Algorithms and Data Structures to Accelerate Network Analysis

Jordi Ros-Giralt, Alan Commike, Peter Cullen, Richard Lethin
{giralt, commike, cullen, lethin} @reservoir.com
Reservoir Labs
632 Broadway Suite 803, New York, NY 10012

Abstract - As the sheer amount of computer generated data continues to
grow exponentially, new bottlenecks are unveiled that require rethinking
our traditional software and hardware architectures. In this paper we
present five algorithms and data structures (long queue emulation,
lockless bimodal queues, tail early dropping, LFN tables, and
multiresolution priority queues) designed to optimize the process of
analyzing network traffic. We integrated these optimizations on
R-Scope, a high performance network appliance that runs the Bro
network analyzer, and present benchmarks showcasing performance
speed ups of 5X at traffic rates of 10 Gbps.

. INTRODUCTION

System wide optimization of network components like routers,
firewalls, or network analyzers is complex as it involves the
proper orchestration of at least hundreds of different algorithms
and data structures interrelated in subtle ways. In these highly
dynamic systems, bottlenecks quickly shift from one component
to another forming a network of micro-bottlenecks. This makes it
challenging to understand which elements should be further
optimized to get that extra unit of performance. Moreover, these
shifting micro-bottlenecks are interconnected in peculiar ways so
that optimizing one of them can often lead to an overall
degradation of performance. This is due to internal system
nonlinearities such as those found in hierarchical memory
architectures. For instance, while optimizing the transfer of
packets from the wire to the application is known to be critical,
in the limit pushing too many packets to the application is
detrimental as packets that eventually need to be dropped will
cause a net negative effect by thrashing the processors’ local
caches, increasing the overall cache miss ratios and hence
decreasing system wide performance. The process of
performance optimization should therefore be a meticulous one
which requires making small but safe steps avoiding the pitfall of
pursuing short term gains that can lead to a new and bigger
bottleneck down the path.

In this paper we present five of such safe steps that have helped
to optimize the performance of R-Scope, a high performance
appliance that runs the network analyzer Bro at its core [1]. Each
of these steps introduces a new algorithm or data structure
designed to accelerate system wide performance, each one
addressing a different shifting micro-bottleneck. While we use
Bro to demonstrate the efficacy of these optimizations, they are
of general purpose and so we believe these techniques can be
generally applied to the problem of accelerating network analysis
or, to some degree, to optimize other more active network
components such as firewalls or routers.

Some of the data structures and algorithms in this paper have been patented.

II. ALGORITHMS AND DATA STRUCTURES
A. Long Queue Emulation for Packet Forwarding

High performance network interface cards (NICs) help accelerate
the process of moving packets from the wire to the application
by using techniques such as receive side scaling (RSS), zero
copy, packet coalescence or kernel bypass, among others [2].
These cards achieve higher performance by leveraging hardware
at the cost of losing some degree of flexibility and
programmability. For instance, one common element of rigidity
found in HPC NICs is the amount of memory embedded in their
chip, which limits the size of the rings used to temporarily hold
packets as they are transferred to the application. As a result,
temporary high bursts of traffic that cannot be handled fast
enough by the application may overflow these hardware rings
leading to packet drops.

A traditional way to address packet drops originated from a
limited size ring (LSR) is to dedicate one or more dispatcher
threads (DT) to move packets out of the ring and put them into
one or more software queues connected to the application threads
(AT) residing on the host. Because the host does not have the
embedded memory restrictions of the NIC, the software queues
effectively have unlimited size. Consequently, packet drops due
to bursty traffic are eliminated provided that the dispatcher
threads can move packets from the limited size rings (LSR) to
the unlimited size queues (USQ) fast enough. This solution is

illustrated in Fig. 1.
©

]
| |3 () || unimitedsize
queues (USQ)
‘Software
Hardware

Limited
size ring
(LSR)

Fig. 1. Description of the dispatcher model.



While this solution seems sound at a high level, in the context of ~ 10ng queue emulation.model we fold ptThread () into AtThread()
HPC the dispatcher thread introduces the following subtle but s a single thread running the procedure AttgeThread():
important performance penalties:

- Packet read cache penalty. If the dispatcher thread (DT)
needs to read the packet—for instance, if it needs to
compute the hash of the packet’s IP tuple to decide which
destination queue the packet should be forwarded to—then
the packet will need to be loaded into the local cache. Since

AtLgeThread()

1 while true:

2 get all packets from the front of LSR;
3 put the packets to the tail of USQ;

4 get one packet from the front of USQ;
5 process the packet;

the application thread (AT) will also need to read the packet The key characteristic of the AtLgeThread() procedure is that it

for its own processing, the dispatcher model requires ensures all packets from the LSR ring are moved to the USQ

loading a packet to the cache twice (one time on the DT’s queue before the next packet is processed, effectively giving

local cache and a second time on the AT’s local cache). This the highest priority to the ring. This approach emulates the

negatively  impacts  performance  because cache behavior of the dispatcher model with one single thread

misses—which require accessing memory to fetch data—are performing both the DT and the AT procedures. As a result,

typically ten times slower than cache hits. As a general both packets and packet descriptors are loaded into the cache

principle, a good design should aim for a single cache load only once (at the AT’s local cache) and there is no additional

throughout the lifetime of each packet. memory and compute overhead to maintain the dispatcher
- Descriptor read cache penalty. Even if the DT does not threads. We illustrate the LQE model in Fig. 2.

