
Calibers: A Bandwidth Calendaring Paradigm For Science Workflows

Fatemah Alali1,3, Nate Hanford2,3, Eric Pouyoul3, Raj Kettimuthu4, Mariam Kiran3, Ben Mackcrane5, Brian
Tierney3, Yatish Kumar5 and Dipak Ghosal2,3

1Department of Electrical and Computer Engineering, University of Virginia, Virginia, USA. Email: fha6np@virginia.edu
2Department of Computer Science, University of California, Davis CA, USA. Email: nate.hanford@gmail.com, dghosal@ucdavis.edu

3Energy Sciences Network, Lawrence Berkeley National Laboratory, California, USA, Email: lomax@es.net, mkiran@es.net, bltierney@es.net
4Mathematics and Computer Science Division, Argonne National Laboratory, Chicago, USA. Email: kettimut@anl.gov

5Corsa Technology. Email: ben.mackcrane@corsa.com, yatish.kumar@corsa.com

Abstract

Many scientific workflows require large data transfers between distributed instrument facilities, storage and computing
resources. To ensure that these resources are maximally utilized, R&E networks connecting these resources, must
ensure that there is no bottleneck. However, running the network at high utilization often results in congestion and poor
end-to-end TCP throughput performance and/or fairness. This in turn leads to unpredictability in transfer time and
poor utilization of distributed resources. Calibers (Calender and Large-scale Bandwidth Event-driven Simulations)
aims to advance state-of-the-art in traffic engineering by leveraging SDN-based network architecture and flow pacing
algorithms to provide predictable data transfers performance and higher network utilization. Calibers highlights how
by intelligently and dynamically shaping flows, we can maximize the number of flows that achieve deadline while
improving network resource utilization.

In this paper, we present a prototype architecture for Calibers that uses a central controller with distributed agents to
dynamically pace flows at the ingress of the network to meet deadlines. Using Globus/Grid-FTP, we experimentally
demonstrate that pacing can be used to meet data transfer deadlines which cannot be achieved using TCP. Finally,
we present dynamic flow pacing algorithms that maximize acceptance ratio of flows for which deadlines can be met
while maximizing network utilization. Our results show that simple heuristics that optimizes locally on the most
bottlenecked link can perform almost as well as heuristics that attempt to optimize globally.

Keywords: Bandwidth Calendaring, Flow Pacing, Software Defined Network (SDN), TCP, Dynamic Flow Pacing,
Simulation Analysis, Traffic Shaping

1. Introduction

Scientific analysis in experiments such as high-
energy physics or climate modeling, usually involve ex-
tremely complex workflows to ensure successful and re-
liable results. These workflows include a number of
tasks, involve multiple actors, software and infrastruc-
tures, that work together as a workflow from data gen-
eration to delivery. For example, in the Advanced Light
source (ALS) data is generated from multiple detectors
which is then collected on an NERSC supercomputing
data center via high-speed network connections. It is
imperative that the data is delivered in a timely manner,
with minimum loss, such that further computations can
be performed using supercomputing resources that have
to be a priori reserved. In order that the supercomputing
resources are maximally utilized, this requires the net-

work service to allow deadlines for large data transfers.

There are two approaches to ensure that the data
transfers can be made with predictable performance and
within requested deadlines. One approach is to use
advanced reservations of links, such as OSCARS or
open NSA [1], that allow setting up circuits of speci-
fied capacities between routers. Advanced reservation
schemes require additional time to setup circuits, are
only associated with WAN border routers and are dif-
ficult to automate due to required user knowledge, net-
work topology and request details. Furthermore, appli-
cations do not generate traffic all the time which leads
to wasted reserved capacity.

The second approach is to run the network at low
utilization and use standard TCP. New TCP protocols,
such as TCP Hamilton [2] and BBR-TCP [3], can effi-

Preprint submitted to NDIS 2017 September 19, 2017

ciently adapt to the bottleneck capacity and where mul-
tiple competing flows are involved, they equally split
the bottleneck capacity. However, even with the new
TCP algorithms, sustained bottlenecks lead to unpre-
dictable throughput performance and difficulties in ar-
bitrarily splitting bottlenecked bandwidths among com-
peting flows. Finally, as the growth in data transfer vol-
ume out-paces the increase in the data link rates, run-
ning the network at low utilization is not cost effec-
tive [4].

