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Abstract

As the data volume increases exponentially over time, data-intensive analytics benefits substantially from multi organi-
zational, geographically-distributed, collaborative computing, where di↵erent organizations contribute various yet scarce
resources, e.g., computation, storage and networking resources, to collaboratively collect, share and analyze extremely
large amounts of data. By analyzing the data analytics trace from the Compact Muon Solenoid (CMS) experiment,
one of the largest scientific experiments in the world, and systematically examining the design of existing resource man-
agement systems for clusters, we show that the multi-domain, geo-distributed, resource-disaggregated nature of this new
paradigm calls for a framework to manage a large set of distributively-owned, heterogeneous resources, with the objec-
tive of e�cient resource utilization, following the autonomy and privacy of di↵erent domains, and that the fundamental
challenge for designing such a framework is: how to accurately discover and represent resource availability of a large set of
distributively-owned, heterogeneous resources across di↵erent domains with minimal information exposure from each do-
main? Existing resource management systems are designed for single-domain clusters and cannot address this challenge.
In this paper, we design Unicorn, the first unified resource orchestration framework for multi-domain, geo-distributed
data analytics. In Unicorn, we encode the resource availability for each domain into resource state abstraction, a variant
of the network view abstraction extended to accurately represent the availability of multiple resources with minimal in-
formation exposure using a set of linear inequalities. We then design a novel, e�cient cross-domain query algorithm and
a privacy-preserving resource information integration protocol to discover and integrate the accurate, minimal resource
availability information for a set of data analytics jobs across di↵erent domains. In addition, Unicorn also contains a
global resource orchestrator that computes optimal resource allocation decisions for data analytics jobs. We discuss
the implementation of Unicorn and present preliminary evaluation results to demonstrate the e�ciency and e�cacy of
Unicorn. We will also give a full demonstration of the Unicorn system at SuperComputing 2017.

1. Introduction

As the data volume increases exponentially over time,
data-intensive analytics benefits substantially from multi-
organizational, geographically-distributed, collaborative com-
puting, where di↵erent organizations (also called domains)
contribute various yet disaggregated resources, e.g., com-
putation, storage and networking resources, to collabora-
tively collect, share and analyze extremely large amounts
of data. One important example of this paradigm is the
Compact Muon Solenoid (CMS) experiment at CERN [1],
one of the largest scientific experiments in the world. The
CMS data analytics system is composed of over 150 par-
ticipating organizations, including national laboratories,
universities and other research institutes. By analyzing
the data analytics trace from the Compact Muon Solenoid
(CMS) experiment over a 7-day period and systemati-
cally examining the design of existing resource manage-
ment systems for clusters, we show that the multi-domain,
geo-distributed, resource-disaggregated nature of this new

paradigm calls for a framework to manage a large set
of distributively-owned, heterogeneous resources, with the
objective of e�cient resource utilization, following the au-
tonomy and privacy of di↵erent domains.

In particular, our trace analysis shows that (1) over
35% of data analytics jobs are remote jobs, i.e., jobs that
require di↵erent types of resources from di↵erent domains
for execution; (2) the 90% quantile of the job execution
time of remote jobs is approximately 38.9% longer than
that of local jobs, i.e., jobs that only require resources
from a single domain for execution; and (3) the data trans-
fer tra�c is saturating the CMS network, leaving limited
networking resources (i.e., less than 15%) for data ana-
lytics tra�c. These observations show that resources in
multi-domain, geo-distributed analytics are highly disag-
gregated, i.e., unbalanced distributed across domains. Al-
though there is much related work on resource manage-
ment for clusters and data centers, such as [2–12], they are
mostly designed for managing resources in single-domain
clusters, and cannot accomplish the aforementioned goal
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for multi-domain, geo-distributed data analytics. In par-
ticular, these systems typically adopt a graph-based ab-
straction to represent the resource availability in clusters.
In this abstraction, each node in the graph is a physical
node representing computation or storage resources and
each edge between a pair of nodes denotes the networking
resource connecting two physical nodes. This abstraction
is inadequate for multi-domain, geo-distributed data ana-
lytics systems for two reasons. First, it compromises the
privacy of di↵erent domains by revealing all the details of
resources in each domain. Secondly, the overhead to keep
the resource availability graph up to date is too expen-
sive due to the heterogeneity and dynamicity of resources
from di↵erent domains. Some systems such as HTCon-
dor [2] adopts a simpler abstraction that only represents
computation and storage resources in multi-domain clus-
ters. This approach, however, leaves the orchestration of
networking resources completely to the transmission con-
trol protocol (TCP), which has long been known to be-
have poorly in networks with high bandwidth-delay prod-
ucts including multi-domain, geo-distributed data analyt-
ics systems, and hence is ine�cient. Through trace anal-
ysis and related work study, we identify the fundamental
design challenge for designing an orchestration framework
for multi-domain, geo-distributed data analytics is: how to
accurately discover and represent resource availability of a
large set of distributively-owned, heterogeneous resources
across di↵erent domains with minimal information expo-
sure from each domain?

