this paper, the Splunk
investigation is done manually. However it is to be
noted that the components from tensor decomposi-
tions (that are few hundreds in number compared

to the million or billion lines of original logs) pro-
vide the map to an effective investigation in Splunk
that requires less cognitive load.

A network traffic pattern is ultimately a set of
network log entries that belong to a distinct class of
activity. Therefore we can represent network traffic
patterns as filters to apply to the original network
logs that select only those messages associated with
this pattern. The advantage of doing this within
Splunk is that the user/analyst not only has imme-
diate access to all the statistics and visualization
tools available, but is also enabled to inspect a sin-
gle discovered traffic pattern in greater detail. The
Splunk dashboard will expose the network patterns
to an analyst in a clear and interpretable way that
does not require tensor expertise.

5. Tensor Analysis at SC16 SCinet

SCinet, described as “the fastest network con-
necting the fastest computers,” is set up each year
at SC – the International Conference for High
Performance Computing, Networking, Storage and
Analysis. In 2016 SCinet offered 3.15Tbps from
the network operations center and connected over
12,000 researchers. There is no firewall and no asset
identification or authorization. We were located in
the security operations center (SOC) for SCinet an-
alyzing network traffic metadata from 40 network
taps across 1/10/100Gbps wired connections and
200 wireless access points. A cluster of Reservoir
Labs’ R-Scope network security appliances [10] run-
ning a highly optimized version of the Bro network
security monitor provided network traffic metadata.
Tensor decompositions were performed on a 12-core
HPE Apollo 2000 machine.

Numerous threats and suspicious sessions were
isolated into distinct decomposition components.
We present a list of interesting network traffic pat-
terns and security attacks that we identified and ob-
served from our tensor analysis. In the subsequent
sub-sections, we discuss in detail some of these pat-
terns/behaviors, including security threats/attacks.

We found a number of interesting network
behaviors and activities from our connections
tensor. Some of them include:

• SSH scanning and SSH password guessing

• Groups of IPs working together to accomplish
scans leading to successful SSH infiltration

• Bit-torrenting
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Tensor Name Bro Log Tensor Dimensions

Connections Tensor The connections log (conn.log) Time x Sender IP x Receiver IP x
Port

Outgoing Tensor Connections log entries with local
sender and external receiver

Time x Sender IP x Receiver IP x
Port

Incoming Tensor Connections log entries with local
receiver and external sender

Time x Sender IP x Receiver IP x
Port

Time Independent Connections
Tensor

The connections log Sender IP x Receiver IP x Port x
Connection State

Extended Time Independent Con-
nections Tensor

The connections log Sender IP x Receiver IP x Port x
Connection duration x Originator
bytes x Connection State

File Transfer Tensor The file transfer log (files.log) Time x Sender IP x Receiver IP x
MIME-Type

HTTP Tensor The HTTP traffic log (http.log) Time x Sender IP x Receiver IP x
URI x User Agent

DNS Query Tensor All queries from the DNS log
(dns.log)

Time x Sender IP x Receiver IP x
Query x Query Type

Table 1: CANDID Tensor Library

• Internet Printing Protocol traffic indicating a
vulnerable machine

• Isolating a timeperiod when a particular ma-
chine had a vulnerability through port 51413

• Private network CAPWAP traffic – unusually
more common at night than during conference
operating hours

• Security team’s Nessus scanner traffic includ-
ing internal management of the scanner

• Boomerang power monitor traffic

• Steam downloads and scanning of gaming
server ports

• Vulnerable Brazilian university supercomputer
traffic

Our tensor analysis using extended connections
tensor (including metadata attributes such as
connection duration and originator bytes), we
found and isolated patterns and activities that
were obfuscated. Some of them that were security
relevant are:

• Anomalous outgoing ICMP traffic indicating
exfiltration

• Exfiltration through concealed outgoing DNS
traffic

• NTP amplification attack

• Late night outgoing SSH connections to many
hosts

Figure 3: A component from the decomposition of an
“incoming traffic” tensor. The component represents dis-
tributed network mapping and port scanning with strong
likelihood of hostile intent.