need to read the packet—e.g., some implementations can

extract the hash of the packet’s IP tuple from the packet f}e}gipe}cﬁq&}»» ° 1

context information provided by the hardware—the DT will :

still need to load the packet descriptor onto its local cache. sk 0| usa

(A packet descriptor is a small software data structure part T [

of all NIC drivers containing a pointer to the packet buffer 1

and additional control metadata such as the the packet @ L]

length or the hash of its IP tuple, among others.) In this case,

during the lifetime of a packet, its descriptor needs to be Forward packet

loaded twice, once at the DT’s local cache and a second ‘ A

[

time at the AT’s local cache. Just like before, a good design

should target one single cache load for each individual LQE

packet descriptor. Fig. 2. Description of the long queue emulation model.
- Memory and compute overhead. Yet another overhead

introduced by this approach is the additional memory and

compute resources required to run the dispatcher threads

themselves.

More formally, we describe the performance properties of the
long queue emulation model in the following lemma:

Lemma 1. Long queue emulation performance. Let A and
Mnax be the average and the maximum packet arrival rate
measured at the LSR ring, respectively. Assume for the sake
of simplicity and without loss of generality, that the time to
process a packet is constant, and let p, and ,,, be the packet

To avoid the above performance penalties, we propose to use
long queue emulation (LQE), a simple but efficient technique
that eliminates the overhead introduced by the dispatcher thread

with the potential to also reduce packet drops. .
processing rate of the DT model and the LQE model,

The main concept behind LQE is to emulate the behavior of the respectively—that is, 1, and . correspond to one divided

dispatcher thread solution by folding the actions performed by
the DT thread into the AT thread. Consider first the pseudocode

of the DT and AT threads separately as implemented by the
dispatcher model: that can be held in the LSR ring, then the following is true:

by the time it takes to execute line 6 in AtThread() and line 5 in
the AtLgeThread(). If s, . is the maximum number of packets

(1) p‘lqe > Wgy -

thh:v:i(e) e Q) If s/ hpa = 1/ e > the performance of the LQE model
2 get alls packets from the front of LSR; is superior to the performance of the DT model.

3 put the packets to the tail of USQ; (3) If Slsr/)"max < 1/““lqe and A > Mlqe» the performance of
AtThread() the LQE model is superior to the performance of the DT
; Whﬂ:;e:(c:rzié packet from the front of USQ; model.

6 process the packet; ’ (4) If Slsr/xmax < 1/que and A < que ’ the performance of

the DT model is superior to the performance of the LQE
While in the dispatcher thread solution the ptThread() and the model.

AtThread() procedures are run on two independent threads, in the



Proof. 1t’s easy to see that p,, >, because the LQE model

does not suffer from DT’s performance penalties due to extra
cache misses or the computational and memory overheads
previously described.

To see that (2) is also true, notice that the computational cost
of the procedures AtLgeThread() and DtThread() are the
same except for the cost of processing a packet (assuming the
cost of putting and getting packets from the ring and the queue
is negligible compared to the cost of processing the packet).
Since in the LQE model the time it takes to process one single
packet is 1/ e » the maximum number of packets that can be

inserted in the ring while the application thread is processing a
packet is Apar/Wyy, . Since sy, = Mpac/ My, » n0 packets are
dropped and so both the long queue emulation and the
dispatcher models deliver a packet drop probability equal to
zero. Since from (1) we know that ., > p, , we conclude

that the LQE model uses less memory and compute resources
and delivers the same packet drop probability as the DT
model, making it the superior design.

If 55, < Apar/ g and A =y, , then from queuing theory [3]
we know that this leads to a permanently unstable regime
where the USQ queue will grow indefinitely long and the
system will not have a stationary distribution for either model.
As a result, packets will be dropped at a rate A —p, and
A =, for the DT and LQE model, respectively. From (1)
we have ., >, , which makes also the LQE model a better

design than the DT model.

Finally, if s, <Mpax/My,. and A <p,,, then applying
queuing theory again we know the system will be stable with
traffic bursts leading to temporary increases of the queue size
that the application thread will only be able to process if the
LSR ring can accommodate for the burst. In the LQE model,
since sy, < Aax/ Wge > the maximum burst will overflow the
LSR ring, leading to packet drops at a rate Ayqx — Hy,, for the
duration of the burst. In the DT model, however, such packet
drops are eliminated as the dedicated DT thread can move the
packets from the LSR ring to the USQ queue without drops.
As a result, the DT model performs better.

§

Fig. 3 summarizes the result of Lemma 1 with a decision tree
that can be used to determine when to use the DT or the LQE

model.
Yes
Use LQE

7\fma,\' < Sisr * Mige ?

Fig. 3. Lemma | expressed as a decision tree.
We illustrate the practical application of Lemma 1 to

determine the right design using a real HPC application.
Suppose that our system uses the NIC Solarflare Flareon Ultra

SFN7122F. This NIC provides hardware rings that can hold
104 buffers with each buffer consisting of 65,536 bytes worth
of packets. Assuming an architecture with 20 application
threads, this leads to a total buffer size of s, = 136,314,880
bytes. Table 1 presents the maximum time one application
thread can take (s,,/Ana) to process a packet without
dropping any packet in the LSR ring for a variety of burst rates
(Apmax ) from 1 Gbps to 10 Gbps.