To help accelerate the effort to run the network at high
utilization and enable deadline aware data transfers, net-
work automation through Software-Defined Networks
(SDN) are being advanced to control network traffic de-
pending on data demand. In principle, SDN allow indi-
vidual switches to be managed and controlled following
centralized traffic engineering principles [5]. Further-
more, SDN switches provide the ability to pace traffic
at ingress of the network. These features in addition
to TCP protocol, or the pacing algorithm at the source
nodes [3], together provide the necessary tools to dy-
namically allocate bandwidth to flows for meeting dead-
lines while ensuring the network operates at high uti-
lization [6, 7].

This paper aims to implement a centralized traffic
engineering approach and control distributed agents at
the edge (ingress point of the network) to dynamically
pace flow for meeting transfer deadlines, while achiev-
ing high network utilization. The dynamic pacing al-
gorithm is able to analyze traffic patterns and follow a
rolling horizon model to pace flows at appropriate rates
to optimize network performance and meet deadlines.
As a result Calibers, not only calenders flow, but also
lays the foundation for future work where these capa-
bilities can be coupled with advanced tools to control
networks dynamically.

Following are the main contributions of this work:

1. We describe an architecture that implements band-
width calendaring for scientific workflows. The ar-
chitectures leverage SDN switches that can pace
flows at the ingress point. The architecture imple-
ments a central controller with distributed agents at
the edge of the network that monitor flow perfor-
mance and implement dynamic flow pacing set by
the controller.

2. We present experimental results using Globus and
GridFTP that show the importance of pacing in
achieving deadline aware data transfer service. We
compare our results with TCP Hamilton results.

3. We propose different heuristic algorithms based on
combining two orthogonal principles - 1) local vs

global optimization and 2) Shortest Job First vs
Longest Job First (LJF). We perform a preliminary
performance comparison of these algorithms with
respect to a performance metric efficacy that is de-
fined as the ratio of the percentage of request ac-
cepted to the network utilization. Our results show
that simple heuristics, that optimize locally on the
most bottlenecked link can perform almost as well
as heuristics that attempt to optimize globally.

The remainder of this paper is organized as follows.
In Section 2, we discuss the motivation of our work
specifically the the importance of deadline aware data
transfers in scientific workflows. We also discuss the
importance of pacing and traffic shaping in deadline-
aware traffic flow-scheduling. In Section 3, we present
the architecture of Calibers in a software defined net-
work. In Section 4 we present experimental results on
a preliminary prototype Calibers architecture to demon-
strate the effectiveness in meeting deadlines compared
standard TCP. In Section 5 we present work on a dy-
namic flow pacing algorithm and present preliminary
simulation results. In Section 7, we present the related
work followed by conclusions and future work in Sec-
tion 8.

2. Motivation

It is often the case that a large data transfer is in-
herently deadline-aware. For example, an HPC user
may want to ensure that data is present at an HPC site
before conducting their experiments. However, with
the unpredictability of network resource utilization, this
can pose a problem. Latency variation coupled with
TCP’s typical “sawtooth” behavior can lead to a lack
of predictability in meeting deadlines. Furthermore,
even when TCP achieves pareto-optimality, this behav-
ior may not always be desired. For example, if one flow
must complete faster over a bottleneck link than others,
simply fairly sharing the available bottleneck bandwidth
may not achieve the desired deadline goal.

Neuman et al. [8] highlighted the need to redesign
I/O architecture and network links to cope with the per-
formance of distributed science instruments. Salsano et
al. [9] discussed various APIs to optimize packet move-
ment based on user information to improve quality of
experience. Also, OpenStack clouds have been inves-
tigating how workload can be balanced over geograph-
ically distributed data centers. However, to the best of
our knowledge, there is still a lack of an implementation
system which can demonstrate dynamic traffic shaping
[4]. This paper aims to contribute to this research area

2

by studying how flows can be dynamically paced to re-
duce loss and optimize link performance.

Towards, the above goal, we first demonstrate that
even in a controlled, isolated environment, TCP does
not provide predictable data transfer rate in the event of
congestion. By pacing each data transfer properly, net-
work congestion can be avoided and flow completion
can be predicted. The following sections discusses the
strategies and algorithm utilized to decide rate flows for
transmitting data and how to achieve maximum number
of successful flows with network utilization.