The tensor analysis from the DNS tensor iden-
tified the following interesting but non-malicious
entities:

• DNS hierarchy mapping of a leading company

• Misconfigured DNS server of a popular univer-
sity

• Outgoing LDAP through DNS “SRV” type
requests (not malicious but anomalous)

5.1. External Scanners

We now discuss how we captured and isolated
the evolution of an external scanning attack on the
network and a subsequent data exfiltration from a
compromised host.
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The component in Figure 3 represents eight hours
of traffic from 8AM to 4PM on the opening day
of the conference. The topmost chart (timestamp)
shows activity starting shortly after the conference
start time of 9AM and ramping up throughout the
day. The second chart (source IP) shows inbound
traffic from a number of external IP addresses (the
IP addresses are anonymized as “1.2.3.*” in the fig-
ure). The third chart (destination IP) shows a large
number of internal IP addresses as destinations of
the inbound traffic. The fourth chart (destination
port) shows a specific set of ports being targeted by
the external hosts.

It is clear that this component represents a coor-
dinated attempt by multiple external actors to find
hosts on SCinet with particular services enabled.
In other words, the component shown in Figure 3
represents distributed network mapping and port
scanning with strong likelihood of hostile intent. It,
indeed, turned out to be the reconnaissance phase
of a successful attack.

Further investigation of the IP addresses involved
resulted in the discovery of a compromised host tar-
geted during the initial reconnaissance phase. This
is captured by the Splunk investigation and ten-
sor decomposition component shown in Figure 4.
The tensor decomposition component (Figure 4(b))
shows that the compromised host made 40, 000 out-
going SSH connections, which is clearly a very bad
sign. The component also shows that the outgoing
SSH connections started after the compromise, re-
mained heavy initially, went relatively low-key after
sometime, and then resumed heavily after 8 hours.

To summarize, Figures 3 and 4 illustrate the evo-
lution of an attack – an initial component show-
ing distributed network mapping and port scanning
and a later component showing promiscuous out-
going SSH traffic from one of the scanned hosts.
Splunk was used to connect the dots between the
components and confirm the attack. This is one
example of a network threat identified using tensor
decomposition with no prior attack signature.

5.2. ICMP Tunneling

We discuss below a case of suspected ICMP tun-
neling that was neither seen by other security per-
sonnel nor surfaced by other network security tools.

Anomalous ICMP traffic is difficult to distinguish
with tensor decompositions done on tensors with
standard attributes such as IP addresses, port, con-
nection state/time. Figure 5 shows components

Figure 5: Components from the decomposition of a “basic
time independent connections” tensor, showing ICMP traffic
patterns from which it is not clear to distinguish anomalous
ICMP traffic from normal ICMP traffic.

Figure 6: A component from the decomposition of an “ex-
tended time independent connections” tensor, clearly iden-
tifying suspicious ICMP traffic.

representing traffic patterns involving ICMP mes-
sages. As it can be seen, typically ICMP traffic is
separated by message type (in Bro logs, the “port”
field is overloaded with ICMP message type for
ICMP messages). These components represent pat-
terns that look like normal ICMP traffic and do not
indicate any abnormal behavior.

We performed subsequent tensor decompositions
on tensors constructed from the same data as be-
fore, but with additional attributes such as connec-
tion duration (binned by log10 scale) and number
of originator bytes (binned by log10 scale). The de-
compositions of these larger tensors with additional
metadata attributes immediately (and clearly) un-
covered suspicious network traffic involving ICMP.
This is shown in Figure 6.

The first chart in Figure 6 (sender IP) revealed
six IP addresses and each IP belonged to a differ-
ent subnet. These IPs did not trigger any signature-
based alert, threat intel, or Intrusion Detection Sys-
tem (IDS) alert. The top scoring destination IP
(from the second chart) was a blacklisted Russian
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(a) Splunk investigation (b) Tensor decomposition component

Figure 4: A component from the decomposition of an “outgoing traffic” tensor. The component represents a host, compromised
from the scanning attack, involved in promiscuous outgoing SSH traffic. Splunk queries filtered using the top-scoring entries
in the component (across all dimensions of the tensor) helped us to confirm the attack.

IP address. The suspicion came as a result of the
duration of the connection (longest connection du-
ration being 11, 000 seconds for an echo reply) and
number of originator bytes (up to 100 KB). Upon
searching all the ICMP traffic from these sender
IPs, it was found out that the time course of the
traffic happened mostly in the middle of the night.
This led to the suspicion that it is ICMP tunneling.

