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Abstract

Extreme-scale simulations and experiments can generate large amounts of data, whose volume can exceed
the compute and/or storage capacity at the simulation or experimental facility. With the emergence of
ultra-high-speed networks, it becomes feasible to consider pipelined approaches in which data are passed to
a remote facility for analysis. Here we examine the case of an extreme-scale cosmology simulation that, when
run on a large fraction of a leadership-scale computer, generates data at a rate of one petabyte per elapsed
day. Writing those data to disk is inefficient and impractical, and in situ analysis poses its own difficulties.
Thus we implement a pipeline in which data are generated on one supercomputer and then transferred,
as they are generated, to a remote supercomputer for analysis. We use the Swift scripting language to
instantiate this pipeline across Argonne National Laboratory and the National Center for Supercomputing
Applications, which are connected by a 100 Gb/s network, and demonstrate that by using the Globus transfer
service we can achieve a sustained rate of 93 Gb/s over a 24-hour period and thus achieve our performance
goal of one petabyte moved in 24 hours. This paper describes the methods used and summarizes the lessons
learned in this demonstration.
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1. Introduction

Extreme-scale scientific simulations and experiments can generate much more data than can be stored
and analyzed efficiently at a single site. For example, a single trillion-particle simulation with the Hard-
ware/Hybrid Accelerated Cosmology Code (HACC) cosmology code [1] generates 20 PB of raw data (500
snapshots, each 40 TB), which is more than petascale systems such as Mira and Blue Waters can store5

in their file systems. Meanwhile, much as scientific instruments are optimized for specific objectives, both
computational infrastructure and codes become more specialized as we reach the end of Moore’s law. For
example, one version of the HACC simulation code is optimized for Argonne National Laboratory’s Mira
supercomputer, on which it can scale to millions of cores, while the National Center for Supercomputer Ap-
plications (NCSA)’s Blue Waters computer is an excellent system for data analysis, due to its large memory10

(1.5 PB) and 4000+ GPU accelerators.
To both overcome storage limitations and enable the coordinated use of these two specialized systems,

we demonstrated pipelined remote analysis of HACC simulation data, as shown in Figure 1. A state-of-
the-art, 29-billion-particle cosmology simulation combining high spatial and temporal resolution in a large
cosmological volume was performed on Mira. As this simulation ran, each of 500 temporal snapshots was15

transmitted as it was produced to NCSA by using the Globus transfer service [2]. In total, this workflow
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Figure 1: Pipelined execution of a cosmology workflow that involves a mix of streaming scenarios, ranging from sustained
∼100 Gb/s over a 24 hour period to high-bandwidth bursts during interactive analysis sessions.

moved 1 PB in 24 hours from ALCF to NCSA, requiring an average end-to-end rate of ∼93 Gb/s. In this
paper, we describe how we achieved this feat, including the experiments performed to gather insights on
tuning parameters, data organization, and the lessons learned.

A first level of data analysis and visualization was performed as snapshots arrived at NCSA using the20

GPU partition of Blue Waters. After the snapshot arrived on Blue Waters, an analysis task submission
was triggered. We note that the analysis tasks have to be carried out sequentially (time step after time
step): information from the previous time snapshot is captured for the analysis of the next time snapshot
in order to enable detailed tracking of the evolution of structures. The workflow system therefore had to
be carefully designed to resubmit any unsuccessful analysis job and had to wait for an analysis job to finish25

before starting the next one. The output data (half the size of the input data) was then sent to the SC16
NCSA booth to allow access to and sharing of the resulting data from remote sites. The whole experiment
was orchestrated by the Swift parallel scripting language [3]. In previous simulations, scientists were able
to analyze only ∼100 snapshots because of infrastructure limitations.

This experiment achieved two objectives never accomplished before: (1) running a state-of-the-art cos-30

mology simulation and analyzing all snapshots (currently only one in every five or 10 snapshots is stored or
communicated); and (2) combining two different types of systems (simulation on Mira and data analytics
on Blue Waters) that are geographically distributed and belong to different administrative domains to run
an extreme-scale simulation and analyze the output in a pipelined fashion.