2.1. Pacing and Shaping Traffic

Active Queue Management (AQM) has existed on
core network routers and switches for decades. In par-
ticular, Fair Queuing with Controlled Delay (FQ CoDel)
has been implemented in such switches and routers
for decades and was introduced in the Linux kernel in
2012 [10]. FQ implementations typically work on the
principle of creating some data structure of ongoing
flows, and then using a Deficit Round Robin (DRR) ap-
proach in order to dequeue packets from their respective
buffers. In this fashion, a lightweight, but reasonably
“fair" allocation of bandwidth resources occurs between
multiple competing flows. CoDel implementations es-
sentially work on the principle of putting hard limits on
the real queue size of ongoing flows such that a partic-
ular latency target is met. In such a fashion, the delay
of a flow is controlled, which has important implica-
tions for minimizing standing queue sizes elsewhere in
the network and therefore delivering more predictable
performance [11]. However, CoDel can also be used
in conjunction with FQ to pace flows under a particu-
lar maximum rate without violating fairness principles.
This is precisely how we conduct end-system pacing in
Calibers.

3. Architecture

Workflow orchestrators provision resources across
the network, with assumptions that it does not introduce
performance penalties. Calibers is an experimental net-
work service, targeted to higher level resource orches-
trators. It focuses on optimizing network resources such
that each data flows (i.e. file transfers) performs at least
at the minimum average rate over the transfer duration.
This allows Calibers to provide deadline delivery guar-
antees.

The experimental software platform designed in Cal-
ibers involves several components:

• A REST/JSON API: Orchestrators use this API to
schedule file transfers. They provide source, desti-
nation, file size, deadline and maximum I/O rate of
the endpoints of the transfer.

• An event publisher: Allows orchestrators to ob-
tain real-time information on the maximum rate the
network has allocated to data transfers without ex-
periencing network congestion.

• SDN-based rate shaper: This component enforces
flows to not exceed their bandwidth allocation.

• Calibers optimization algorithm: This dynamically
adjusts the maximum rate of each flow, ensuring
that all flows are on track to meet their respective
deadlines. This in turn increases network utiliza-
tion and maximizes the request admission rate.

Figure 1: Calibers architecture illustrating the various components.

Calibers aims to experiment with higher level of net-
work services, file transfer deadlines and demonstrate
new paradigms to higher network utilization. It makes
several assumptions to realize these goals. These are not
always true in a production environment. For example,
Calibers assumes that endpoints are sufficiently provi-
sioned with I/O, networking and processing resources.
Another important assumption is that Calibers is given
a minimum guaranteed capacity on the overall network
and therefore prevents it to be impacted by non Calibers
traffic.

When the flow pacing rate is dynamically changed
at the network edge, it may result in packet loss which
may result in throughput loss. Note that TCP algorithms
such as H-TCP [2] and BBR-TCP [3] can quickly adapt
to these changes. Additionally, new source pacing algo-
rithms based on model predictive control [12] can also

3

 ALU

 ALU

 ALU ALU

 ALU

WASH

AMST AOFA DENV

CORSA CORSA CORSA

CORSA

WASH

1G 1G

1G Bottleneck Link

 Agent Agent Agent

Controller
Control

Data

Figure 2: The experimental setup. Data transfer are initiated from
Amsterdam (AMST), New York (AOFY) and Denver (DENV) to
Washington (WASH). The Controller in a different VM in WASH can
interact with the distributed agents to pace the flows.

be used to ensure that the source quickly adapts to edge
pacing rates.

4. Experimental Results

The experimental setup in Figure 2 is based on ES-
net’s SDN Testbed, a high-speed Wide-Area Network
(WAN) SDN-ready testbed spanning two continents.
The backbone data rates are guaranteed and setup via
dedicated OSCARS circuits.

The testbed closely resembles ESnet’s high-speed
production network in both hardware and topology, as
it is an overlay of the ESnet production WAN [13].
Using ProxMox, a Linux container management sys-
tem, we define three senders Amsterdam (AMST), New
York (AOFY) and Denver (DENV) with varied round-
trip latencies to one receiver at Washington (WASH).
A controller container was provisioned at Washington
(WASH). In order to simulate a real workflow, we use
real FTP file transfers with 10 gigabyte data files rather
than benchmarking tools. In particular, we used the
Globus GridFTP file transfer tool, with the Globus API
running on the controller, to synchronize the start of all
three transfers [14]. Furthermore our topology closely
simulates the case of a bottlenecked receiver obtain-
ing data from three different senders with different geo-
graphical locations.

Our preliminary research was focused on determining
the feasibility of pacing both at the network’s edge with
SDN-enabled Corsa switches [15] and within the end-
system itself. In this fashion, the Corsa switches act to
police bandwidth utilization below a certain threshold.

