Why wait? Let’s start computing while
data is still on the wire*

Shilpi Bhattacharyya* Dimitrios Katramatos **
Shinjae Yoo ***

* Stony Brook University, Stony Brook, NY 11790, USA (e-mail:
shbhattachar@cs.stonybrook.edu,).
** Brookhaven National Laboratory, Upton, NY 11973, USA (e-mail:
dkat@bnl.gov)
*** Brookhaven National Laboratory, Upton, NY 11978, USA (email:
sjyoo@bnl.gov)

Abstract: In this era of Big Data, computing useful information from data is becoming
increasingly complicated, particularly due to the ever increasing volumes of data that need
to travel over the network to data centers to be stored and processed, all highly expensive
operations in the long haul. In this paper we suggest that we can do computing and analysis of
data "on the wire,” i.e., while data is still in transit. The nature of these computations include
analysis, visualization, pattern recognition, and prediction, or forecasting, on the streaming data.
We follow a service function chaining architecture to implement this, assuming that the data
packets arrive within a single network administrative domain. As a demonstration of this new
computing paradigm, we present three examples. Firstly, we demonstrate pattern recognition
and data visualization on streaming forex data, which can be used for lucrative trading in the
forex market. In our second example, we analyze and learn user buying patterns from clickstream
data streaming from multiple websites. Finally, we monitor solar sensors for a zero reading while
the packets are still on their way to the data center, to schedule any maintenance and requisite
repairs with no time delay.

Keywords: Software Defined Networking, Service Chaining Architecture, Big Data, Streaming
Data, Algorithms, Analysis on Wire, Intelligent Networks

1. INTRODUCTION

With the Internet revolution, globalization, and digiti-
zation of everything and anything possible, there is a
tremendous increase in the data volumes moving through
the network. To make all this data useful in a larger
way, we need to perform custom computations on them.
Conventionally, after data sent from one end is received at
the other end, any kind of computation is performed on
them at either a specific data center or cloud computing is
leveraged to quench the computational needs. Here, how-
ever, we suggest that it is feasible to start computations
on the data as soon as it arrives at a specific point on
the wire, which we refer to as our computing unit, and
can be anywhere between the data entry point in the
corresponding network and the destination data center,
depending on problem scope and data availability. Such a
point can be at the edge of the network, a little before the
data center, or anywhere suitable in between.

We follow the Service Function Chaining(SFC) architec-
ture[Halpern and Pignataro (2015)], which emphasizes
how some legacy hardware devices functionality can be
implemented with a SDN (Software Defined Networking)

* Sponsor and financial support acknowledgment goes here. Paper
titles should be written in uppercase and lowercase letters, not all
uppercase.

framework. But we present the idea with examples to show
how can we compute on streaming data to inspect, analyze,
forecast, or recognize specific patterns in the data. Our
framework is called ” Analysis on Wire” (AoW).

We started the AoW framework as a simple setup [Ka-
tramatos et al. (2016)], where we send a very simple string
as "hello world” from one end to the other, with and
without the SFC architecture, and compute the overhead
of sending it through the chain, which becomes almost
negligible with increasingly more data being sent. That im-
plementation deployed seven virtual machines, configured
with the Vagrant[HashiCorp (2017)] environment, which
made the framework quite slow for Big Data.

The current implementation is based on the Docker
[Docker (2017)]environment, which is relatively lighter and
faster. We design a framework to do computations on the
streaming data on the network. We run algorithms on this
framework to visualize, forecast and analyze the incoming
data into the network to infer useful information. This
could help us not only in saving resources in the datacen-
ters or alternatively any kind of cloud storage, but also
in early decision making since data is processed in flight
instead of having to wait for its arrival and accumulation
at a data center before processing can begin. Sometimes we
can even prevent or be prepared for impending disasters

streaming data sources

streaming data sources [l -~ [l

|

networking

lectingforwarding logic
selecting! arding logle infrastructure

* data analytics

streaming data destination

streaming data sources’ . e .

data flows
Wmmm—— = coordination control

Fig. 1. General Overview of the Analysis on Wire(AoW) Framework with Compute-capable Network Nodes

such as device breakup; we demonstrate this for solar
Sensors.

In this paper, we present the functionality of the AoW
framework with three examples. We run a pattern recog-
nition algorithm on forex data to plan a better trade in-
vestment. We also analyse clickstream data from multiple
streaming websites to identify user buying patterns. And,
finally, we process in our computing unit streaming data
from twenty three solar sensors to detect which of them is
down and possibly schedule maintenance, requisite repairs
or replacement for them.