The work presented here is also unique in two other respects. First, while many previous studies have35

varied transfer parameters such as concurrency and parallelism to improve data transfer performance [4, 5, 6],
we also demonstrate the value of varying the file size used for data transfer, which provides additional
flexibility for optimization. Second, we demonstrate these methods in the context of dedicated data transfer
nodes and a 100 Gb/s network circuit.

The rest of the paper is as follows. We first introduce, in §2, the science case and the environment in40

which we perform these transfers. In §3 we describe the tests to find the optimal transfer parameters. Then
we summarize the performance of the transfers during the pipelined simulation and analysis experiments,
and our experiences with checksum-enabled transfers in §4. Retrospecting on the SC16 demo, we propose in
§5 an analytical model to identify the optimal file size and show that it can help improve the performance
of checksum-enabled transfers significantly. Finally, we review related work in §6, and in §7 summarize our45

work.
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2. Science case and demonstration environment

We first describe the science case and the environment used for the demonstration.

2.1. Science case

The nature of cosmology precludes carrying out controlled experiments in the laboratory. So, cosmologists50

must observe the Universe and interpret the results to understand the history and content of the Universe.
Large observational surveys are carried out using telescopes. These surveys are becoming complex as tele-
scopes reach deeper into space, mapping out the distributions of galaxies at farther distances. Cosmological
simulations that track the detailed evolution of structure in the Universe over time are essential for inter-
preting these surveys. Cosmologists vary the fundamental physics in the simulations, evaluate resulting55

measurements in a controlled way, and then predict new phenomena. They also model systematic errors in
the data, mimic inaccuracies due to limiting telescope and sensor artifacts, and understand how these limita-
tions can influence our scientific results. In order to achieve the high-quality simulations, high temporal and
spatial resolution are of utmost importance. They need to track the evolution of small overdensities in detail
and follow how they evolve into larger structures. Events early in the life of such a structure will determine60

what kind of galaxy it will host later, controlling, for example, the brightness, color, and morphology of the
galaxy. Current (and next-generation) supercomputers (will) allow them to attain high spatial resolution in
large cosmological volumes by simulating trillions of tracer particles. But the supercomputer on which the
simulation is carried out might not be—and usually is not—the optimal system for data analysis.

2.2. Demonstration environment65

For the demonstration, we ran a large simulation at the Argonne Leadership Computing Facility (ALCF),
moved the raw simulation output to NCSA, and ran an analysis program on the Blue Waters supercomputer.
The simulation evolved 30723 (=29 billion) particles in a simulation box of volume (512h−1Mpc)3. This led
to an approximate mass resolution (mass of individual particles) of mp=3.8*108 h−1Msun.

Each snapshot holds 1.2 TB. The source of the data was the GPFS parallel file system on the Mira70

supercomputer at Argonne, and the destination was the Lustre parallel file system on the Blue Waters
supercomputer at NCSA. Argonne and NCSA have 12 and 28 data transfer nodes (DTNs) [7], respectively,
dedicated for wide-area data transfer. Each DTN runs a GridFTP server. We chose to use Globus to
orchestrate our data transfers in order to get automatic fault recovery and load balancing among the available
GridFTP servers on both ends.75

3. Exploration of tunable parameters

Concurrency, parallelism, and pipelining are three key performance optimization mechanisms for Globus
GridFTP transfers. Concurrency uses multiple GridFTP server processes at the source and destination,
where each process transfers a separate file, and thus provides for concurrency at the file system I/O, CPU
core, and network levels. Parallelism is a network-level optimization that uses multiple socket connections80

to transfer chunks of a file in parallel from a single-source GridFTP server process to a single-destination
GridFTP server process. Pipelining speeds up lots of tiny files by sending multiple FTP commands to
a single GridFTP server process without waiting for the first command’s response. This reduces latency
between file transfers in a single GridFTP server process. Concurrency and parallelism are illustrated in
Figure 2 and pipelining is illustrated in Figure 3.85

In order to find the best application tunable parameters, we fixed the average file size to be ∼4 GB
and evaluated different combinations of three Globus GridFTP parameters: concurrency, parallelism, and
pipeline depth.

Figure 4 shows the achieved throughput as a function of parallelism for different concurrencies and
pipeline depths. It is clear that parallelism does not provide any obvious improvement in performance. Our90

conjecture is that this is because the round-trip time between source DTNs and destination DTNs is pretty
small (around 6ms). Figure 5 shows the achieved throughput as a function of concurrency for different
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Figure 2: Illustration of concurrency and parallelism in Globus GridFTP.