In this paper, we design Unicorn, the first unified re-
source orchestration framework for multi-domain, geo dis-
tributed data analytics. In Unicorn, the resource avail-
ability of each domain is abstracted into resource state ab-
straction, a variant of the network view abstraction [13] ex-
tended to accurately represent the availability of multiple
resources with minimal information exposure using a set
of linear inequalities. With this intra-domain abstraction,
Unicorn uses a novel, e�cient cross-domain resource dis-
covery component to find the accurate resource availability
information for a set of data analytics jobs across di↵erent
domains with minimal information exposure, while allow-
ing each domain to make and practice their own resource
management strategies. In addition, Unicorn also contains
a global resource orchestrator that computes optimal re-
source allocation decisions for data analytics jobs.

This paper makes the following main contribution:

• we study the novel problem of resource orchestra-
tion for multi-domain, geo-distributed data analyt-
ics and identify the cross-domain resource discovery
challenge as the fundamental design challenge for
this problem through systematic trace-analysis and
vigorously related work investigation;

• we design Unicorn, the first unified resource orches-
tration framework for multi-domain, geo-distributed
data analytics. Unicorn provides the resource state
abstraction for each domain to accurately represent
its resource availability with minimal information ex-
posure in the form of a set of linear equalities, a
novel, e�cient cross-domain resource discovery com-
ponent to provide the accurate, minimal resource
availability information across di↵erent domains, and
a global resource orchestrator to compute optimal re-
source allocations for data analytics jobs;

• we discuss the implementation details of Unicorn
and perform preliminary evaluations to demonstrate
the e�ciency and e�cacy of Unicorn. We will also
present a full demonstration of Unicorn at Super-
Computing 2017.

The rest of the paper is organized as follows. We an-
alyze the data analytics trace of the CMS experiment,
discuss the inadequacy of existing resource management
systems and identify the key design challenge for multi-
domain, geo-distributed data analytics systems in Section 2.
We introduce the system setting and give an overview of
the Unicorn framework in Section 3. We then present the
details of two key components of Unicorn, cross-domain
resource discovery and representation and global resource
orchestration, in Section 4 and 5, respectively. We discuss
the implementation details in Section 6 and evaluate the
performance of Unicorn in Section 7. We conclude the
paper and discuss the next steps of Unicorn in Section 8.

2. Motivation and Challenge

Analytics trace from the CMS experiment. We
collect the trace of approximately 479 thousand data an-
alytics jobs from the CMS experiment, one of the largest
scientific experiments in the world, over a period of 7 days.
From this trace, we find that over 35% of jobs consumes
resources across di↵erent domains, i.e., these jobs use the
computation node and the storage node located at di↵er-
ent domains which are connected by networking resources
across multiple domains. We call these jobs remote jobs,
compared with local jobs which only use resources within
one single domain. This result indicates the resource dis-
aggregation in the CMS network, i.e., the unbalanced dis-
tribution of storage and computation resources. We also
plot the cumulative distribution function of job execution
time for this set of traces as shown in Figure 1. We ob-
serve that the 90% quantile of job execution time for re-
mote jobs has an extra 38.9% higher latency than local
jobs. In addition, we observe that the cross-domain net-
working resources available for data analytics are very lim-
ited because the CMS data transfer tra�c is saturating
the limited networking resources, e.g., the cross-domain
data transfer network tra�c of the same 7-day period has
a total amount of 8785 terabytes while the cross-domain
data analytics tra�c is only 1404 terabytes. This obser-
vation indicates the scarcity of networking resources avail-
able for data analytics in the CMS network. All these
results demonstrate that in order to support low-latency,
multi-domain, geo-distributed data analytics, it is not only
necessary, but crucial to design a multi-domain resource
orchestration system.