2. ANALYSIS ON WIRE(AOW) FRAMEWORK
DESIGN

The framework is a Docker-based service function chaining
architecture with an OpenDaylight[Opendaylight (2017)]con-
troller. We started developing this framework on top of
the OpenDaylight Service Function Chaining demo[SFC
(2017)]. The controller is a vagrant virtual machine(VM),
which has other nodes as docker containers. All the
docker containers, including the controller VM are Open
vSwitches[OpenvSwitch (2017)]. The controller is respon-
sible for monitoring the good operation of all other nodes
in the framework. We feed the controller with the kind of
path information our framework needs in order to perform
a desired computation on the streaming data by passing
json payloads through a REST API. The controller, in
turn, prepares all other nodes for computation. A general
overview of the framework we implemented can be seen in
Fig.1 and it’s working model is depicted in Fig. 2.

Following are the modules in the framework:

1. Traffic Checker - An Open vSwitch, which decides
whether the incoming data packet is destined to enter

the chain framework. It makes decisions according to the
rules in it’s flow table. The rules have been created in
the traffic checker by the controller when we feed json
payloads through REST APIs for the required configu-
ration of the framework, once the controller vagrant VM
starts. Rules are open ended and can be configured based
on the needs of the data computing design framework.
For our experiments, we have rules based on acceptable ip
addresses and packet type. Once a data packet is accepted
in the network, the data packet needs to move further
towards it’s destination. The traffic checker encapsulates
the incoming data packets with Network Service Head-
ers[P. Quinn and Pignataro (2017)] and transports them
over a UDP protocol[S. Kumar and Melman (2017)] for
further movement in the network. We discuss more about
network service headers towards the end of this section.

2. Forwarder - Once, a packet has been classified to enter
the AoW framework, it means it has been encapsulated
with Network Service Headers, which guides it further in
the network. It reaches a forwarder now, with a specific
computing unit attached to it. The forwarder redirects the
packet to the computing unit, which parses the packets to
extract the payload and executes the desired algorithm
on the data payload to do any kind of computation or
analysis.

3. Computing unit(CU) - This is our data computing
unit in the chain. It has two modules:

Data processing module: Extracts the payload from the
incoming data packets, and converts them in a format
which the corresponding algorithm module can accept as
input.

Algorithm module: The custom algorithm module, wherein
a plethora of algorithms such as pattern recognition, fore-

Computing Unit (CU) D——
(data processor + algorithm)

=3
0
(o]
3
3
o
a
. o
® 2
o -
o c
@ : &
;
Traffic
Checker1 Packets
encapsulated
with NSH

[
[
el
=
©
3
fes
o
[N

Control lines

transmission
from source to

Forwarder to CU,
Serves for both
flows

0 N

- destination
[}

o

: . -
o H transmission
< e ' * from destination
= Traffic

2 to source

0 Checker2

a2

]

(S

[5

Fig. 2. Working model of the Analysis on Wire(AoW) Framework

casting, and in general any form of streaming computation
can be executed.

The CU extracts the payload from the encapsulated UDP
packets it receives from the forwarder. The UDP packets
contain the original packets, which in our case are TCP
packets. From the enclosed TCP packets, the CU extracts
the payload and transforms it into a CSV (comma sepa-
rated values) format, which is fed to the algorithm running
on the CU. We can execute any algorithm on the incoming
traffic given it enters at a congestion controlled rate in a
single administrative network, which is majorly true for
streaming data. We can briefly explain these two terms as
follows. Since, NSH encapsulated packets are transmitted
over the UDP protocol, our setup cannot work extremely
well (without any possible acceleration as through FP-
GASs[XILINX (2017)] or GPUs[NVIDIA (1999)]) if con-
gestion occurs at any node in the network. A single ad-
ministrative domain implies that we have full control over
everything happening in the network at hand. This gives
us the liberty to do any kind of computation on the packets
entering the AoW framework.

Since, we are sending T'CP packets, we need a bidirectional
framework as illustrated in Fig. 2. Accordingly, we have
two traffic checkers, one at source and other at destination.
The forwarders with their CU are applicable for both
directions.