Table 1. Maximum packet processing time for a Solarflare SFN7122F NIC

Aax (Gbps) [ 1| 2 4 6 8 10

S/ hmax (sec8) | 1,09 {0.55 | 0.27 0.18 0.14 0.11

Table 2 and Fig. 4 provide the distribution of the packet
processing times incurred for the case where the application
thread runs the Bro network analyzer. These measurements
were performed using a traffic dataset generated from a mix of
real packet traces from our corporate network in New York
and synthetically generated traffic using an Ixia traffic
generator, resulting in a dataset of human generated traffic (for
applications such as HTTP/HTTPS) and machine generated
connections (for services such as SNMP). Table 3 summarizes
the traffic dataset main statistics.

Table 2. Packet processing time distribution.

[0, 10us) | [10us, 100us) | [100us, 1ms) | [Ims, 10ms) | [10ms, 100ms)

305 405493 3387846 127 7

Total packets: |3793778

Packet processing time distribution
3387846
1000000
405493
100000
10000
1000
100 127
7
10 e

[0, 10us) [10us, 100us)  [100us, Tms)  [1ms, 10ms) [10ms, 100ms)

Number of packets

Packet processing time

Fig. 4. Bro’s packet processing time distribution (in log scale).
According to this sample, all packets can be processed by Bro
in less than 100 milliseconds (the vast majority of the packets
can be processed in less than 1 millisecond), that is,
1/, <0.1 seconds. Since the SF card yields a value of
s,S,/ Mnax =0.11  seconds at 10 Gbps, we have that
S5/ Mmax = 1/M1qe and hence we can conclude that the long
queue emulation model is the right design for the Bro network
analyzer when using the Solarflare HPC NIC.

Table 3. Statistics of the traffic dataset.

TCP UDP | ICMP | Other |Avg pkt size (B) | Avg conn size (KB)

92.34% | 7.5% | 0.02% | 0.04 510.25 7050.16

One final parameter to determine is the size of the software
queue (USQ). While effectively this queue can be arbitrarily



large (its hardware limit is given by the memory in the host),
experiments demonstrate the existence of an optimal size
value. This is illustrated in Fig. 5, where we feed our LQE
implementation with the traffic set described in Table 3 at 10
Gbps. The results illustrate that packet drops are minimized
when the number of buffers in the queue is equal to 1500.
Since our implementation is based on the Solarflare NIC,
where each buffer has 65,536 bytes, this corresponds to an
optimal queue size of 98,304MB.

To understand the existence of this optimal queue size value,
consider the two extreme cases. Assume first that the size of
the queue is very small, clearly this is suboptimal as the queue
will not be able to accommodate for packet bursts. Assume
instead that the size of the queue is infinitely large. In this
case, the queue can store a very large packet burst, but in the
limit, doing so will have a negative impact on the local cache
because not all the packet descriptors stored in the queue will
fit in it. That is, when we try to absorb an arbitrarily large
number of packets, the system’s productivity is deteriorated
due to an increase in cache thrashing. It’s worth noticing that
this optimal value depends primarily on static system
parameters such as the size of the (hardware) local cache or the
size of the (software) packet descriptors. Hence, this value
should be fairly stable across different types of input traffic.
This optimum however will differ if the hardware architecture
changes (e.g., an increase in the cache size will generally
imply an increase in optimal queue size) or if the packet
descriptor data structure changes.

Packet drops at 10Gbps

6

drops %

150buffers  750buffers  1500buffers 2048buffers 4096buffers

Size of USQ (buffers)

Fig. 5. Identifying the optimal size of the software queue in the LQE model.
B. Lockless Bimodal Queues for Selective Packet Capture

We now turn our focus to address a different issue in the
design of a high performant packet path. In addition to the
processing of packets by the application threads, suppose that
we need to support storing the packets received into disk.
Because at high speed rates this can be an overwhelming task
(e.g., 10 Gbps of traffic throughput can lead to the processing
of up to 20 million packets per second), we will limit our
specifications to capture only a finite batch of packets. We will
use the name selective packet capture (SPC) to refer to the
function of performing this type of packet capturing at very
high speed rates. The SPC engine we aim at implementing
should work as follows:

- After the application thread completes processing a packet,
it stores the packet in a second ring. If the ring is full, its
oldest packet is removed to make space for the new packet.

- The application thread has the capability to trigger a packet
capture operation at any time. For instance, the application
can decide upon processing a packet that a cybersecurity
attack is being carried out and trigger the capture operation
in order to save a batch of packets in the disk, allowing for
a more detailed offline analysis of the suspicious packets.

- Upon triggering a packet capture operation, an SPC thread
(ST) wakes up, transfers a given amount of packets from
the ring to the disk and goes back to sleep.

The SPC workflow is illustrated in Fig. 6 as an extension to
the LQE model described in Section II.A.

Fetch packet /AT\

Store packet
LSR1 usa LSR2
C_ 1
Disk
1

Forward packet

LQE+SPC
Fig. 6. Extending the LQE model to support selective packet capture (SPC).

The subsystem formed by the application thread (AT), the
LSR2 ring and the SPC thread (ST) define a traditional
consumer-producer problem with one caveat: the consumer is
not always active. This implies that the ring needs to support
two different modes of operation, one in which the consumer
is sleeping without pulling any packets from the ring and
another one in which the consumer is actively pulling packets
from the ring. Our objective here is to design a
high-performance queue supporting these two modes of
operation without using locks that would negatively affect the
performance of the data path. We will call such data structure a
lockless bimodal queue (LBQ), as illustrated in Fig. 7.