Related work. There exists a rich literature in the
field of resource management of clusters [2–12]. YARN [4]
is the core resource management framework of Hadoop.
Mesos [3] is a platform designed to share resources among
multiple cluster computing frameworks, e.g., MapReduce [14],
Spark [15], MPI and etc. Google designs a system called
Borg [5] to orchestrate the cluster resources for its propri-
etary data analytics frameworks. Microsoft (i.e., Apollo [6])
and Facebook (i.e., Corona [7]) also develop similar sys-
tems tailored to their data analytics needs. These systems
are all designed for managing resources in single-domain

2



Figure 1: The CDF of job latency local and remote jobs.

clusters and adopt a graph-based abstraction to represent
the resource availability in clusters. In this abstraction,
each node in the graph is a physical node representing
computation or storage resources and each edge between
a pair of nodes denotes the networking resource connect-
ing two physical nodes. This abstraction is inadequate
for multi-domain, geo-distributed data analytics systems
for because (1) it compromises the privacy of di↵erent do-
mains by revealing all the details of resources in each do-
main; and (2)the overhead to keep the resource availability
graph up to date is too expensive due to the heterogeneity
and dynamicity of resources from di↵erent domains.

There are also some e↵orts towards resource manage-
ment for multi-domain clusters. HTCondor [2] proposes
a ClassAds programming model, which allows di↵erent
resource owners to advertise their resource supply and
the job owners to advertise the resource demand. The
CMS [1] experiment currently uses HTCondor and glidein-
WMS [8] to manage a set of distributively owned com-
puting resources in a globally distributed system. These
systems only focus on managing storage and computing
resources in clusters, while the recent study shows that
computation, storage and networking resources have ap-
proximately the same probability to become the bottle-
neck a↵ecting the performance of data-intensive analytics
jobs [16]. By leaving the orchestration of networking re-
sources completely to TCP, which has been known to be-
have poorly in networks with high bandwidth-delay prod-
ucts including multi-domain, geo-distributed data analyt-
ics systems, the abstraction adopted by these systems is
also ine�cient.

Another line of work called geo-distributed data an-
alytics is also related. Solutions in this field include (1)
moving the input dataset to a single data center before
the computation [17, 18] and (2) placing di↵erent amounts
of tasks at di↵erent sites depending on dataset availabil-
ity to achieve a better parallelization and hence a lower
latency [9–12]. The main focus of these solutions is to
optimize the usage of a set of dedicated networking re-
sources. The design of these systems cannot be applied to
multi-domain, geo-distributed data analytics where di↵er-
ent types of resources owned by di↵erent owners need to
be orchestrated.

Design challenge. The discussion above shows the ur-
gent need for an e�cient resource orchestration framework
to support multi-domain, geo-distributed data analytics
systems such as CMS. And by investigating the limitations
of existing resource management systems, we identify the

key design challenge for such a framework is how to accu-
rately discover and represent resource availability of a large
set of distributively-owned, heterogeneous resources across
di↵erent domains with minimal information exposure from
each domain? To this end, we design the Unicorn frame-
work to manage a large set of distributively-owned, hetero-
geneous resources for multi-domain, geo-distributed data
analytics systems. Unicorn achieves e�cient resource uti-
lization while allowing the autonomy and privacy of di↵er-
ent domains through a novel resource state abstraction, an
e�cient cross-domain discovery and representation compo-
nent and a global resource orchestration component, which
will be discussed in the next few sections.

3. Overview

In this section, we introduce the system setting for
multi-domain, geo-distributed data analytics and give an
overview of the Unicorn framework and its workflow.

System settings. We consider a data analytics sys-
tem composed of multiple organizations (domains). Each
domain contributes a certain amount of computation, stor-
age and networking resources for all the users in the system
to store, transfer and analyze large-volume datasets. The
storage and computation resources are typically physical
servers, virtual machines or containers. The networking
resources are typically switches and links. Domains that
only contribute networking resources are called transmis-
sion domains and domains that also contribute computa-
tion and storage resources are called leaf domains. Figure 2
gives an example of such a system. In this example, do-
main A, B, E and F are all leaf domains while domain C
and D are transmission domains.

Domain A

Domain	B

Domain	C

Domain	D

Domain	E

Domain	F

switch storage node computation nodelink

Figure 2: An example of multi-domain, geo-distributed data analyt-
ics system. Domains A, B, E and F are leaf domains. Domains C
and D are transmission domains.

A data analytics task is typically decomposed into a
set of jobs J whose precedence relation is specified by a
directed acyclic graph (DAG). A task is finished if and only
if the last job in the decomposed DAG is finished. Each job
j has requirements on storage and computation resources,
e.g., number of CPUs, size of memory, input dataset and
etc. We use (stg, comp) to denote a pair of candidate stor-
age and computation resources satisfying the requirement
of j. The orchestration system is in charge of selecting one
(stg, comp) pair for each job j and allocating the selected
storage and computation resources and the networking re-
sources connecting them for executing j.