Network Service Headers(NSH) ensure the successful im-
plementation of our framework. The traffic checker encap-
sulates NSH headers based on the Computing Unit Paths
and Computing Unit Chains, we feed to the OpenDaylight
(ODL) controller. Our Computing unit chain consists of
only a single Computing Unit. This chain is passed to the

decapsulates
NSH Payload
(Original TCP packet from the Traffic
Checker)

Network Service Header (NSH)

L4 UDP Header

L3 (IPV4]IPV6) Header

L2 (Ethernet) Header

Fig. 3. Network Service Header (NSH) UDP Stack

Computing Unit Path. In this framework, NSH headers are
transported through the UDP protocol which works quite
well in a congestion controlled environment as this. And
at the end of the chain, the SI(service index) is reduced to
zero at the computing unit and sent back to the forwarder.
The forwarder decapsulates the packets and sends the
original enclosed TCP packets intact to the destination.
The NSH UDP stack is shown in Fig. 3.

In our setup, we run pattern recognition, detection, and
behavior analysis algorithm on the incoming data. Our
primary focus in this paper is to present the idea of
using an SFC environment for generic computation and
the design of such a network framework capable to do
computations on streaming data. However, we are certain
that there exists many meaningful computations that can
be performed on our framework and it is in our future
plans to explore a wide range of such computations.

The computing unit chain consists of the traffic checker,
forwarder and it’s attached computing unit. so it passes
through as depicted in Fig. 2.

2.1 Implementation

We inject traffic into the network through a TCP packet
generator implemented with a python script. This traffic
tries to enter the framework at the traffic checker. So, once
a data packet is at the checker, the checker tries to match
the destination and packet type of the data packet with it’s
flow rules. Our traffic checker checks for TCP packets for a
specific source network and a specific destination network.
If there happens to be a match, the checker inserts ap-
propriate NSH headers into it to move it forward through
the framework. If there is no match, the data packet does
not need to enter this framework, but it can go directly
to it’s destination based on custom routing policies. This
is very useful in scenarios where we want data packets
with specific attributes to enter our framework for possibly
analyzing them or perform custom computations on them.
As per the values in the inserted NSH headers on the
top of original packet, the checker transmits it to the
intended forwarder. The forwarder forwards the packets
to it’s attached computing unit(Fig. 2). The attached CU
parses the packets through a data parser python script,
and transforms the extracted payload to a CSV format
within the data processing module. The output from data
module is fed to the algorithm module, where we run
the pattern recognition and detection algorithm as python
scripts. More specifically, in the data processing module,
we run tcpdump to capture the incoming traffic, where we
parse and extract the payload from each packet. We run
our algorithms on the parsed data within the algorithm
module. This helps us to have a very useful insight of the
moving data which is still in flight and we might not even
need to store this data in some cases. Conventionally, we
would wait at the destination for all data to be gathered,
which might take hours and sometimes days to receive or
we redirect all data towards cloud or edge and post that
only we would run relevant algorithms on them. But, with
this framework, we can keep getting information about
incoming data soon after they enter the network. The only
latency we get is the time taken by the checker to insert
NSH headers onto the incoming data packets.

In the following subsection, we demonstrate in a de-
tailed manner the three example algorithms mentioned
earlier with computations on streaming data through the
framework. Our focus is on the network design and these
examples serve as evidence of what is possible in such
a framework. We believe this to be a new computing
paradigm, ”computing in the network fabric” - which has
the potential to be largely beneficial for this age of Big
Data and certainly Bigger Data in the near future.

3. ALGORITHM EXAMPLES ON THE COMPUTING
UNIT

3.1 Visualization and Pattern recognition algorithm on
Forex data

The Forex market is one of the most liquid markets of
the world. And this is a perfect example of streaming

data, where ask and bid prices are streamed from servers
throughout the world continuously. We demonstrate online
computation here by analyzing the streaming data from
one of such servers in the AoW framework. This server
streams the timestamp, bid and ask prices for GBPUSD
(British Pound to USD). An example of the data is shown
in Fig. 4 in an intermediate processing state at CU. We
can see the timestamp, bid and ask price at the tail of each
packet.

The Pattern Recognition algorithm[Harrison (2013)] visu-
alizes the Forex tick datasets for one day as seen in Fig.5,
which is further used in pattern recognition. The green line
indicates the ask prices and the blue line represents the bid
prices.This is helpful in stock and forex trading as it gives
an idea on whether to invest or not based on prior sim-
ilar patterns calculated from the incoming data. We also
store these patterns to predict future similar patterns by
training our algorithm on these previous patterns[Harrison
(2013)]. The forex data enters the network framework at
the traffic checker. The data sent over the network is bid
and ask prices for each second over a day in CSV format.

From the current ask and bid prices entering the network,
the traders might want to predict in advance how this
data is going to vary and whether it would be profitable
to invest in forex at that certain point. As the data
keeps entering the network framework, algorithm module
at the computing unit keeps predicting the pattern of
this bidding based on previously stored similar patterns.
Accordingly, the involved traders can make a decision on
investing or selling short based on the bid-ask spread.