1-producer-0-consumers 1-producer-1-consumer
mode mode

(RO s —®
SO g

Fig. 7. A lockless bimodal queue.
We start by considering first the standard consumer-producer

problem. This well-known case can be efficiently resolved
without locking the ring:

Lockless 1-producer-1-consumer queue

typedef struct {
volatile unsigned int offset_p;
volatile unsigned int offset_c;
packet_t* vector[RINGSIZE];

} ring_t;

void enqueue(ring_tx ring, packet_t* pkt) {
while(ring->offset_p == ring->offset_c);
ring->vector[ring->offset_p++] = pkt;

OCoOo~NoOUubhWNE



10 }

11

12 packet_t* dequeue(ring_tx ring) {

13 if(ring->offset_p == ring->offset_c)

14 return NULL;

15 ring->offset_c = ring->offset_c + 1 % RINGSIZE;
16 return(vector[ring->offset_c - 1]);

17 }

In our case, the application thread acting as the producer is
responsible for calling enqueue() whereas the SPC thread
acting as the consumer calls dequeue(). The above solution,
however, assumes the consumer is permanently active, since
otherwise the producer would stall indefinitely in line 9. In our
problem, the SPC thread is by default inactive and it only
becomes active when the application thread triggers a packet
capture operation. Hence, our design needs to also support the
case of 1 producer and 0 consumers. We can make a few
adjustments to the previous code to support this case:

Lockless 1-producer-0-consumers queue

1 typedef struct {

2 unsigned int offset_p;

3 unsigned 1int offset_c;

4 packet_t*x vector[RINGSIZE];

5 } ring_t;

6

7 void enqueue(ring_tx ring, packet_t* pkt) {
8 if(ring->offset_p == ring->offset_c)
9 dequeue(ring);

10 ring->vector[ring->offset++] = pkt;
11 }

12

13 packet_t* dequeue(ring_tx ring) {

14 if(ring->offset_p == ring->offset_c)

15 return NULL;

16 ring->offset_c = ring->offset_c + 1 % RINGSIZE;
17 return(vector[ring->offset_c - 1]);

18 1}

The above code is essentially the same as the
1-producer-1-consumer except for lines 8 and 9 (shown in
bold), which have the producer take the role of the (now
sleeping) consumer in order to remove the last element from
the full ring to make space for the new packet.

Notice that while both the 1-producer-1-consumer and the
1-producer-0-consumers algorithms require no locks, we still
need to resolve the problem of transitioning the ring between
the two modes of operation. To minimize any performance
penalties, the key is to ensure such transition can happen
without locking the ring. We propose two solutions to achieve
this objective. The first solution requires no special
hardware-aided operation but assumes the producer is
permanently active in order to avoid starvation on the
consumer side. The second solution is not limited by such
requirement but requires using compare-and-swap (CAS), a
hardware-aided operation supported by most modern
processors.

The following code presents the first solution without CAS:

Lockless bimodal queue without using CAS
(producer must be permanently active to avoid consumer starvation)

1 typedef struct {
2 volatile unsigned int offset_p;
3 volatile unsigned int offset_c;

4 volatile bool req; // owned by consumer
5 volatile bool ack; // owned by producer
6 packet_t* vector[RINGSIZE];

7 } ring_t;

8

9

void enqueue(ring_tx ring, packet_t* pkt) {
10 if(lring->req) {

11 if(ring->ack)

12 ring->ack = false;

13 if(ring->offset_p == ring->offset_c)
14 dequeue(ring);

15

16 else {

17 if(!ring->ack)

18 ring->ack = true;

19 while(ring->offset_p == ring->offset_c);
20 }

21 ring->vector[ring->offset_p++] = pkt;
22 }

23

24 packet_t* dequeue(ring_tx ring) {

25 if(ring->offset_p == ring->offset_c)

26 return NULL;

27 ring->offset_c = ring->offset_c + 1 % RINGSIZE;
28 return(vector[ring->offset_c - 1]);

29 }

31 void start_c(ring_tx ring) {
32 ring->req = true;

33 while(!ring->ack);

34 }

36 void stop_c(ring_tx ring) {
37 ring->req = false;
38 while(ring->ack);

The main idea behind the above code is the introduction of
two new functions, start_c() and stop_c(), which are to be
invoked by the consumer right after it wakes up and right
before it goes back to sleep, respectively. Using a two-way
handshake implemented with the flags req and ack, the
consumer and the producer synchronize the transition from
one operational mode to another without the need for locks.
Notice that to complete a transition, this approach requires the
producer to be actively putting packets to the ring since the
functions start_c() and stop_c() invoked by the consumer
will not complete unless the producer calls enqueue() and
executes lines 18 and 12, respectively.