Unicorn architecture. We present the architecture of
Unicorn in Figure 3. On top of all the domains, Unicorn
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provides a logically centralized controller to orchestrate re-
sources for data analytics jobs. This controller includes a
cross-domain resource representation and discovery com-
ponent and a global resource orchestration component.
Residing in each domain are a domain resource manager
and a set of job execution agents.

Global Resource Orchestration 

Data Analytics Jobs

Accurate, Minimal,
 Intra-Domain 

Resource Views

Accurate, Minimal, 
Cross-Domain 
Resource View

Domain 1 Domain N

. . . 

Cross-Domain 
Resource Discovery

Job Resource 
RequirementsUnicorn

Domain 
Resource 
Manager

Discovery
Query

Domain 
Resource 
Manager

Job 
Execution

Agents

Job 
Execution

Agents

Resource 
Allocations
Decisions

Job
Execution 

Status

Figure 3: The architecture of Unicorn.

Unicorn provides a novel abstraction called resource
state abstraction, a variant of network view abstraction [13].
This abstraction uses a set of linear inequalities to accu-
rately represent the availability of di↵erent resources in
each domain with minimal information exposure. When
a set of data analytics jobs J are submitted to the Uni-
corn controller, the cross-domain resource discovery and
integration component issues discovery queries, i.e., path
queries and resource queries, to the domain resource man-
ager at each domain to retrieve the intra-domain resource
view of each domain encoded in the resource state abstrac-
tion. It then assembles and compresses the responses into
an accurate, minimal cross-domain resource view. This
view, together with the resource requirements of j, is then
used by the global orchestration component to make global,
optimal resource allocation decisions and send to the job
execution agents at corresponding domains. The execu-
tion agents enforce the received decisions, e.g., starting
the corresponding program, rate limiting the data access-
ing bandwidth and etc., and send the job execution status
back to the Unicorn controller as feedback. In the next few
sections, we present the design details of key components
of Unicorn.

4. Cross-Domain Resource Discovery and Repre-
sentation

In this section, we present our design to address the
fundamental challenge of accurately discovering and repre-
senting a large set of distributively-owned, heterogeneously
resources with minimal information exposure of resource
owners. In particular, we introduce a novel abstraction to
represent intra-domain resource availability and design an
e�cient discovery mechanism to discovery resource avail-
ability across di↵erent domains.

4.1. Intra-Domain Resource State Abstraction

Basic idea. Unicorn framework provides an abstraction
called resource state abstraction to accurately represent
the availability of multiple resources for a set of data an-
alytics jobs using a set of linear inequalities. This is a
variant of the network view abstraction [13]. In particu-
lar, we consider a set of data analytic jobs J that wants to
consume a set of physical resources R (i.e., computation,
storage and networking) based on a set of pre-defined poli-
cies P . If a resource attribute attr is capacity-bounded, i.e.,
a resource r can only provide this attribute with a certain
capacity (denoted as Cr,attr) and each job j consuming r

can only get a portion of this attribute (denoted as cr.attrj ),
the resource availability of R for J on this attribute can
be expressed as:

X

j2J(P,r)

c

r,attr

j

 C

r,attr

, 8r 2 R, (1a)

c

R,attr

j

= f(P, attr, cr,attr
j

), 8(j, r 2 R), (1b)

c

r,attr

j

= g(P, attr, cr
0
,attr

j

), 8(j, r 2 R, r

0 2 R {r}). (1c)

In this representation. Equation (1a) indicates that
the total amount of attr of resource r consumed by all the
jobs cannot exceed the supply capacity of r on attr, where
J(P, r) is the set of jobs that are allowed to consume j

based on the policy set P . Equation (1b) represents the
total capacity of attr that j can get from the whole set
of resources R (denoted as cR,attr

j ) by a pre-defined linear

function of c

r,attr
j , whose form depends on attr and P .

Equation (1c) represents the relation between the amount
of attr a job j can get from two resources r and r

0 by a pre-
defined linear function, whose form depends on attr and
P . One of the most common capacity-bounded resource
attributes is bandwidth.

If a resource attribute attr is capacity-free, i.e., each j

consuming r who provides this attributes can get the same
capacity C

r,attr at the same time, the resource availability
of R for J on this attribute can be expressed as:

c

R,attr

j

= h(P,R, attr, j), 8j 2 J, (2)

where the value of c

R,attr
j is computed by a pre-defined

function h(P,R, attr, j) whose form depends on attr and
P . Note that this function does not need to be linear
because the value of the right-hand side can be directly
computed in this availability representation. Examples of
such capacity-free resource attributes include propagation
delay, hop-count, and etc.

eh1 eh3

eh2

l1
Link bandwidth: 100 Mbps
End host bandwidth: 10 Gbps
Switch bandwidth: 10 Gbpseh4

sw1 sw2
l2

l3

l4 l5

Figure 4: An example to illustrate the resource state abstraction.