Although the method of restricting bandwidth utiliza-
tion is indeed fair shaping, this is important for preser-
vation the overall fairness. However, in our current im-
plementation, losses at the Corsa switch, due to limits
imposed on the queue size, will result in activation of
the H-TCP congestion avoidance algorithm. In order to
avoid this, pacing at the end-system is used. One could
imagine in an active deployment that an end-user would
either participate in pacing, or at least be policed and
therefore unable to interfere with the pacing of other
senders to a bottleneck link. Thus, the orchestrator is ca-
pable of limiting interference and preserving the overall
workload allocation of the system.

Before we tested the feasibility of pacing with Globus
and GridFTP, we conducted experiments testing the ef-
fects of pacing on nuttcp flows sharing a bottleneck link.
In Figure 3, the throughput performance of one of those
bottlenecked flows is shown both in the paced and un-
paced scenarios.

0 50 100 150 200 250 300
Time (s)

0

500

1000

1500

2000

2500

3000

3500

4000

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

Achieved throughput

rate_Mbps

retrans (right)

0

200

400

600

800

1000

R
e
tr

a
n
sm

is
si

o
n
s

Figure 3: This experiment considers two H-TCP flows sharing a
1 Gbps link with both flows are un-paced. The spikes correspond
to the buffer build up prior to loss events.

4

0 50 100 150 200 250 300
Time (s)

0

100

200

300

400

500

T
h
ro

u
g
h
p
u
t

(M
b
p
s
)

Achieved throughput

rate_Mbps

retrans (right)
0.00

0.01

0.02

0.03

0.04

0.05

0.06

R
e
tr

a
n
s
m

is
s
io

n
s

Figure 4: This experiment considers two H-TCP flows sharing a
1 Gbps link and both flows are paced at 500 Mbps.

0 50 100 150 200 250 300 350 400 450
Completion time (s)

Denver

New York

Amsterdam

S
e
n
d
e
r

lo
ca

ti
o
n

GridFTP Flow Completion Times to Washington, DC

Paced
Unpaced

Figure 5: Flow completion times of three hosts sharing a bottleneck
link.

In Figure 5, the difference in flow completion times
for 3 equal-size, equally-paced files can be compared
with the unpaced flow completion times for the same
equal-size transfers. Here, the feasibility of setting rea-
sonable deadlines with the help of end-system pacing is
demonstrated. The unpaced flows do not end up sharing
the bottleneck equally for their duration, and the inher-
ent unpredictability of unpaced TCP at high throughputs
given different latencies is apparent. The paced flows,
however, all complete within two seconds of each other,
demonstrating that pacing can work effectively with the
Globus GridFTP architecture.

5. Scheduling Algorithm for Dynamic Pacing

As mentioned before, the objective of the scheduler is
to decrease the number of rejected data transfer requests
while increasing the network utilization. The notations
used is shown in Table 1. The scheduler operates at
fixed discrete epochs with the following assumptions:
(i) each link has a free capacity lCi to be used by the
scheduler, (ii) start time for each data transfer request is
immediate, i.e., the scheduler does not support advance
reservation, and (ii) the scheduler updates the network
status periodically every scheduling interval (epoch).

The scheduling problem is divided into to sub-
problems: (i) new flow: when a new request arrives,
how to decide whether to accept or reject the request?
and (ii) completed flow: when a request completes,
how to distribute the free capacity among the ongoing
flows? We study four heuristic algorithms by combin-
ing two concepts: (i) global and local optimization and
(ii) Shortest Job First (SJF) and Longest Job First (LJF).

In the global approach, the scheduler consider all the
flows when distributing any residual capacity. On the
other hand, the local approach focus on the bottleneck
links in the network and distribute the residual capacity
by reallocating locally only the flows that span the bot-
tleneck link(s). The LJF and SJF are known concepts
where longest jobs are favored with LJF and shorts jobs
are favored when SJF is used. This concept is used by
both the global and local scheduler in the following way.
When the scheduler decides (locally or globally) which
flows should be considered when distributing the resid-
ual capacity, SJF or LJF will be used to decide the order
in which the flows will be assigned the residual capacity.

The scheduler keeps track of multiple parameters as
shown in Table 1. One of the most important parameter
the scheduler uses to make decision is Rmin

fi
, which is the

minimum required rate to ensure the flow will not miss
its deadline. The pseudo-code of both the global and
local-approach is provided in Alg. 1. Both schedulers
use the same approach when a new request arrives, how-
ever, they differ in the way the capacity is redistributed
when a request completes.