Upon searching for all inbound traffic from the
blacklisted Russian IP address (the destination IP
of the suspicious ICMP traffic), it was found that
the IP address was involved in Remote Desktop
Protocol (RDP) attacks. However the target of the
RDP attacks were not the six IP addresses identi-
fied in the suspicious ICMP traffic, indicating that
this is not an easy-to-understand case of compro-
mise.

5.3. NTP Amplification

We were able to clearly isolate traffic resulting
from a NTP amplification attack. Figure 7 shows
a component that resulted from the decomposition
of extended time independent connections tensor,
representing noisy traffic from a NTP amplifica-
tion attack. The decomposition of basic (time-
included and time independent) connections ten-
sors saw NTP amplification traffic as noise within
normal traffic patterns and it was not isolated into
a separate component. However the extended ten-
sor including the connection duration and origina-
tor bytes pulled out the component. The unusually

Figure 7: A component from the decomposition of “extended
time independent connections tensor”, identifying a NTP
amplification attack victim.

long duration connections (as seen in Figure 7), of
the order of 10000s-100000s, isolated the compo-
nent and helped us to nail down the NTP ampli-
fication attack on two SCinet hosts (first chart of
Figure 7) from a couple of Chinese IP addresses
(second chart of Figure 7).

6. Tensor Analysis on Reservoir Labs LAN

At Reservoir Labs, we perform nightly tensor
analysis using CANDID on network metadata col-
lected on our own office LAN traffic. On business
days the LAN connects 40 to 50 devices over a
1Gbps network and 200Gbps firewalled link to the
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Internet. A single R-Scope network security appli-
ance provides network traffic metadata. Tensor de-
compositions are performed on a 32-core x86 server.

Deep analysis of Reservoir Labs network through
CANDID illustrated three main capabilities.

1. Ability to give a high-level overview of the most
common traffic on the network.

2. Extraction of patterns relevant to network
monitoring and maintenance. Examples in-
clude:

• DHCP misconfiguration

• Printer misconfiguration

• DNS caching failure

• UPnP misconfiguration

• Noisy HTTPS (change in network state)

• Link local IPv6 traffic

3. Successful detection of synthetic anomalous
traffic seeded into the network.

6.1. Network Maintenance and Monitoring

Some of the decomposition patterns from the
deep analysis corresponding to background systems
management traffic revealed concretely actionable
network misconfigurations, highlighting the value
of the CANDID approach for network monitoring.
Figure 8 enumerates a few such examples.

Figure 8(a) shows a component representing a
traffic pattern that occurs regularly through time
and entirely on port 67 – corresponding to DHCP
traffic. There are two destination IP addresses that
have non-zero scores and these correspond to our
network’s two DHCP servers. There are a hand-
ful of different sender IP addresses including Win-
dows virtual machines (VMs) and several office
phones. To further investigate the traffic pattern
represented here, we filtered the conn.log in Splunk
to only include the timestamps, senders, receivers,
and ports with a non-zero score in this tensor com-
ponent. This revealed DHCP misconfiguration in
the Windows VMs and office phone systems identi-
fied by the component.

Figure 8(b) shows a component that has one
high-scoring sender, two high-scoring receivers, and
two high scoring ports. The dominant sender IP ad-
dress is an office workstation, the two receiver IP
addresses are the Epson printer and the broadcast
address (255.255.255.255), and finally the two ports
are 3289 and 161. The component contains two re-
lated activities - Epson printer specific connections

Figure 9: A component showing a sudden increase in traffic
– noisy HTTPS traffic

over port 3289 and SNMP connections on port 161.
The constant noisy chatter (clearly unrelated to an
actual print request) indicates a device misconfigu-
ration. Furthermore, this workstation has not been
in active use for several months and is therefore a
likely candidate for inspection.

Figure 8(c) represents a component that revealed
a DNS caching failure. The component involves a
single sender and receiver. The receiver is a DNS
server. The sender is a Linux machine that is per-
forming a batch of DNS lookups as part of a re-
search task. This batch of lookups occurs four times
within the timeframe of this particular decomposi-
tion. However, because of caching misconfigura-
tion, the results are not stored and the enormous
batch of lookups has to be repeated each time.

Figure 9 reveals noisy HTTPS traffic. This is
not a result of any network misconfiguration. How-
ever this demonstrates an important network mon-
itoring capability: detecting a change in network
state over time. The top chart (timestamp) in Fig-
ure 9 very clearly displays a sudden change around
halfway through the day.