Traditional Pipeline

Figure 3: Illustration of pipelining in Globus GridFTP.

pipeline depth values. We omitted parallelism in this comparison as it does not have much of an impact
(Figure 4).

From Figure 5, we see that the throughput increases with increasing concurrency, especially for small95

pipeline depths. Each DTN at ALCF has only a 10 Gb/s network interface card and a transfer needs to use
at least 10 DTNs to achieve the desired rate of 1 PB in a day or sustained ∼93 Gb/s. In order for a transfer
to use 10 DTNs, the concurrency has to be at least 10. In order for each DTN to drive close to 10 Gb/s
(read data from the storage at 10 Gb/s and send data on the network at the same rate), many (or all) DTN
cores need to be used. In this case, each DTN has 8 cores and thus a concurrency of at least 96 is needed100

to use all cores. This explains why a concurrency of 128 gives the highest performance.
We also see in Figure 5 that increasing pipeline depth reduces performance. This is because of the

Globus policy that was designed for regular data transfers (i.e., transfer size is not as big as this case, the
endpoints and network is not as powerful as it is in this case). Specifically, Globus splits multi-file transfers
into batches of 1,000 files and treats each batch like an independent transfer request. This policy was put105

in place to control the total number of concurrent file transfers and thus the memory load on servers. For
example, if we use pipeline depth of 8, the maximum concurrency can only be

⌊
1000
16

⌋
= 62, which is why

concurrency with 64 and 128 got the same performance in Figure 5.
Similarly, when pipeline depth is 16, the actual concurrency will be

⌊
1000
32

⌋
= 31, and thus transfers with
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Figure 4: Data transfer performance versus parallelism with different concurrency (C ) and pipeline depth(D).

concurrency greater that 32 get the same performance as those with 32 in Figure 5. Therefore, the optimal110

pipeline depth for our use case is one, because pipelining is good for transferring tiny files (when the elapsed
transfer time for one file is less that the RTT between the client and the source endpoint) but not for larger
files.

4. Experiences transferring the data

As mentioned before, we split each 1.2 TB snapshot into 256 files of approximately equal size. We determined115

that transferring 64 or 128 files concurrently, with a total of 128 or 256 TCP streams, yielded the maximum
transfer rate. We achieved an average disk-to-disk transfer rate of 92.4 Gb/s (or 1 PB in 24 hours and
3 minutes): 99.8% of our goal of 1 PB in 24 hours, when the end-to-end verification of data integrity in
Globus is disnabled. When the end-to-end verification of data integrity in Globus is enabled, we achieved
an average transfer rate of only 72 Gb/s (or 1 PB in 30 hours and 52 minutes).120

The Globus approach to checksum verification is motivated by the observations that the 16-bit TCP
checksum is inadequate for detecting data corruption during communication [8, 9], and that corruption
can furthermore occur during file system operations [10]. Globus pipelines the transfer and checksum
computation; that is, the checksum computation of the ith file happens in parallel with the transfer of the
(i + 1)th file. Data are read twice at the source storage system (once for transfer and once for checksum)125

and written once (for transfer) and read once (for checksum) at the destination storage system. In order to
achieve the desired rate of 93 Gb/s for checksum-enabled transfers, then in the absence of checksum failures,
186 Gb/s of read bandwidth from the source storage system and 93 Gb/s write bandwidth and 93 Gb/s
of read bandwidth concurrently from the destination storage system are required. If checksum verification
failures occur (i.e., one or more files are corrupted during the transfer), even more storage I/O bandwidth,130

CPU resources, and network bandwidth are required to achieve the desired rate. Figure 6 shows the overall
transfer throughout, as determined via SNMP network monitoring, and the DTN CPU utilization, when
performing transfers using the optimal parameters that we identified.