5.1. Approach 1: Global Optimization
Sub-problem 1: new flow, when a new flow fi corre-

sponding to request ui arrives, the scheduler computes
Rmin

fi
, and checks if Rresid

pi
is greater than Rmin

fi
, it assign

Rresid
pi

to the new flow. The scheduler gives the maxi-
mum available rate to the new request instead of giving
it Rmin

fi
for two reasons: (i) to increase the link utiliza-

tion, and (ii) to complete the file transfer as soon as pos-
sible in order to free up the resources to accept future

5

requests. If Rmin
fi

is not available, the scheduler move to
the second phase, which is pacing other flows in order
to accept the new flow.

In the pacing phase, for each link li, the scheduler
finds the list of flows lF

i span link li. SJF or LJF concepts
are used to decide which flow(s) of the list lF

i to pace
(or slow down). When using SJF, the scheduler favors
short flows with longest flows being slowed down first
and vice versa. The scheduler paces the first flow in the
sorted list by taking its slack rate Rslack

f j
and assigns it

to the new flow. If the first flow slack (Rslack
f j

) is less
than the new flow required minimum rate (Rmin

fi
), then

the scheduler takes the slack rate of the second flow in
the sorted list until the sum of the slack rates is equal
to the new flow required minimum rate, or until there
are no more flows in the sorted list. Hence, the request
will be rejected because even with pacing Rmin

fi
cannot

be assigned to the new flow.
Sub-problem 2: completed flow, at the beginning of

each epoch, the scheduler checks if a flow has com-
pleted by checking the flow completion time tc. The
flow completion time is a dynamic parameter, that
changes based on the allocated rate (Ralloc

fi
). For all

the flows completed at the scheduling epoch, the sched-
uler traverse the path of each completed flow and finds
the set of other flows, that span the links in the path
(involved_flows). After finding all involved flows, the
scheduler now has a global view and starts distributing
the residual capacity using SJF or LJF concepts.

5.2. Approach 2: Local Optimization
As mentioned earlier, the same approach is used

when a new request arrives. However, the local sched-
uler takes a different approach when a flow completes.

Sub-problem 2: completed flow, at the begging of
each epoch, the scheduler checks if a flow has com-
pleted. For each completed flow (fi), the scheduler finds
the bottleneck link (lbottleneck) in pi. The link which has
a flow with the maximum tc, is the link that will stay
busy the longest, hence, is the bottleneck link that might
cause future requests to be rejected. Therefore, by free-
ing up only this link the probability of accepting flows
in the future increases. The scheduler considers only
the flows spanning the bottleneck link when distribut-
ing the residual capacity, which in contrast to the global
approach, where scheduler considers all flows spanning
all links of all completed flows paths.

6. Simulation Analysis

Flow-level simulation was conducted to evaluate the
performance of the four schedulers: (i) local-SJF, (ii)

local-LJF, (iii) global-SJF, and (iv) global-LJF. The sim-
ulator was written using Python and each simulation
was executed until 30k requests were generated.

6.1. Simulation Setup

Network:. Google’s inter-data center network G-scale
[5] with 12 nodes and 19 links was used to evaluate.
The links capacity lCi was set to 10 Gbps for all links in
the network.

Workload:. Requests were generated as follow: (i) Re-
quest inter-arrival time was modeled with an exponen-
tial distribution with arrival rate λ varying between 0.05
to 1.6 with step of 0.1, i.e. the mean inter-arrival time
between requests varies from 20 sec to 0.625 sec. (ii)
Request deadline time was modeled following an expo-
nential distribution with average deadline (td) of 1 hour.
(iii) As the file size is related to the deadline, it was
modeled as follows [7]. First, a transfer rate (i.e. Rmin

fi
)

is sampled following an exponential distribution with
average rate of 100 Mbps. Next the file size was com-
puted as transfer rate × td. This results in a product
distribution with a mean file size of 45 GB. (iv) Source
and destination pairs were picked uniformly.