The only sender with a non-zero score is a single
engineer’s workstation, and the only port with a
non-zero score is port 443 (HTTPS/SSL). The top
receivers are around 20 different Amazon AWS IP
addresses. Upon inspecting the SSL log in Splunk,
we found that this activity is almost exclusively
lifefyre (an Internet comments service) traffic and
the machine’s owner confirmed that this sudden in-
crease in traffic was due to a browser tab left open
overnight. This is not malicious activity, but high-
lights a valuable lesson that the connections tensor
with the timestamp dimension can reveal how pat-
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(a) DHCP misconfiguration (b) Printer misconfiguration (c) DNS caching failure

Figure 8: Network misconfigurations detected by CANDID

Figure 10: A component with a beaconing pattern. In this
case a browser left open on the auto-refreshed New York
Times home page was identified as the cause.

terns of activity change over time.

6.2. Anomalous Behaviors

The analysis revealed many anomalous behaviors
that prompted further investigation from the net-
work administrators. We discuss one of the exam-
ples in this section. Figure 10 shows a component
from our nightly analysis representing an anoma-
lous beaconing-like activity. The top chart (times-
tamp) shows highly regular periodic activity. The
second chart (source IP) shows a single user work-
station. The third chart (destination IP) shows the
primary DNS server. The fourth chart (DNS query)
shows a large number of queries for records associ-
ated with the New York Times website.

This component prompted the network adminis-
trator to investigate it further and it was discov-
ered that a browser left open on the user worksta-
tion auto-refreshed New York Times home page and
caused the beaconing-like traffic.

7. Plan for SC17 SCinet

Our research objective at SCinet NRE 2017 is
to validate the capability of CANDID/ENSIGN to
provide deep network visibility by analyzing diverse
network security logs that are available from the
SCinet network security stack. As in previous years,
we will demonstrate the effectiveness of our network
analysis and cyber security capability in an opera-
tional cyber environment. We will demonstrate an
end-to-end workflow where we take network data
from diverse network security logs such as Bro logs,
Attivo Networks logs, and other available system
logs from the security stack, perform advanced net-
work analysis, and display the identified network
patterns, indicating attacks or interesting network
behaviors, in a Splunk dashboard.

At SCinet NRE 2015 and 2016, we successfully
demonstrated our tool on offline network data feeds.
Specifically, we demonstrated how our tool sepa-
rated normal and off-normal traffic patterns in a
way that led to the discovery of indicators consis-
tent with, and in some cases prior to, human an-
alyst discovery (e.g., a distributed takeover attack
on a vendor booth and suspected ICMP-based data
exfiltration). The major advance that we plan to
demonstrate at SCinet NRE 2017 is the addition of
a streaming analysis capability for cyber security
that will improve the timeliness of the previously
demonstrated offline analysis of network metadata.
Further, we plan to demonstrate how information
from multiple network security sources could be
fused to provide a comprehensive and coordinated
view of the network behaviors.

We will install and operate CANDID/ENSIGN
from a node in the SCinet Network Security Cloud
that is provided by CloudLab. We will use Splunk
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Figure 11: Pictorial representation of SCinet cloud infras-
tructure and deployment of CANDID/ENSIGN in the cloud.

as a data management and visualization platform.
We will pull data from the Splunk instance hosted
in the Cloud and use CANDID Splunk dashboard to
view and show results. Figure 11 shows the network
topology.

8. Conclusion

CANDID, along with the foundational work of
ENSIGN, contributes uniquely to network traf-
fic analysis by solving many of the problems not
addressed by traditional approaches for cyber se-
curity. Avoiding requirements for large training
datasets that plague many machine learning tech-
niques and not requiring a definition of normal or
abnormal activity upfront are some of the clear ben-
efits that make this approach elegant and powerful.
Furthermore, CANDID/ENSIGN tensor decompo-
sitions capture patterns that span the entire mul-
tidimensional space extracting anomalous activity
even when an attacker explicitly crafts their actions
to subvert signature-based detection methods, or
hides attacks within a broader pattern of normal
activity. The practical use of the tool in real oper-
ational cyber security environments on large-scale
networks is proof that it can be integrated into a
network security specific solution.

Our plan for ongoing and future work is to further
improve and advance the tool with respect to cyber
security practice and move closer to a deployable,
turnkey solution. Some of the work towards this ob-
jective include automatic classification of network

traffic patterns and threats, automatic distinction
of malicious and benign anomalies, and ranking of
threats and/or interesting patterns.
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