Example. We use the physical topology in Figure 4 to
illustrate how resource state abstraction works. Suppose
two jobs j1 and j2 need to read data from storage node
eh1 to computation node eh3 and from eh2 to eh4, respec-
tively. The routing policy for the data flow of each job is
also shown in the figure. For simplicity, we only focus on
the bandwidth attribute for each resource, i.e., end host,
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switch and link. Following the definition in Equation (1),
the resource availability of this topology for j1 and j2 can
be expressed as:

c

li
j1
 100Mbps, i = 1, 3,

c

li
j2
 100Mbps, i = 4, 5,

c

li
j1

+ c

li
j2
 100Mbps, i = 2

c

swk
j1

+ c

swk
j2
 10Gbps, k = 1, 2

c

ehm
j1

 10Gbps, m = 1, 3,

c

ehm
j2

 10Gbps, m = 2, 4,

c

R

j1
= c

li
j1

= c

swk
j1

= c

ehm
j1

, i = {1, 2, 3}, 8j,m = {1, 3},
c

R

j2
= c

li
j2

= c

swk
j2

= c

ehm
j2

, i = {2, 4, 5}, 8j,m = {2, 4},
c

li
j1

= c

ehm
j1

= 0, i = {4, 5},m = {2, 4},
c

li
j2

= c

ehm
j2

= 0, i = {1, 3},m = {1, 3},

(3)

Computing minimal, equivalent resource state ab-
straction. The representation of resource availability
defined in Equations (1)(2) is accurate and complete, but
may result in a large set of linear inequalities with redun-
dant information. In a simple topology in our illustration
example, there are already over 20 inequalities. Directly
sharing them with a centralized controller or other do-
mains would introduce a large communication overhead
and expose unnecessary private information about each
domain, e.g., domain topology and policies. To minimize
the resource information exposure of a domain, the domain
resource manager of Unicorn adopts a lightweight, optimal
algorithm to compress the original set of linear inequali-
ties into a minimal, equivalent set of linear inequalities,
which has the same feasible region as the original set but
with a much smaller number of constraints. The basis of
this compression algorithm is simple: given an original set
of linear inequalities C : Ax  b, we iteratively select
one constraint c 2 C : aTx  b and calculate the optimal
solution of problem y  maxaTx, subject to, C � {c}.
If b is smaller than the resulting y, c is an indispensable
constraint in determining the feasible region and will be
put into the minimal, equivalent constraint set C 0. Other-
wise, c is a redundant constraint. The optimality of this
algorithm can be proved via contradiction. Applying this
algorithm to the example above, we may find that the
minimal, equivalent set of linear inequalities has only one
inequality: cRj1 +c

R
j2  100Mbps. This reduction from over

20 inequalities to only one shows the power of our optimal
compression algorithm.

4.2. Cross-Domain Resource Discovery

The resource state abstraction allows each domain to
represent the accurate resource availability for a set of data
analytics jobs using a set of linear inequalities with mini-
mal information exposure, but it still requires the knowl-
edge of all available computation, storage and network-
ing resources, i.e., the domain topology, and the domain
policy to construct the original abstraction. As a result,
it is non-trivial to extend it for resource discovery cross-
domains, when a job needs to consume resources located
in di↵erent domains, e.g., the storage node and compu-
tation node assigned to the same job may be located in
two di↵erent domains and are connected by network links
across multiple domains. This is because information such
as domain topology and policy is usually private to each
domain itself and is not allowed to be passed around dif-
ferent domains. In this subsection, we present the details

of our design to tackle this challenge and extend resource
state abstraction for cross-domain resource discovery.
Basic idea. The key insight of our design is simple
yet powerful: if we can “chop” the networking resources
connecting a (str, comp) candidate pair for job j based on
the domains they belong to, as shown in Figure 5, we can
then ask the domain resource manager of each domain to
compute and represent the resource availability for j in
each domain independently.

storage computationnetworking

dom 1 dom 2 dom N

Figure 5: Chop the networking resources by domain.