Metrics. : Three performance metrics were measured:
(i) Network utilization is computed by measuring the
link utilization per second for each link in the network
lutilization
i (t), then taking the average utilization for each

link across the entire simulation time (∀li ∈ L, Lutilization
i

= mean(lutilization
i (t))). Finally, the network utilization is

measured as the average of Lutilization
i for all the links

in the network (network utilization = mean[Lutilization
i

∀li ∈ L]). (ii) Reject ratio which is defined as the num-
ber of rejected requests divided by the total number of
requests. (iii) Performance index is defined as the differ-
ence between network utilization and reject ratio. The
larger the difference, the better is the performance of
the scheduler as we want an ideal 100% utilization and
a reject ratio of 0%.

6.2. Results

Figure 6 shows the scheduler performance for the G-
scale network with mean file size of 45 GB (transfer rate
of 100 Mbps). The performance difference between the
local and global approach is negligible. This shows that
redistributing the capacity only in the bottleneck link of
the path of the completed flow, is enough to perform
good, as when considering all flows traversing the path.
Also, Fig. 6 shows that LJF is performing slightly bet-
ter in both local and global approaches. LJF reduces the

6

Algorithm 1: Dynamic Pacing Scheduler

Input: U
1 remove_completed_flows(t_now)
2 foreach ui ∈ U do
3 Rresid

pi
= min(Rresid

li
∀li ∈ pi)

4 if Rresid
pi

< Rmin
fi

then
5 pace(fi)

6 else
7 Ralloc

fi
= min{Rmax

fi
,Rresid

pi
}

8 return success

9 Function pace(fi)
10 ∀li ∈ pi

11 Rtemp = 0
12 Rpi

temp = []
13 found = False
14 involved_flows = lF

i
15 sorted_involved_flows = sort the list in ascending (if

LJF) or descending (if SJF) order based on tc

16 foreach f j ∈ sorted_involved_ f lows do
17 Rtemp = Rtemp + Rslack

f j

18 if Rtemp ≥ Rmin
fi

then
19 found = True
20 add Rtemp to Rpi

temp

21 break

22 if found = True then
23 Ralloc

fi
= min(Rpi

temp)
24 return success

25 else
26 return reject

27 Function remove_completed_flows()
28 involved_flows = []
29 involved_links = []
30 foreach fi ∈ F do
31 if tc = tnow then
32 ∀l j ∈ pi

33 remove fi from lF
j and F

34 add l j to involved_links
35 add to lF

j involved_flows

36 if local-sched then
37 local_reshape(involved_links)

38 if global-sched then
39 global_reshape(involved_flows)

40 Function global_reshape(involved_flows)
41 Ralloc

fi
= Rmin

fi
∀ fi ∈ involved_flows

42 sorted_involved_flows = sort the list in ascending (if
SJF) or descending (if LJF) order based on tc

43 foreach fi ∈ sorted_involved_ f lows do
44 Rresid

pi
= min(Rresid

li
∀li ∈ pi)

45 Ralloc
fi

= Ralloc
fi

+ Rresid
pi

46 Function local_reshape(involved_links)
47 find lbottleneck

48 Ralloc
fi

= Rmin
fi
∀ fi ∈ lbottleneck

49 involved_flows = lF
bottleneck

50 sorted_involved_flows = sort the list in ascending (if
SJF) or descending (if LJF) order based on tc

51 foreach fi ∈ sorted_involved_ f lows do
52 Rresid

pi
= min(Rresid

li
∀li ∈ pi)

53 Ralloc
fi

= Ralloc
fi

+ Rresid
pi

(a) Reject ratio and network utilization. Solid lines repre-
sent reject ratio and dashed lines represent network utiliza-
tion

(b) Performance index

Figure 6: Performance comparison of the four algorithms for the G-scale network.

7

Table 1: Notation used.

Symbol Description
tnow Current scheduling epoch
U set of requests at time
ui User i request which is defined by 5 tuples (IPsrc, IPd st, S , td) where IPsrc and IPdst are the

source and destination IP addresses, S is the size of data in Mbytes, and td is the deadline
F The set of the currently scheduled flows
fi flow i ∈ F
pi A path pi is sequence of links corresponds to fi source and destination pair
Rmin

fi
For flow fi, this is the minimum rate that will guarantee that the deadline is met. This is
S/(td − ts)

Ralloc
fi

For flow fi, the pacing rate that was allocated for scheduling epoch
Rslack

fi
The slack rate assigned to flow fi, Rslack

fi
= Ralloc

fi
− Rmin

fi
L The set of the links in the network
li Link i in the network, li ∈ L
lCi Link li capacity
lF
i List of flows span link li

Rresid
li

The residual capacity for link li. Rresid
li

= lCi -
∑
∀ fi∈lF

i
Ralloc

fi
lbottleneck The link with the flow that has the maximum tc

makespan time of all flows by assigning more rate to
the flows with the longest completion time. This results
on freeing up the links faster to accommodate future re-
quests. On the other hand, SJF frees up some capacity of
the link earlier than LJF but the makespan of the flows
stays the same.