We see that transfers without integrity checking (marked by dashed line boxes in Figure 6) can sustain
rates close to our environment’s theoretical bandwidth of 100 Gb/s, with little CPU utilization. However, if135

integrity checking is enabled (solid line boxes in Figure 6), CPU utilization increases significantly and it is
hard to get close to the theoretical bandwidth continuously. We note that: (1) the network is not dedicated
to this experiment and so some network bandwidth was unavoidably consumed by other programs; (2) we
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Figure 5: Data transfer performance versus concurrency for different pipeline depth values.

used the same optimal tunable parameters (concurrency and parallelism) and the same file size for transfers
with and without checksum in order to make sure that the only difference between the two cases is data140

verification. (3) there are transfers with non-optimal parameters, performed as part of our explorations,
running during other times (outside the boxes) in Figure 6.

4.1. Checksum failures

Globus restarts failed or interrupted transfers from the last checkpoint in order to avoid retransmission
costs. However, in the case of a checksum error, it retransmits the entire erroneous file. About 5% of our145

transfers experienced checksum failure. It can either be caused by network corruption, source storage error
or destination storage error. Since the data integrity is verified after the whole file has been transferred
to destination, a retransmission must be done if their checksum does not match. For a given transfer, the
number of failure represents number of retransferred files. Obviously the transfer throughput will go down
if there are too many failures. We show the transfer throughput versus failures in Figure 7.150

Assume that a transfer contains N files, each of x bytes, and there are n checksum verification failures.
Thus, n files are retransferred and the total bytes transferred will then be (N + n)x. If we assume that the
end-to-end throughout is Re2e, the actual transfer time Ttrs will be

Ttrs =
x (N + n)

Re2e
(1)

Thus, the effective throughout Rtrs to the transfer users , i.e., it takes Ttrs seconds to transfer Nx bytes,
will be

Rtrs =
Nx

Ttrs
=

NRe2e

N + n
(2)

We note that transfers in Figure 7 have different concurrency, parallelism, pipeline depth, and average
file size, and thus their Re2e are different. If we only look at the transfers with similar concurrency, the
shape in Figure 7 fits well with Equation 2.

5. Retrospective analysis: A model-based approach to finding the optimal number of files

The ability to control the file size (and thus number of files) in the dataset is a key flexibility in this use case.155

Thus, while we used a file size of 4 GB in our experiments, based on limited exploration and intuition, we
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Figure 6: Data transfer throughput vs. DTN CPU usage over an eight-day period. We highlight two periods in which our
data transfers were occurring with checksum computations (periods delineated by solid line box) and three periods in which
transfers were occurring without checksum computations (dashed line boxes).

realized in retrospect that we could have created a model to identify the optimal file size. Here, we present
follow up work in which we develop and apply such a model.

In developing a model of file transfer plus checksum costs, we start with a simple linear model of transfer
time for a single file:

Ttrs = atrsx + btrs, (3)

where atrs is the unit transfer time, btrs the transfer startup cost, and x the file size. Similarly, we model
the time to verify file integrity as:

Tck = ackx + bck, (4)

where ack is the unit checksum time, bck the checksum startup cost, and x the file size.
The time to transfer and checksum a file is not the simple sum of these two equations because, as shown

in Figure 8, Globus GridFTP pipelines data transfers and associated checksum computations. Note how the
data transfer and file integrity verification computations overlap. Thus, assuming no file system contention
and that unit checksum time is less than unit transfer time (we verified that this is indeed the case in our
environment), the total time T to transfer n files with one GridFTP process, each of size x, is the time
required for N file transfers and one checksum, i.e.,

T = nTtrs + Tck + btrs = n(xatrs + btrs) + xack + bck + btrs, (5)

where btrs is the transfer startup cost (e.g., time to establish the Globus control channel). Let us now assume
that concurrency = cc, S denotes the bytes to be transferred in total and we equally divide S bytes into N
files where N is perfectly dividable by cc. Thus there are n = N/cc files per concurrent transfer (i.e., per
GridFTP process), and each file of size x = S

N . The transfer time T to number of files N model will be:

T (N) =
S

cc
atrs +

N

cc
btrs +

S

N
ack + bck + btrs. (6)

We use experimental data to estimate the four parameters in Equation 6, atrs, btrs, ack, and bck, in160

our environment and for different concurrency values, cc. As we previously determined (see Figure 4)
that parallelism makes little difference in our low RTT environment, we fixed parallelism at four in these
experiments. For each concurrency value, we fixed S=1.2 TB and used four measured (N , T ) points to
fit the four parameters, and then used the resulting model to predict performance for other values of N .
Figure 9 shows our results. Here, the lines are model predictions, stars are measured values used to fit the165

model, and other dots are other measured values not used to fit the model.
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Figure 8: An illustration of file transfer and verification overlap within a single GridFTP process, as modeled by Equation 5.
A sequence of file transfer and associated file verification operations are managed as independent pipelines, connected only in
that a file can only be verified after it has been transferred, and verification failure causes a file retransmit.