With this insight, we design the cross-domain resource
discovery process of Unicorn whose workflow is shown in
Figure 6. In particular, Unicorn performs cross-domain
resource discovery for a set of candidate (stg, comp) pairs
for a set of job J in four key steps. The first step is the path
query process, in which the Unicorn controller issues path
queries to the domain resource manager to recursively get
a domain path in the form of

(dom1, srcIP, egress)! (dom2, ingress, egress)

! . . . , (dom
N

, ingress, dstIP ), (4)

for each candidate (storage, computation) node pair. The
path query can be executed either recursively or itera-
tively. The second step is the “chopping” process, which
transforms the domain paths for all the (stg, comp) candi-
date pairs, into a set of segments, i.e., the chopping results,
with the form of

(dom
i

, F

i

, F

i

.ingress, F

i

.egress), (5)

for each domain, where Fi denotes the set of all (stg, comp)
candidate pairs whose connection use the network resource
in domain i. Thirdly, the Unicorn controller sends each
chopped segment to the corresponding domain resource
manager to issue one resource query for each segment,
which asks each domain to compute the minimal, equiva-
lent single-domain resource state abstraction. Fourthly, a
privacy-preserving resource information integration proto-
col will be executed between all the domains to compute
the accurate, minimal cross-domain resource view repre-
senting the cross-domain resource availability for a set of
candidate (stg, comp) pairs for a set of job J .
Path query. We present the pseudocode of the path
query process in Algorithm 1. The path query is a re-
cursive query process. In particular, the path query al-
gorithm requires the input of domain, which domain the
query should be sent to, F , a set of (stg, comp) candi-
date pairs whose connection use the network resource in
domain, and Ingress, the set of ingress points each can-
didate pair is entering domain from. It starts from the
Unicorn controller group the whole set of F into multiple
disjoint subsets based on where the storage resources for
this subset of pairs are located, and send one path query
for each subset to each corresponding domain. When a do-
main resource manager receives such a query, it first com-
putes the egress point, the next domain, and the ingress
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Path
Query

Resource
Query

Domain	A Domain	B Domain	C
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Chopping
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cross-domain
resource view
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Candidate (stg, comp)
pairs for job set J

Chopped	segments
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Domain Paths	
in	Equation	(4) Privacy-preserving	

Resource	
Integration

Figure 6: Workflow of cross-domain resource discovery.

point of next domain for each candidate pair f (Line 3-
4). Then the set F is grouped into several disjoint subsets
based on the next domain of each pair f (Line 5). For
each subset Fi whose next domain is not null, the cur-
rent resource manager adds the current domain into the
domain path for Fi and issues another path query to the
domain resource manager at Fi.nextDom to get the re-
maining part of the whole domain path (Line 8-12). If the
next domain of Fi is null, it means that the computation
resources of these (stg, comp) pairs are in the current do-
main, i.e., the domain path reaches the destination, and
the domain manager simply returns such information to
the querying party. During the path query process, each
domain only provides the egress points, the next domains
and the ingress points for (stg, comp) candidate pairs with-
out revealing any topology or policy information.

Algorithm 1: The algorithm of path query.

1 Function domPathQuery(domain, F , Ingress)

2 domPathResponse ;;
3 foreach f 2 F do

4 (f.egress, f.nextDom, f.nextDomIngress) 
getNextDomain(f);

5 {F1, F2, . . . , } F.groupBy(f.nextDom);
6 foreach F

i

do

7 if F

i

.nextDom! = null then

8 domPathResponse 
9 domPathResponse[

10 (domain, F

i

.egress)�
11 {domPathQuery(F

i

.nextDom,F

i

,

12 F

i

.nextDomIngress)};
13 else

14 domPathResponse 
15 domPathResponse [ {(F

i

, null)};

16 return domPathResponse;

Resource query. For the sake of integrity, we present
the pseudocode of chopping and resource query together in
Algorithm 2. In particular, when the Unicorn controller
receives the domain path for each (stg, comp) candidate
pair, it can use this information to chop each path by
domains and get the chopping results in Equation (5) (Line
5-12). Then the Unicorn controller can perform e�cient
resource queries to ask each domain to compute the intra-

domain resource view (Line 13-14).

Algorithm 2: The algorithm of chopping and re-
source query and.

1 Function resourceQuery(F , F.domainPath)

2 resourceV iew  ;;
3 foreach domain do

4 domain.F  ;;
5 foreach f 2 F do

6 hIdx 0;
7 dom getDom(f.domainPath, hIdx);
8 do

9 dom.F  dom.F [ {f};
10 hIdx hIdx+ 1;
11 dom getDom(f.domainPath, hIdx);
12 while dom 6= null;

13 foreach domain do

14 resourceQueryByDomain(domain, F)

This resource query process is e�cient due to the fol-
lowing lemma:

Lemma 1. Given a set of candidate (storage, computation)
node pairs for a job set of J , Unicorn achieves the minimal
number of resource queries at each domain.