At the computing unit, we normalize our data points in
percent change format. We calculate patterns for ten data
points together. With each incoming data point, we get
a new pattern with the last nine points. This current
pattern is compared with previously stored patterns and
the similarity percentage is calculated. If there is 70
percent or more similarity as visible in Fig. 6, a possibility
of the same kind of bid and ask prices is predicted and the
people or the computers involved can snoop and make a
decision. This percentage is only for experimental purpose.
So, if the incoming pattern is 70 percent or more similar
to previous patterns, which had a profit in the past, the
traders can consider investing in such scenario and perhaps
make some profit.

The blue line is the current pattern in question and the
green line is the matching similar pattern.

3.2 Clickstream analysis by media publishers

Media publishers, in order to make more profit and at-
tract more customers, continuously stream user click-
stream data from their websites for analyzing user interests
and investment patterns and customize websites for each
individual user.

This is a huge volume of data which is continuously
streaming and we suggest we do the requisite computations
on the wire as soon as we receive this data over a time
period. This way, the computation is very quick and
normally does not need storage post computation, unless
storage is desired. In fact, the much smaller analyzed
output can be much easier stored. These computations

05 58:07.526998 IP 192.168.1.20. 49289 > 192 168.1.30.6633: UDP, length 132

e O [R R
05 58:07.527024 IP 192.168.1.20. 49289 > 192 168.1.30.6633: UDP, length 132

I [N o
05 58:07.527272 IP 192.168.1.20.49289 > 192 168.1.30.6633: UDP, length 132

1 B [R e
05 58:07.530504 IP 192.168.1.20.49289 > 192 168.1.30.6633: UDP, length 132

B

....... T

........ E..H.1l....bxiuuvanvanPosona o Pul . fu. . 20130501000000,1.55349,1. 55367
Teiaaaa E.oHolooub*eiinannanns Poviaauss Pivinuns 20130501000001,1.55348,1.55367
........ E..H.loooubxeinvnanaPonena o Pen . fv. . 20130501000001, 1. 55348, 1. 55366
........ E..H.1..oub*vvinnveeaPuveann o Puet 0.2 20130501000001, 1. 55347, 1. 55362

Fig. 4. Forex data during an intermediate processing at CU

1.561

1.560

1.559

1.558

1.557

1.556

1.555

1.554

LEEE

1.552

" & & i~ & N
N
5

Fig. 5. Forex data visualization

can also let the publishers know earlier about individuals
topmost choice of category for investment, with the help
of which they can target these users for a sure shot buyer
by showing relevant products. This is known as ” Targeted
Advertising.”

We can actually do this by using the AoW framework. As
soon as the data starts streaming from the websites for
a media publisher, it enters the framework and reaches
the computing unit through the forwarder, after being
accepted at the traffic checker. Since the computing unit
is close to the source, the data is available for computation
earlier than it would be at the datacenters or cloud and
we can start processing the data right away. Also, the
data of any number of websites can be considered together
depending on how deep in the network we choose to
perform the computation instead of only the website(s)
at the edge area, if using an edge computing model.

For our experiment, we assume six websites under a single
administrative website are streaming data packets. These
data packets contain unique user ids, ip address from
where it is clicked and a lot of other information like
browser details, location details from where the website is
clicked[Opendata (2017)]. The data payload from a single
page is as indicated in Fig. 7.

This can give a lot of information to publishers for ex-
ample, ongoing trend in Sunnyvale or festival related hits
in New York. Based on this information, the media pub-
lishers can prioritize content placements. This can even
give a specific user’s buying or browsing patterns. In our
experiment, we get streaming data from six sources and
find the browsing pattern for six users at each timestamp.
The data is streamed every second from these webpages.

The data processing module parses the clickstream data
from the different websites and converts it to CSV format-
ted text. This CSV formatted text is fed to the algorithm
module, which calculates the majority category hits for all
users(identified by unique user ids) as shown in Fig. 8.

8.8 Solar sensors streaming data analysis

We have twenty three solar sensors from which readings are
streamed every second. We analyze this solar sensor data
while they are still in transit to datacenters. As soon as
the packets from the sensors are available, our framework
pushes these data packets to the traffic checker from where
it reaches the computing unit through forwarder with the
help of encapsulation. Since the computing unit is not far
from the traffic checker, the computing unit can analyze
the sensor readings much before these readings even reach
the datacenters.