In the context of high performance computing, the above
implementation is often appropriate because many applications
operate with producers that are constantly enqueuing packets
to the ring, hence satisfying the assumption that the consumer
needs to be permanently active. For applications violating this
assumption, we can replace the two-way handshake operation
with a compare-and-swap instruction to control the transition
from one operational mode to another. This approach is
presented next:

Lockless bimodal queue using CAS
(producer does not need to be permanently active)

1 typedef struct {

2 volatile unsigned int offset_p;

3 volatile unsigned int offset_c;

4 volatile bool trans; // used to transition modes
5 volatile bool state; // the current mode
6 packet_t* vector[RINGSIZE];
7 } ring_t;
8

9

void enqueue(ring_t* ring, packet_t* pkt) {



10 while(!cas(&ring->lock, false, true));
11 if(!ring->state) {

12 if(ring->offset_p == ring->offset_c)

13 dequeue(ring);

14 else

15 while(ring->offset_p == ring->offset_c);

16 ring->trans = false;

17 ring->vector[ring->offset_p++] = pkt;

18 }

19 packet_t* dequeue(ring_t*x ring) {

20 if(ring->offset_p == ring->offset_c) return NULL;
21 ring->offset_c = ring->offset_c + 1 % RINGSIZE;
22 return(ring->offset_c - 1);

23 }

25 void start_c(ring_tx ring) {

26 while(!cas(&ring->trans, false, true));
27 ring->state = true;

28 ring->trans = false;

29 }

31 void stop_c(ring_tx ring) {

32 while(!cas(&ring->trans, false, true));
33 ring->state = false;

34 ring->trans = false;

In the above code, because the CAS operation is atomically
executed, the consumer can change the operational mode of
the ring without the need to negotiate the transition with the
producer.

Because compare-and-swap is an operation widely supported
by modern processors, our choice is to use the LBQ algorithm
with CAS.

C. Tail Early Dropping

When performing network analysis, not all packets are equally
important. A common example is encrypted traffic, which in
general cannot be processed by the application threads since it
can’t be unencrypted. A source of inefficiency in today’s
network analysis stacks comes from the fact that by the time
the application thread realizes a packet cannot be processed,
such packet has already consumed important system resources.
For instance, in the LQE model (Fig. 2), packets need to be
moved from the LSR ring to the USQ queue, and then picked
up by the application thread before they can be processed. If
the architecture includes the selective packet capture module
(Fig. 6), then the packet also needs to be moved to the LSR2
queue. Each of these steps consume both computational and
memory resources that yield no benefit if the packet needs to
be ultimately dropped.

A general principle in the design of high performance network
analyzers is that if a packet is to be discarded from the
analysis, then it should be dropped as early as possible. To
enable this principle, we develop a module called tail early
dropping (TED). TED is a queuing policy that allows for
entire connection tails to be dropped once the analyzer threads
conclude that such connections are no longer relevant to the
analysis. This technique allows also to prioritize the front of a
connection (which typically includes more relevant
information) when the system is congested, by dropping
connection tails. Next, we describe this optimization in a bit
more detail.

Fig. 8 provides a diagram of our LQE model extended with the
TED component. TED is composed of a connection cache and
a decision module implementing the following algorithm:

TED

Upon receiving a packet, do:
conn = lookup_connection_table(packet)
if conn.shunt or conn.packet_rec > ted_thr:
drop the packet
else:
forward the packet
Periodically, do:
if system is congested:
ted_thr = min(ted_thr / 2, ted_min);
else:
ted_thr += 1;

HEOO~NOOUDNAWNER

= ©

The algorithm is composed of two parts: a packet forwarding
routine that runs every time a packet is received (lines 1
through 6) and a housekeeping routine that runs periodically
(lines 7 through 11). The packet forwarding routine decides to
forward a packet only if the connection (conn) associated with
this packet has not been marked for shunting (conn.shunt)
and the total number of packets received from this connection
(conn.packet_rec) does not exceed a threshold (ted_thr). If
one of these two conditions is not met, the packet is dropped.

The housekeeping routine maintains a TED threshold
parameter ted_thr as follows: if the system is congested, then
the value of ted_thr is reduced by half down to a minimum
value of ted_min; otherwise, the threshold is increased by one
unit. This threshold provides a mechanism to dynamically cut
connections tails more aggressively if the system is congested,
effectively giving higher priority to the front of the

connections.
Fetch packet °
l UShunt

Connection
cache

LSR usaQ

[}

LQE + TED
Fig. 8. Extending the LQE model with tail early dropping (TED).

Hence, the TED module enables two mechanisms to reduce
the volume of ingested traffic by the application thread:
through a shunting mechanism triggered by the application
thread itself when it detects that a connection no longer needs
to be processed (for instance, this covers the case of encrypted
connections) or through a dynamic mechanism that prioritizes
the packets at the front of a connection depending on the level
of system congestion. In our implementation, we also use
packet drops at the LSR ring to determine if the system is
congested. Hence, we implement line 8§ in the algorithm by
using this condition:

8 If the LSR ring is dropping packets:



Fig. 9 illustrates the benefits of using TED queuing through a
benchmark. In this case we test the performance o a single Bro
worker (one application thread) with and without the TED
queuing optimization. Using httperf [4], we synthetically
create a packet trace consisting of a population of HTTP
clients downloading a 1MB file from 25 different HTTP
servers. With this setup, we collect a 65 GB trace which we
use to stress our implementation by replaying it at various
rates. Fig. 9 presents the amount of HTTP and file events
generated by the Bro worker when processing the packet trace
at 500 Mbps and 5 Gbps. In all our tests, events are measured
in terms of the number of log records generated by Bro. As
shown, while at 500Mbps both configurations (with and
without TED) are capable of extracting practically 100% of all
the events, at 5 Gbps the TED configuration delivers 2.5X
more HTTP events and 3X more file events.
HTTP events

W w/o TED
B w/TED

j2]

t

[

3

el

e

3

a

Y]

o

82

500Mbps 5Gbps
Throughput
File events
100 W w/oTED
| w/ TED
2 75
f=4
Q
>
&l
o 50
e
3
a
@ 25
o
&2
0
500Mbps 5Gbps
Throughput

Fig. 9. TED queuing performance.