Proof 1. With the domain path for each (str, comp) can-
didate pair, the chopping process yields a set of segments
defined in Equation (5), one segment for each domain.
Hence the Unicorn controller only needs to generate one
resource query for each domain if the corresponding Fi is
not empty, which completes our proof.

Privacy-preserving resource information integra-
tion. During the resource query phase, each domain
d computes the equivalent resource state abstraction that
is only minimal to d itself. When the controller collects
the resource state abstraction from every domain, a linear
inequality that was from domain d1 may be a redundant
one due to the existence of another linear inequality from
domain d2. For instance, d1 may return f1 + f2  10
to the controller while d2 may return f1 + f2  5. It is
easy to see that the cross-domain minimal, equivalent re-
source state abstraction would only contain f1 + f2  5,
not f1 + f2  10. A strawman approach to compute the
cross-domain minimal, equivalent resource state abstrac-
tion is to have the controller run the MECS algorithm
with all the resource state abstraction from every domain
as input. This approach, however, would force each do-
main to expose unnecessary resource information, i.e., the
redundant linear inequality, to the controller, leading to
unnecessary privacy leaks.

In Unicorn, we design a privacy-preserving resource in-
formation integration protocol that allows every domain
to discover linear inequalities in its own domain that are
redundant to the minimal cross-domain resource state ab-
straction. This protocol involves two steps. In the first
step, each domain d uses the classic pivoting algorithm [19]
to compute all the vertices of the convex polyhedron de-
fined by all the linear inequalities of its own single-domain
resource state abstraction. In the second step, each do-
main d peers with every other domain d

0 2 D, and uses a
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customized secure two-party computational geometry pro-
tocol to decide if all the vertices computed by d are on the
same halfspace defined by a given linear inequality c in the
resource state abstraction of d0. If this is true, then c is
a redundant inequality in the final cross-domain resource
state abstraction, hence will not be sent from domain d

0

to the controller. After executing this protocol for every
inequality in d

0, domain d

0 will know which linear inequali-
ties of its own single-domain resource state abstraction are
redundant to the single-domain resource state abstraction
of d without knowing what the resource state abstraction
of d has. We left the details of this privacy-preserving
resource information integration protocol in our technical
report [20] due to the space limit.

Schedulability. The cross-domain resource discovery
process in Unicorn provides an accurate view of resource
availability across domains with minimal exposure of pri-
vate information. One important question left, however,
is whether this view provides full a schedulability of re-
sources for a logically centralized orchestrator. We answer
this question with the following theorem.

Theorem 1. When all the resources represented in the fi-
nal resource state abstraction queried from the cross-domain
discovery process in Unicorn can be fully controlled on the
edge, i.e., all the attributes of each resource can be con-
trolled by end host, the resource view provided by RSDP
provides a full schedulability of resources to a centralized
resource orchestrator.

We omit the proof of this theorem due to the space limit.

5. Global Resource Orchestration

With the accurate, minimal cross-domain resource view,
Unicorn performs global resource orchestration to compute
optimal resource allocation decisions for a given set of jobs
J . The modular design of Unicorn allows di↵erent alloca-
tion algorithms to be deployed. For simplicity, we consider
a set of jobs J with no precedence from the same task, i.e.,
all the jobs can be executed in parallel. We leave a more
generic problem formulation as future work. We assume
that each computation resource has infinite computation
power, i.e., the data accessing delay reading data from
storage resources over networking resources to computa-
tion resources is the only bottleneck determining the delay
for each workflow. For each job j 2 J , let Stgj denote the
set of storage resources storing a copy of the input dataset
of j, Compj denote the set of computation resources that
can execute j, vj denote the volume of input dataset of
j, and tj denote the data accessing delay of j. We also
use b

mn
j to denote the data access bandwidth for job j

from storage resource m to computation resource n, and
a binary variable I

mn
j to denote if j is assigned storage

resource m and computation resource n simultaneously or
not. Note that the global resource orchestration compo-
nent relies heavily on the cross-domain resource discovery
component in Section 4. To illustrate this argument, we
first give a formulation of the global optimal resource al-
location problem without cross-domain resource discovery
as follows:

minimize max

j2J

{t
j

} (6)

subject to
X

{j2J|n2Compj}

X

m2Stgj

I

mn

j

 1, 8n 2 N, (7a)