What we do at the computing unit is as follows: The data
processing module at the computing unit casts the payload
in the incoming data packets in a CSV format to feed
to the algorithm module. The attached algorithm module
parses the processed payloads to determine which of the
sensor readings are zero. The zero reading of a solar sensor
indicates that it is down or broken. This can be very useful
as it can help to fix the sensor beforehand and if needed
may be replace it with another sensor earlier than if we
would have waited for the readings to reach the datacenter
and take any action past that. This is an idea, which can
be leveraged in the Internet of things (IoT)[IoT (2017)]
arena too.

The CSV data format which is fed to the algorithm is
shown as indicated in Fig 9. The sensor readings at two
different timestamps passing over the network is depicted
as in Fig. 10.

4. OBSERVATIONS AND RESULTS

We present a comparison between data packets going
through our framework versus going straight to the desti-
nation in all three above cases. We depict graphs in two
categories. The first category compares the time taken to
send data packets from one end to another through the
framework and directly without the framework as in Fig.
11, 12, 13. The second category compares the total time
taken for data transfer plus processing of data packets
plus performing the computation algorithm on them, again
through the framework vs directly in which we process and
compute on the packets at the destination as shown in Fig.
14, 15, 16.

We observe that up to 1000 packets, the data packet trans-
fer time through the framework vs. directly are almost

0.0000

—0.0005

—0.0010

-0.0015 \

—0.0020 \

-0.0025 \

—0.0030
1

(a)

0.0000

—0.0005

—0.0010

—0.0015

—0.0020

—0.0025

—0.0030

—0.0035

—0.0040
1

(c)

Fig. 6. Pattern with greater than 70 percent similarity

1331800486 2012-03-15 01:34:46 2859997896193943381

6917530184062522013
me.com/SH55126545/VD55177927 {8DOE437E-9249-4DDA-BC4F-C1E5409E3A3B}
-us,en;q=0.5 591 0 0 u u Y 0 0
W64; rv:10.0.2) Gecko/20100101 Firefox/10.0.2 48 0 2 11]

]

]

Fig. 7. Clickstream payload from a single page

the same. Beyond this rate, there is quite a difference as
we understand our framework works best in a congestion
controlled environment which we dont have here; sending
packets at a higher rate leads to congestion in the network
and hence the delay. But, one important thing which we
want to mention is that, since the original communication
protocol is TCP, there is a guarantee on packet delivery.
The additional operation of encapsulating every packet
is bound to impose some limitations on the useful rate
of packets through the system before congestion appears.
Since our environment is meant mostly for proof of concept
it is not particularly geared for speed. However, there are
several ways to achieve higher rates which we plan to
investigate in the near future.

FAS-2.8-AS3 N]

300
coeur d alene usa 881 id [) 0 0

0.0000

—0.0005

—0.0010

—0.0015

—0.0020

—0.0025

—0.0030

—0.0035

—0.0040

0.0000

—0.0005

—0.0010

—0.0015

—0.0020

—0.0025

—0.0030

—0.0035

—0.0040
1

69.76.12.213 1

)

10 http://www.ac
u en

rr.com Mozilla/5.0 (Windows NT 6.1; WO
]

15/2/2012 1:7:2 4 420 45 41

KXLY
120

KXLY

Again, the comparison of data processing time plus al-
gorithm execution varies in the three algorithms from
that in their direct path and computation thereafter. This
depends on the kind of computation we do in our com-
puting unit. For example, in the forex data, we do much
more computing than the clickstream data and the solar
sensors as we visualize, store patterns and forecast future
patterns. In this kind of compute intensive scenarios in
our framework, we can think of using possible acceleration
through GPUs and FPGAs, which is one of our ongoing
projects. For the other two cases of clickstream data and
solar sensors, the computation is of low overhead, the only
difference comes from the NSH encapsulation and decapsu-
lation at the checker and forwarder respectively. The NSH
encapsulation is something that can be accelerated, and

Users Clickstream data statistics
25

20

15
10
5
0

Movies Clothing Computers Shoes Grocery Automotive

W Userl User2 User3 User4d MUser5 M User6

Fig. 8. User Clickstream data statistics

we also plan to examine alternative approaches that may
eliminate the need for such headers in certain cases.

ATbetween computation time of the AoW framework and
Direct path

We define AT here as the total time difference experienced
by computation on streaming data packets through the
framework vs directly to the destination and computation
thereafter. AT is the difference introduced by the AoW
framework in this particular implementation. It is the sum
of the delays introduced by the NSH encapsulation at
the traffic checker, the forwarding time by the forwarder,
computation time by the computing unit(data processing
module plus algorithm module), NSH header processing
at each unit in the framework like decreasing service
index by the computing unit and removing headers by the
forwarders.