The difference in performance between SJF and LJF
becomes more apparent with a longer epoch duration
as shown in Fig. 7. Many observations can be made
with the longer epoch duration. First, the network uti-
lization for LJF is higher compared to the SJF with the
epoch of 5 mins. Since SJF favors the flows with the
lowest completion time when redistributing the resid-
ual capacity, then the probability of the flow finishing
during the epoch is higher compared to if LJF is used.
Therefore the flow will finish during the epoch and the
capacity used by the completed flow will be wasted as
no reshaping is done within the epoch. Second, the re-
ject rate increases as the epoch duration increases, as the
requests are aggregated making the scheduler less flex-
ible. Third, at a lower arrival rate, the utilization with
the epoch duration of 5 mins is higher than the utiliza-
tion with epoch of 1 sec.

Lets consider the lowest arrival rate which is 0.05,
i.e. the inter-arrival between requests is 20 sec. With
this rate an average of 15 requests are aggregated and
passed to the scheduler at the beginning of the schedul-
ing epoch. The scheduler will assign lower rates for the
requests since there are many of them. Hence, the flows

will take longer to finish and the links will stay busy
(utilized) longer. On the other hand, with an epoch of
1 sec, whenever a request comes, the scheduler gives it
a maximum available rate making the flow completion
time small. Hence, the flow completes early and links
stay idle.

7. Related Work

The over-arching goal of this work is to deliver dead-
line aware data transfers as a network service, while
ensuring high network utilization. We leveraged SDN
with the ability to perform dynamic traffic pacing at the
network edge. There are a number of recent studies with
similar goals. In the following paragraphs, we review
the related work and point out the key differences from
our work.

There has been a number of prior studies on flow pac-
ing [16, 17, 18]. Broadly speaking, flow pacing can be
performed at the source host or at the edge where the ac-
cess network connects to the core network. The former
is referred to as host pacing, or more commonly TCP
pacing, while the later is referred to as edge pacing and
can be performed by the network service provider [18].
In this paper, we study edge pacing enabled softwerized
SDN switches.

SDN networks allow dynamic and centralized traf-
fic engineering (TE) via flow pacing. B4 [5] presents
Google’s effort in leveraging SDN to centralized TE

8

(a) Reject ratio and network utilization. Solid lines repre-
sent reject ratio and dashed lines represent network utiliza-
tion

(b) Performance index

Figure 7: The impact of epoch duration on the performance.

and drive links to near full utilization. As similar study
SWAN [19] also improves network utilization of inter-
DC WAN by scheduling the service traffic in a cen-
tralized manner. However, all of these studies do not
consider deadline associated with their transfers. The
study in Tempus [6] considered deadlines and devel-
oped an optimization framework to maximize the frac-
tion of transfer delivered before deadline, ensuring fair-
ness among all requests. This work, however also does
not guarantee meeting deadlines.

In a recent study [7], deadlines have been inves-
tigated in the context of inter-data center data trans-
fers. Building on a deadline aware network abstraction
(DNA) where transfer deadlines can be specified, the
study proposes AMEOBA which uses traffic shaping at
the source, to meet data transfer deadlines. While this
study is the most similar to ours, there are a few key
differences. First, this study focuses on scientific work-
flows. Second, we consider edge pacing. Finally, we
show that simple dynamic pacing algorithms that op-
timizes locally on the most bottleneck link perform as
well more complex algorithms that attempt to optimize
globally.

8. Conclusions and Future Work

Calibers has demonstrated, in an ideal situation of a
controlled environment, that TCP congestion avoidance
algorithms, while performing well at maximizing net-
work utilization, it cannot provide the desired behav-
ior for workflow orchestration. In particular, TCP relies

on network characteristic, such as RTT, packet retrans-
mission, pace flows and ignore flow needs. As result
some flows may go faster than they need, while others
may go slower than they should, such to meet deadlines
and maximize resource utilization. However, the perfor-
mance of modern TCP, in conjunction with the ability
of SDN to implement centralized traffic engineering, al-
lows Calibers to optimize network utilization to provide
predictable performance. Our preliminary study on dy-
namic pacing algorithms suggests that simple heuristics
that optimize locally on the most bottlenecked link can
perform almost as well as attempts to optimize globally.