D. LFN Tables

Next, consider the problem of analyzing and optimizing the
performance of the connection cache in the TED module (Fig.
8). In its most general form, this is a data structure shared by all
application threads which provide feedback down to the lower
layer indicating whether packets of a given connection should be
forwarded or shunted. As multiple threads can write to this
cache, its access needs some form of synchronization to
guarantee the integrity of its state. Locking this data structure
while processing packets at very high speed rates is prohibitive
since that would stall application threads as they try to gain
access to the cache, which would put back pressure down to the
LSR ring and lead to packet drops. Once again we need to design
a suitable data structure that allows for parallel write access to
the table without requiring a lock.

Toward this objective, we designed a data structure called
lock-free low-false negative (LFN) table. The LFN data structure

defines a family of hash tables and sets that can achieve lockless
concurrent access to shared state by trading off a low probability
of false negatives and a very low (or negligible) probability of
false positives. These data structures were formally introduced in
[5] and we herein provide a summarized description and explain
how to apply them to implement the connection cache.

In its most basic form, an LFN data structure implements the
following put and get methods to store and retrieve a key k
associated with a value v:

Initial state: T[e] = NULL for all e such that 0 = e < n;
Parameters:
n: size of the table
1: processor’s 1integer space size (typically 2732 or 2764)
h(x, k): the hash value of k modulo x
cat(x, y): concatenates the bytes from and x and y
put(k, v)
1 T[h(n, k)].value = v
2 T[h(n, k)].hash = h[1l, cat(k, v)]
get(k)
3 +if T[h(n, k)].hash == h(1l, cat(k, T[h(n, k)].value)):
4 return T[h(n, k)].value
5 else:
6 return NULL

The basic idea of an LFN hash table is that it can avoid using
locks by leveraging the processor’s capability to perform
integer operations atomically. Specifically, line 2 in the put
method is guaranteed to be executed atomically, which ensures
that the value of T[h(n, k)].hash will be coherent. For
instance, on a 64 bit processor, T[h(n, k)].hash can be
. .. 4
represented using a 64 bit integer and so [ =2

LFN hash tables can still have collisions, but they are designed
in a way that when they happen, with high probability the get
operation will return a NULL if the key we seek to find has been
evicted by another key. More specifically, while a put
operation is always successful, a get can lead to three states:

- The key k is stored in the table and it’s value is correctly
returned by the get, or the key is not stored in the table and
the get operation returns NULL. This is called a true state.

- The key k is stored in the table but it is no longer found and
the get returns NULL. This is called a false negative state.

- The get operation returns the value of another key k’
different than k. This is called a false positive state.

Clearly the desired outcome is a true state. While this cannot
be guaranteed at all times, an LFN table ensures that false
negatives happen with low probability and false positives with
extremely low probability. Mathematically, if there are k keys
stored in the table, then a false negative occurs with a
probability (k— 1)/2n while a false positive occurs with a
probability (k —1)/2] (see [5]). For instance, storing one
thousand keys (k= 1000) in a table of 1 million entries
(n= 106) using a 64 bit integer architecture (/= 264), we
have that the chances of an element in the table to be in a false
negative or false positive state are 5-10 " and 2.7-10"",



respectively. Fig. 10 provides a graphical representation of this
result for different values of &, n, and /.

% of false negatives versus true states

5333
3003
T2

0 200000 400000 600000 800000 1e+06
Number of objects (k)

10710

10712

% of false positives versus true states

10

10718

32
1=2
1=2%

1018
0 200000 400000 600000 800000 1e+06

Number of objects (k)

Fig. 10. False negative (top) and a false positive (bottom) probability of an
LFN table.

LFN tables have interesting properties when used in the
context of per-flow state tracking problems commonly found
in computer networks. First, as we use them to keep the
shunting state of all the active connections, it’s critical that the
system does not drop connections that should otherwise be
analyzed. This is especially important in the case of cyber
security analysis. Luckily, this case corresponds to the
probability of false positive, which as we showed it’s
extremely low. While false negatives can occur with higher
probability, they correspond to the case that a connection is not
shunted while it should be shunted. Hence, LFN tables can be
understood as data structures with asymmetric performance
erring on the safe side.

Since their size is fixed, another good property of LFN tables
is their resilience to denial of service (DoS) attacks. Notice
that this is not the case with other hashing table schemes such
as separate chaining, which grow with the number of input
connections and lead to state explosion upon a DoS attack.

A final interesting property of LFN tables is that they
eliminate the need for inactivity timeouts that are typically
necessary to manage connection tables. For instance, stateless

protocols like UDP do not signal the end of a connection, and
so one needs to rely on inactivity timeouts to clean them up
from the table. LFN tables however perform the cleanup
operation in a natural way, as every stale connection will
eventually be replaced by a new one through a key collision.
This also implies that, when dealing with network connections,
the real false negative rate will be smaller than (k — 1)/2n,
because connections have a limited lifetime. In particular, a
real false negative will only occur if a new incoming
connection collides with an existing connection that is still
active. If the existing connection is already terminated, then
the collision does not yield a false negative, instead it performs
a natural clean up operation by removing the old connection
from the table and replacing it with the new connection. When
implementing an LFN table, it’s important to choose its size
parameter n large enough such that the duration of the
connections is taken into account, ensuring the table operates
in a state where key collisions correspond to natural
connection cleanups instead of false negatives.