As we see in the Fig. 17, minimum overhead is 44 seconds
in case of Forex data at around 60 packets every second.
So, the setup does not seem ideal for this kind of computa-
tion unless some acceleration is applied at the computing
unit or for NSH encapsulation and associated operations.
With acceleration, this framework is expected to be able to
handle flows of much higher bandwidth and we are already
working towards this direction.

From Fig. 18 and 19, we see that we get results at
almost no delay through our framework than sending the
data directly and then doing any kind of computation
on it. This is possible because computation has negligible
overhead for these cases and since the computing unit is
close to the sender, we can get results with almost no
delay through our AoW framework in these cases. These
graphs also show a minor negative difference between
the computation through the framework and direct path
for some values. We account for this as a measurement
tolerance of the setup.

4.1 Abbreviations and Acronyms

SFC: Service Function Chaining
UDP: User Datagram Protocol
SDN: Software Defined Networking
SI: Service Index

NSH: Network service header

VM: Virtual machine

REST: Representational state transfer
API: Application programming interface
TCP: Transmission control protocol
CU: Computing Unit

UDP: User Datagram Protocol

MTU: Maximum Transmission Unit
FPGA: Field-programmable gate array
GPU: Graphics processing unit

IoT: Internet of things

5. RELATED WORK

The SFC architecture is being developed and standardized
as a means to interconnect virtualized network functions
and create a modern and effective SDN solution for to-
day’s datacenters. By replacing specialized hardware with
virtual components running in VMs on powerful compute
nodes, a lot is gained in terms of performance, scala-
bility, renewability, and reduced cost. Clearly, the work
performed by a virtual firewall or an intrusion detection
system is very complicated and also has to be executed
quickly and on streaming data. As another example, con-
sider work done by SURFnet to transcode a 4K video
stream [van der Pol (2016)] with service functions perform-
ing video transcoding placed in clouds. Our philosophy,
and approach, is that a virtual SFC environment sounds
like a prime candidate for the distributed computing in
the network fabric that we envisage as a new computing
paradigm. In our pursuit, however, we are not bound by
any particular technique or problem restriction; we simply
want to go far beyond the bounds of networking and
virtual network functions and devise a framework that
can execute any reasonable algorithm on streaming data,
while also investigating the behavior and performance of
such algorithms to determine the feasibility of solving
certain problems on the wire. In this respect, we not only
utilize the SFC architecture as it is being standardized,
but also seek to simplify, enhance, and combine it with
other software and hardware technologies to create our
AoW framework. In this paper we essentially present our
first attempt at a fully virtual approach.

We should also point out the fundamental differences
our approach has when compared with cloud comput-
ing[Azure (2017)], edge computing[Jake Jones (2017)],
fog computing[S. Chen and Shi (2017)], and mist[Martin
(2015)] computing. In cloud computing, such as in Ama-
zon AWS[Amazon (2017)], computation and storage is
performed in virtual data centers that are put together
dynamically. It is a very popular computing paradigm
which works very well on streaming data and perform all
kinds of computations under the flavors of SaaS (Software
as a service), PaaS (Platform as a service) and IaaS (Infras-
tructure as a service). However, computation (and storage)
still takes place in datacenters which can be far away
from the data sources and data is subjected to significant
latencies, overheads, and delays before any useful compu-
tation can be performed on it. Edge computing[Jake Jones

/5.000000000000000278e-02,0.000000000000000000e+00,0.000000000000000000e+00,0.000000000000000000e+00,0.000000000000000000e+00,0.000000000000000000€+00,4.900000
000000000189e-02,0.000000000000000000e+00,0.000000000000000000e+00,0.000000000000000000e+00,0.000000000000000000e+00,0.000000000000000000e+00,0.00000000000000
0000e+00,0.000000000000000000e+00,4.900000000000000189e-02,4.800000000000000100e-02,0.000000000000000000e+00,0.000000000000000000e+00,0.000000000000000000e+00,
0.000000000000000000e+00,0.000000000000000000e+00,0.000000000000000000e+00,5.199999999999999761e-02

Fig. 9. Solar sensor payload at the data processing unit of CU

23 Solar Sensor Readings at two timestamps

0.2
0.18
0.16
0.14
0.12

0.1
0.08
0.06
0.04
0.02

12 3 45 6 7 8 9101112131415 16 17 18 19 20 21 22 23

em—=Timestampl ===Timestamp2

Fig. 10. 23 Solar sensor readings at two timestamps

Comparison of data transfer time for forex data
90000
80000
70000
60000
50000
40000
30000
20000