In our future work, we will address some of the
assumptions that we made in this preliminary work.
In particular, we will consider the interaction between
deadline aware traffic and background traffic. We will
investigate methods to predict the background traffic
and leave appropriate network capacity to minimize the
impact on the deadline aware traffic. This work will also
enhance Calibers to accept deadline aware data transfer
request at a future time.

[1] ESnet, Oscars: On-demand secure circuits and ad-
vance reservation system https://www.es.net/
engineering-services/oscars/.

[2] D. Leith, R. Shorten, H-tcp: Tcp congestion control for high
bandwidth-delay product paths, draft-leith-tcp-htcp-06 (work in
progress) (2008).

[3] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, V. Jacobson,
Bbr: Congestion-based congestion control, Queue 14 (2016) 50.

[4] DOE, Doe network 2025: Network research problems and chal-
lenges for doe scientists workshop (2016).

[5] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle,

9

S. Stuart, A. Vahdat, B4: Experience with a globally-deployed
software defined wan, SIGCOMM Comput. Commun. Rev. 43
(2013) 3–14.

[6] S. Kandula, I. Menache, R. Schwartz, S. R. Babbula, Calendar-
ing for wide area networks, in: Proceedings of the 2014 ACM
Conference on SIGCOMM, SIGCOMM ’14, ACM, New York,
NY, USA, 2014, pp. 515–526.

[7] H. Zhang, K. Chen, W. Bai, D. Han, C. Tian, H. Wang, H. Guan,
M. Zhang, Guaranteeing deadlines for inter-data center trans-
fers, IEEE/ACM Trans. Netw. 25 (2017) 579–595.

[8] H. Newman, A. M. I. Legrand, R. Voicu, D. Kcira, J. Bunn,
High speed scientific data transfers using software defined net-
working, in: Innovating the Network for Data Intensive Science
(INDIS), SC 15.

[9] S. Salsano, N. Blefari-Melazzi, A. Detti, G. Morabito, L. Veltri,
Information centric networking over sdn and openflow: Archi-
tectural aspects and experiments on the ofelia testbed, in: Int.
Jour. Comp. and Tele. Net. archive, 57(16), 3207-3221.

[10] D. Raghuvanshi, B. Annappa, M. Tahiliani, On the effectiveness
of codel for active queue management, in: Advanced Comput-
ing and Communication Technologies (ACCT), 2013 Third In-
ternational Conference on, pp. 107–114.

[11] J. Gettys, K. Nichols, Bufferbloat: Dark buffers in the internet,
Queue 9 (2011) 40:40–40:54.

[12] D. Fridovich-Keil, N. Hanford, M. Chapman, C. Tomlin,
M. Farrens, D. Ghosal, A model predictive control approach
to flow pacing for tcp, in: 55th Annual Allerton Conference on
Communication, Control, and Computing.

[13] Energy Sciences Network, ESnet 100G SDN
Testbed http://es.net/network-r-and-d/
experimental-network-testbeds/100g-sdn-testbed.

[14] W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C. Du-
mitrescu, I. Raicu, I. Foster, The globus striped gridftp frame-
work and server, in: Proceedings of the 2005 ACM/IEEE Con-
ference on Supercomputing, SC ’05, IEEE Computer Society,
Washington, DC, USA, 2005, pp. 54–.

[15] CORSA, SDN switches, http://www.corsa.com/
solutions.

[16] A. Aggarwal, S. Savage, T. Anderson, Understanding the perfor-
mance of tcp pacing, in: INFOCOM 2000. Nineteenth Annual
Joint Conference of the IEEE Computer and Communications
Societies. Proceedings. IEEE, volume 3, IEEE, pp. 1157–1165.

[17] D. Wei, P. Cao, S. Low, C. EAS, Tcp pacing revisited, in:
Proceedings of IEEE INFOCOM.

[18] H. H. Gharakheili, A. Vishwanath, V. Sivaraman, Comparing
edge and host traffic pacing in small buffer networks, Computer
Networks 77 (2015) 103 – 116.

[19] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill,
M. Nanduri, R. Wattenhofer, Achieving high utilization with
software-driven wan, in: Proceedings of the ACM SIGCOMM
2013 Conference on SIGCOMM, SIGCOMM ’13, ACM, New
York, NY, USA, 2013, pp. 15–26.

10