E. Multiresolution Priority Queues to Manage Timers

We now turn to describing another data structure designed to
help eliminate a different system wide bottleneck. Many real
time network analyzers require the implementation of timers to
keep track of state. For instance, every time a TCP or a UDP
connection is processed, the Bro network analyzer allocates a
few timers. Examples include the connection establishment,
the connection inactivity or the connection linger timeouts,
among several others. At rates of 10 Gbps, the system needs to
process tens of thousands of connections per second, requiring
to manage in the order of hundreds of thousands of timers per
second. The management of timers is commonly carried out
using a priority queue where the expiration time of each timer
is treated as its priority in the queue. (See for example Section
6.5 of [6].) In this way the first element of the queue
corresponds to the timer that is to expire next among all the
timers in the queue. Traditionally, the priority queue is
implemented using a binary heap, which has a computational
cost to insert and remove elements of O(log(n)), where n is
the number of elements in the heap.

While binary heaps are excellent implementations of priority
queues, we find that when dealing with very high speed traffic,
they still become a system bottleneck. This is illustrated in the
next list of Bro functions ordered by their computational cost
when running it against the traffic dataset introduced in Table
3 at 10 Gbps and as measured by gperftools, the CPU profiler
developed by Google [7]:
Total: 63724 samples

4139 6.5% PriorityQueue: :BubbleDown
2500 3.9% SLL_Pop

1899 3.0% Ref

1829 2.9% Unref

1701 2.7% PackedCache: :KeyMatch
1537 2.4% Attributes::FindAttr
1249 2.0% Dictionary::Lookup
1184 1.9% NameExpr::Eval



As shown, the function PriorityQueue::BubbleDown takes
the top spot with a cost of 6.5% of the total processing cost.
This function implements the standard bubble down operation
(also know in the literature as the heapify procedure [6]) part
of the binary heap based implementation of a priority queue.
Specifically, Bro uses this method every time it needs to insert
or remove an element from the queue of timers. To overcome
this bottleneck, we developed multiresolution priority queues
(MRPQ), a data structure that achieves greater performance
than the standard binary heap based implementation by trading
off a controllable amount of resolution in the space of
priorities.

Introduced in more detail in [8], a multiresolution priority
queue breaks the information-theoretic barriers of the problem
of ordering n elements according to their priorities by
exploiting the multiresolution properties of the priority space.
Since in many problems the entropy of the priority space is
lower than the entropy of the key space, the end result is a
container data structure with a lower computational
complexity. In particular, if the space of priorities is
multi-resolutive, its entropy will be independent of the number
of elements in the queue, and hence the ordering problem can
be resolved in constant time O(1). (See [8] for a detailed
proof.) This makes the resulting data structure substantially
more efficient than a binary heap.

Since all Bro timers have an expiration value of 1 second or
higher, its priority queue operates on a multi-resolutive priority
space of resolution 1 second. Hence, we can use a
multiresolution priority queue to improve the performance of
Bro’s timer manager without losing accuracy. Table 4
summarizes the computational costs savings in the processing
of timers due to using a multiresolution priority queue instead
of a binary heap.

Table 4. Computational cost reductions in the processing of timers.

Algorithm Insert Peek ExtractMin Extract
Binary heap log(n) o(l) log(n) log(n)
Multiresolution priority queue o(l) o(l) o(l) o(1)

We extended Bro with a multiresolution priority queue
configured to support timers with 1 second resolution. Fig. 11
presents the results of benchmarking Bro against the traffic
data set in Table 3 at a variety of speeds. At a microprocessor
level, Fig. 11-top shows how the MRPQ data structure
achieves better cache performance by reducing system wide
cache miss ratios from 21% to 17% at 10 Gbps rates. This is
due mainly to the function PriorityQueue::BubbleDown
which requires scanning through O(log(n)) timers every time
the timer queue is accessed (for both insert and remove
operations). This leads to an increase in the amount of cache
thrashing and cache misses. Instead, the MRPQ data structure
requires O(1) operations to access the queue, hence only
touching the element that is to be inserted or removed,
resulting into a better cache performance. As shown in Fig.
11-middle and Fig. 11-bottom, at a system level this leads to a
reduction in packet drops and an increase in the number of
events generated by the network analyzer. As in Section II.C,

here we also measure events as the number of log records
generated by Bro.

Cache miss ratio (%)
25 B BH-PQ B MR-PQ

2000 4000 6000 8000 10000

Input rate (Mbps)

Packet drop rate (%)

50 ® BH-PQ ® MR-PQ
40 44
38
30
29
20 24
10 2
0 8
0
2000 4000 6000 8000 10000
Input rate (Mbps)

Events (Millions)

90 = BH-PQ ® MR-PQ
80 W 85|87
70 74|75
60
50 57|57
40
=
2000 4000 6000 8000 10000
Input rate (Mbps)

Fig. 11. Performance improvements achieved in Bro when using a
multiresolution priority queue to manage timers.

III. BENCHMARKS

We have implemented all the optimizations described in this
paper as part of R-Scope, Reservoir Lab’s high speed network
appliance that runs a Bro engine at its core. Fig. 12 presents
benchmarks measuring the benefits of these optimizations. All
tests were performed using the traffic data set described in
Table 3 by replaying each test for a duration of 10 minutes at
speeds ranging from 2 Gbps through 10 Gbps. In all
configurations, a Bro cluster with 20 application threads
(known as Bro workers) was employed. Results for three
different configurations are presented:

- Stock Bro myri corresponds to the standard Bro distribution
without any of the optimizations in this paper and using the
Myricom 10G-PCIE2 NIC. This configuration uses
Myricom’s optimized libpcap library to deliver packets from
the wire to the application threads.