Total time taken in milliseconds

10000

1 10 100 1000 10000 100000

Number of data packets

==Through Framework ~===Direct path

Fig. 11. Comparison of data transfer time for forex data

Comparison of data transfer time for clickstream data

70000
60000
50000
40000
30000
20000
10000

0

Total time in milliseconds

1 10 100 1000 10000 100000

Number of packets

===Through Framework =====Direct path

Fig. 12. Comparison of data transfer time for clickstream
data

(2017)] facilitates the operation of compute, storage, and
networking services between end devices and datacenters;
computation is performed at the physical edge of the
network. This paradigm is also called fog computing. Mist
computing[Martin (2015)] is the latest paradigm involving
computing in the very end devices found at the edge of the
network to assist in the motion of data towards the fog and
the cloud. All paradigms are intimately linked with the
Internet of Things (IoT) with the huge numbers of data

Comparison of data transfer time for solar sensors

80000
70000
60000
50000
40000
30000

20000
10000

1 10 100 1000 10000

Total tim ein milliseconds

100000

Number of packets

@m=Through Framework ====Direct path

Fig. 13. Comparison of data transfer time for solar sensors

Comparison of data transfer plus computing time for forex
data

250

200

150

100

seonds

50

10 100 1000 10000 100000

Number of packets

Packet transfer plus processing plus computation time in

——Through Framework ~=——Direct path

Fig. 14. Comparison of data transfer plus computing time
for forex data

Comparison of data transfer plus computing time for
clickstream data

400
350
300
250
200

150

seconds

100

50

10 100 1000 10000 100000

Packet transfer plus processing plus computation time in

Number of packets

e===Through Framework ====Direct path

Fig. 15. Comparison of data transfer plus computing time
for clickstream data

Comparison of data transfer plus computing time for solar
sensors

1 10 100 1000 10000 100000

Number of packets

packet transfer plus processing plus computation timein

em=Through Framework =====Direct path

Fig. 16. Comparison of data transfer plus computing time
for solar sensors

AT between computation time of the AoW framework and
Direct path for forex data

\/

100000

.
~
S

=
S
5}

ATime(seconds)
N B o @
s 8 3 8

o

10 100 1000 10000
Number of packets

Fig. 17. AT Dbetween computation time of the AoW

framework and Direct path for forex data

AT between computation time of the AoW
framework and Direct path for clickstream data

140
120
100
80
60
40
20
0
-20 Sy TO0 1000

-40

AT(seconds)

10000 100000

Number of packets

Fig. 18. AT between computation time of the AoW
framework and Direct path for clickstream data

sources/destinations at the extremes of the network and
were conceived to facilitate the operation and reduce the
volume of traffic through the network that could eventually
drown data centers with data tsunamis. The Analysis on
the Wire computing paradigm, as we have presented in
the original idea paper[Katramatos et al. (2016)] covers the
network area between data centers and edge and can be ad-
justed to include nodes at or near the edge or intermediate
nodes, or ones closer to the data centers, depending on the
scope and locality of the problem of interest. At the user
edge we consider cases where computing will take place
fog-level devices (but not mist-level); at the data center
side, we can reach the WAN provider switches just before a
sites border router(s); and anywhere in between. Network
nodes with native, attached, or even remote computing

AT between computation time of the AoW
framework and Direct path for solar sensors data

200

150

=
o
S

w
=}

AT(seconds)

o

100 1000 10000 100000

-50
Number of packets

Fig. 19. AT between computation time of the AoW
framework and Direct path for solar sensors data

capabilities can be coordinated with a layer of suitable
middleware to form a flavor of distributed computer with,
we believe, great potential for performing unprecedented
style computations in the network fabric. For example, one
could form a computer with a number of edge nodes to
extract specific information from sensor network domains
and also include a few upstream nodes in a hierarchy that
could apply a cascade of different computations on the
selected data before ever arriving at a data center.

6. CONCLUSION AND FUTURE WORK

There is tremendous opportunity to perform computations
on wire. Such an approach can help in saving resources
at datacenters for the current as well as the impending
Big Data age, earlier decision-making, and faster results.
We demonstrated the concept for a single administrative
network domain in a congestion controlled environment.
Some areas for immediate applications are power grid,
weather prediction, cybersecurity for detecting anomalous
patterns, and elephant (high bandwidth, high volume, long
duration) flow analysis.