We see that our model does a good job of predicting throughput as a function of N and cc. Thus, we
can use it to determine the best file size to use when splitting a simulation snapshot.

Figure 9 shows the accuracy of the performance model, it is clear that the model can make accuracy
prediction. Since the four model parameters are independent of source, network, and destination, at least170

four experiments are needed to fit the model, after which the model can be used to determine the best file
size to split a simulation snapshot. Based on this approach, we conclude that the optimal file size is around
500 MB and it can achieve a throughput of 89.7 Gb/s with integrity verification. This throughput represents
an increase of 25% compared to that obtained with the ad hoc approach, when we used a file size of 4 GB.

6. Related work175

Elephant flows such as those considered here have been known to account for over 90% of the bytes transferred
on typical networks [11], making their optimization important.

At the 2009 Supercomputing conference, a multi-disciplinary team of researchers from DOE national
laboratories and universities demonstrated the seamless, reliable, and rapid transfer of 10 TB of Earth
System Grid data [12] from three sources—the Argonne Leadership Computing Facility, Lawrence Livermore180

8



32 256 512 768 1024 1536 2048
Number of files

0

20

40

60

80

100
Th

ro
ug

hp
ut

 (G
bp

s)

C=16
C=32

C=48
C=64

C=96
C=128

Figure 9: Evaluation of our transfer performance model when transferring a single 1.2 TB snapshot. Solid markers are points
that were used to fit the model parameters shown in Equation 6.

National Laboratory, and National Energy Research Scientific Computing Center—Portland, Oregon, over
20 Gb/s circuits provided by DOE’s ESnet. The team achieved a sustained data rate of 15 Gb/s on a 20 Gb/s
network. More importantly, their work provided critical feedback on how to deploy, tune, and monitor the
middleware used to replicate petascale climate datasets [13]. Their work made it clear why supercomputer
centers need to install dedicated hosts, referred to as data transfer nodes, for wide area transfers [7].185

In another SC experiment, this time in 2011, Balman et al. [14] streamed cosmology simulation data
over a 100 Gb/s network to a remote visualization system, obtaining an average performance of 85 Gb/s.
However, data were communicated with a lossy UDP-based protocol.

Many researchers have studied the impact of parameters such as concurrency and parallelism on data
transfer performance [4, 5, 6] and proposed and evaluated alternative transfer protocols [15, 16, 17] and190

implementations [18]. Jung et al. [19] proposed a serverless data movement architecture that bypasses data
transfer nodes, the filesystem stack, and the host system stack and directly moves data from one disk array
controller to another, in order to obtain the highest end-to-end data transfer performance. Newman et
al. [20] summarize the next-generation exascale network integrated architecture project that is designed
to accomplish new levels of network and computing capabilities in support of global science collaborations195

through the development of a new class of intelligent, agile networked systems.
Rao et al. [21] studied the performance of TCP variants and their parameters for high-performance trans-

fers over dedicated connections by collecting systematic measurements using physical and emulated dedicated
connections. These experiments revealed important properties such as concave regions and relationships be-
tween dynamics and throughput profiles. Their analyses enable the selection of a high throughput transport200

method and corresponding parameters for a given connection based on round trip time. Liu et al. [22]
similarly studied UDT [23].

7. Conclusion

We have presented our experiences in our attempts to transfer one petabyte of science data within one
day. We first described the exploration that we performed to identify parameter values that yield maximum205

performance for Globus transfers. We then discussed our experiences in transferring data while the data are
produced by the simulation, both with and without end-to-end integrity verification. We achieved 99.8% of
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our one petabyte-per-day goal without integrity verification and 78% with integrity verification. Finally, we
used a model-based approach to identify the optimal file size for transfers, with results that suggest that we
could achieve 97% of our goal with integrity verification by choosing the appropriate file size. We believe210

that our work serves as a useful lesson in the time-constrained transfer of large datasets.
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