- R-Scope Myri/mCore corresponds to the standard Bro
distribution with all the optimizations in this paper except
for multiresolution priority queues (MRPQ) and long queue



emulation (LQE). The optimizations are referred with the
codename mCore. This configuration also uses Myricom’s
libpcap library (hence, LQE is not being used as mentioned.)

- R-Scope SF/mCore runs the standard Bro distribution with
all the optimizations on this paper and using the Solarflare
Flareon Ultra SFN7122F NIC. This configuration uses
Solarflare’s native API instead of libpcap. The optimizations
are referred with the codename mCore+.

While the hardware configuration is identical for the three
configurations, the R-Scope Myri/mCore and R-Scope
SF/mCore configurations include also additional optimizations
implemented as part of the R-Scope appliance that are not
described in this paper. For instance, the R-Scope SF/mCore
configuration directly runs on the Solarflare native APIL,
bypassing the libpcap library. So while the optimizations
described in this paper account for a substantial fraction of the
performance gains shown in Fig. 12, these aggregated
benchmarks should be qualitatively interpreted.

Results in Fig. 12 are shown in terms of the number of total
events (measured by counting the total number of log records
as we did in Sections II.C and IL.F) and total number of
reported connection records. At 10 Gbps, speed ups of 5.1X
and 7.8X are achieved for the number of events and
connection records, respectively. Similar improvements are
achieved across all types of metadata reported by Bro.

Events (Millions)

e W Stock Bro Myri B R-Scope Myri/mCore

ddddl

2000 4000 6000 8000 10000
Throughput (Mbps)

R-Scope SF/mCore+

[+]

onnections (Millions)

so B Stock Bro Myri— @ R-Scope Myri/mCore

wddll]

2000 4000 6000 8000 10000

R-Scope SF/mCore+

Throughput (Mbps)
Fig. 12. Benchmarks corresponding to the three different configurations.

IV. CoNcLuSIONS

Table 5 provides a summary of each the optimizations
presented in this paper and their main benefit. These
algorithms and data structures have been developed as a
multi-step optimization process spanning multiple years of

10

research and development. At each step, we considered the
various potential bottlenecks by using a variety of methods
including (1) performing fine-grained as well as coarser
aggregated benchmarks, (2) measuring code performance
through a CPU profiler, (3) taking measurements from
hardware performance counters or (4) directly adding
measurement code, among other techniques. At each step a
new bottleneck is unveiled, and then a new algorithm or data
structure is designed to eliminate it while ensuring a net
positive performance gain at a system wide level.

Table 5. Summary of algorithms and data structures

Algorithm/data structure | Benefit

Long queue emulation | Reduces packet drops from fixed-size hardware rings

Lockless bimodal queues | Improves packet capturing performance

Tail early dropping
LFN tables

Increases information entropy and extracted metadata

Reduces state sharing overhead

Multiresolution priority queues | Reduces cost of processing timers

The solutions we present are generally applicable to problems
outside the area of network analysis. For instance, priority
queues are key data structures core to many HPC applications in
the field of computer science, including graph theory problems
such as the shortest path, Huffman compression codes, operating
systems, Bayesian spam filtering, discrete optimization,
simulation of colliding particles, or artificial intelligence to name
some examples. With a lower computational cost, the proposed
multiresolution priority queue can be used to address these
problems if they define a multi-resolutive priority space or if
they are tolerant to small errors.

LFN tables can also be generally applied to the problem of
efficiently tracking per-flow state at high speed rates, which is
also commonly found in other network equipment such as
routers and firewalls.

Finally, LQE, LBQ and TED are algorithms that can be generally
applied to the problem of efficiently moving packets between
various queues, allowing to tune the data path towards
identifying sweet spots in the continuum defined by the
trade-off performance versus accuracy.

REFERENCES

[1] V. Paxson, “Bro: a system for detecting network intruders in real-time,”
Computer Networks, vol. 31, no. 23-24, pp. 2435-2463, 1999.

[2] J. Ros-Giralt, A. Commike, D. Honey, and R. Lethin, “High-performance
many-core networking,” in Proceedings of the Second Workshop on
Innovating the Network for Data-Intensive Science - INDIS ’15, 2015.

[3] A.Leon-Garcia, Probability, Statistics, and Random Processes For
Electrical Engineering. Pearson Higher Ed, 2011.

[4] D. Mosberger, T. Jin, and H.-P. Laboratories, Httperf: A Tool for
Measuring Web Server Performance. 1998.

[5] J. Ros-Giralt, A. Commike, R. Rotsted, P. Clancy, A. Johnson, and R.
Lethin, “Lockless hash tables with low false negatives,” in 20/4 [EEE
High Performance Extreme Computing Conference (HPEC), 2014.

[6] T. H. Cormen, Introduction to Algorithms. MIT Press, 2009.

[7] “Google Performance Tools.” [Online]. Available:
https://github.com/gperftools/gperftools. [Accessed: 17-Sep-2017].

[8] Jordi Ros-Giralt, Alan Commike, Peter Cullen, Jeff Lucovsky, Dilip
Madathil, Richard Lethin, “Multiresolution Priority Queues,” presented at
the IEEE High Performance Extreme Computing Conference, Boston,
USA.