In situations where the data rate exceeds the capacity of
a basic AoW framework, we can utilize multiple parallel
computing units with a divide and conquer approach: each
unit performs on a fraction of the data, thereby rendering
load balancing as well as faster results and efficient usage
of framework resources.

We have talked throughout the paper assuming data
packets are independent, and MTU is large enough to fit
the entire data at a point of time in one packet. There
may be scenarios, where payload and header exceeds the
MTU size of transmission protocol and these are the
situations, where we need to apply defragmentation on
the packets to do complex computing. This is something,
which we plan to do in our future work. We are already
looking into the acceleration of computation on the AoW
framework by employing GPUs and FPGAs for compute
intensive algorithms and are working towards a full-fledged
implementation of the AoW framework.

Finally, in this paper we focused on demonstrating the
concept of the AoW framework using a single computing
unit. We are already working towards a multiple-node
geographically-distributed prototype and our future plans

include experimentation with different computing schemes
and algorithms in a distributed fashion.

REFERENCES
Amazon (2017). Streaming data.
https://aws.amazon.com/streaming-data/.
Azure (2017). Cloud comput-
ing. https://azure.microsoft.com/

en-us/overview/what-is-cloud-computing/.
Docker (2017).
https://www.docker.com/what-docker.
Halpern, J. and Pignataro, C. (2015).
tion Chaining (SFC) Architecture.
ternet Engineering Task Force (IETF)
https://tools.ietf.org/html/rfc7665.

Docker.

Service Func-
RFC 7665, In-
URL

Harrison (2013). Pattern recogni-
tion algorithm on forex tick datasets.
https://pythonprogramming.net/machine
-learning-pattern-recognition-
algorithmic-forex-stock-trading.

HashiCorp (2017). Vagrant.
https://www.vagrantup.com/intro/index.html.

IoT (2017). Internet of things.

https://www.forbes.com/sites/bernardmarr/
2017/05/05/internet-of-things-and-predictive-
maintenance-transform-the-service-industry/.

Jake Jones, S. (2017). Edge computing: The cloud,
the fog and the edge. https://www.solid-run.com/
edge-computing-cloud-fog-edge/.

Katramatos, D., Yue, M., Yoo, S., van Dam, K.K., Xu,
J., and Zhang, J. (2016). Streaming data analysis on
the wire. In 2016 New York Scientific Data Summit
(NYSDS), 1-7. doi:10.1109/NYSDS.2016.7747816.

Martin, M.J. (2015). Cloud, fog, and now, mist
computing. https://www.linkedin.com/pulse/
cloud-computing-fog-now-mist-martin-
ma-mba-med-gdm-scpm—pmp.

NVIDIA (1999). Graphics processing unit(gpu).
http://www.nvidia.com/object/gpu.html/.

Opendata (2017). Clickstreamdata.
https://opendata.stackexchange.com/questions/
1779/clickstream-sample-dataset/.

Opendaylight (2017). Opendaylight.
https://www.opendaylight.org/.

OpenvSwitch (2017). Open vswitch.
http://openvswitch.org/.

P. Quinn, U.E. and Pignataro, C. (2017).
Network Service Header (NSH) draft-ietf-sfc-
nsh-19. Internet-Draft draft-ietf-sfc-nsh-19,

Internet Engineering Task Force (IETF) URL
https://tools.ietf.org/html/draft-ietf-sfc-
nsh-19.

S. Chen, T.Z. and Shi, W. (2017). Fog computing. In JEEE
Internet Computing, vol. 21, no. 2, pp. 4-6, Mar.-Apr.
2017, 1-3. doi:10.1109/MIC.2017.39.

S. Kumar, L. Kreeger, SSM.W.H.R.M. and Melman,
D. (2017). UDP Transport for Network Service
Header draft-kumar-sfc-nsh-udp-transport-03. Internet-
Draft draft-ietf-sfc-nsh-19, Internet Engineering Task
Force (IETF) . URL https://tools.ietf.org/html/
draft-kumar-sfc-nsh-udp-transport-03.

SFC, 0. (2017). Opendaylight sfc
https://github.com/opendaylight/sfc/.

demo.

van der Pol, R. (2016). Experiences with
OpenDaylight Service Function Chaining
(SFC). Presentations, SURFnet URL
https://kirk.rvdp.org/presentations/
FOSDEM-2016-rvdp-SFC.pdf.

XILINX (2017). Field-programmable gate ar-
ray(fpga). https://www.xilinx.com/products/

silicon-devices/fpga/what-is-an-fpga.html/.