X

m2Stgj

X

n2Compj

I

mn

j

= 1, 8j 2 J, (7b)

v

jX

m2Stgj

X

n2Compj

b

mn

j

I

mn

j

= t

j

, 8j 2 J, (7c)

A1(BI)  C1. (7d)

A2(BI)  C2. (7e)

. . . (7f)

A

K

(BI)  C

K

. (7g)

In this formulation, Equation (6) indicates that the
global resource allocation problem aims to minimize the
data accessing delay for the whole set of jobs F . Equa-
tion (7a) ensures that for each computation resource, at
most one job can be assigned. Equation (7b) ensures that
only one computation resource and one storage resource
are assigned for each job j. Equation (7c) calculates the
data accessing delay for each job j. These constraints, i.e.,
Equations (7a)(7b)(7c) are job-specific, i.e., they express
the requirements of data analytics jobs and can be changed
accordingly based on di↵erent job requirements. The con-
straints in Equations (7d)(7e)(7f)(7g) are resource-specific,
which depends not only on jobs’ resource requirements,
but also on the attributes provided by resources from each
domain.

Though this formulation is accurate itself, its key lim-
itation is that without a cross-domain resource discovery
process, it is infeasible to find the resource-specific con-
straints in Equations (7d)(7e)(7f)(7g). On the contrary,
the cross-domain resource discovery in Unicorn copes with
this issue by providing the following constraint to accu-
rately represent the resource availability for a given set of
jobs with minimal information exposure.

A(BI)  C. (8)

With this formulation, the global optimal resource allo-
cation problem with cross-domain resource discovery can
be precisely defined as:

minimize max

j2J

{t
j

} (9)

subject to

Equations (7a)(7b)(7c)(8). (10a)

Solution. The multi-domain resource allocation prob-
lem defined above is complex in that it involves binary
decisions, non-linear constraints and a complex objective
function. To solve this problem, we first linearize the bi-
nary decision variables, then use a standard optimization
solver to find the solution to the relaxed non-linear opti-
mization problem, and then round-up the linearized de-
cision variables back to the {0, 1} feasible space to get
the final resource allocation decisions. Because the cross-
domain resource discovery process in Unicorn provides the
resource view across domains with a minimal set of linear
inequalities, the time overhead to solve the relaxed non-
linear optimization problem is typically reasonable. We
leave the task of finding a more e�cient algorithm for this
problem as future work.
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6. Implementation

In this section, we discuss the implementation details
of the Unicorn framework. The system implementation
includes the following components:

Resource discovery protocol. We design and develop
a query-based resource discovery protocol by extending the
Application-Layer Tra�c Optimization (ALTO) protocol
[21], to deliver the resource state abstraction from each
domain to the Unicorn controller. The protocol provides
two major services: path query service and resource query
service. The former is used for delivering next hop in-
formation to from domain resource managers the Unicorn
controller. The latter is used for executing intra-domain
resource queries. Table 1 summarizes the basic view of the
two services.

Domain resource manager. We build the prototype
implementation of the domain resource manager on top
of the OpenDaylight SDN controller [22]. From the view
of the Unicorn controller, the domain resource manager
works as a web service which provides the resource dis-
covery protocol. From the view of the OpenDaylight con-
troller, the resource manager is a consumer to re-process
the topology, the tra�c statistics, the intra-domain re-
source information and the inter-domain routing informa-
tion.

The implementation includes two sub components: An
OpenDaylight application running in the Karaf container;
and a Python-based web service to provide the resource
discovery protocol. The OpenDaylight application uses
the API provided by Model-Driven SAL framework to read
the real-time network information from the OpenDaylight
DataStore. The two sub components communicate via
RPC with each other. So the web service component is
decoupled with the OpenDaylight and can be adapted to
any other network management platform.

To implement the resource query service, we use the
Python web service to look up the raw resource state
for the given flow set from the OpenDaylight back end.
Our native OpenDaylight application collects the topol-
ogy and forwarding rules from the network-topology and
opendaylight-inventory model of the DataStore, and
computes the intra-domain resource state from these infor-
mation. In our Python web service, we use GLPK as the
underlying LP solver to calculate the minimal equivalent
resource state abstraction described in Section 4.1. The
solver API is wrapped by PuLP so that we could switch
to other LP solvers like CPLEX and Gurobi without many
modifications.

We implement the path query service as a BGP com-
patible service. The domain resource manager reads the
inter-domain routing information from the OpenDaylight
DataStore and converts it to the BGP RIB (Routing In-
formation Base) format to respond the path query. The
native OpenDaylight could support multiple inter-domain
routing protocols by implementing their adapters. In this
prototype, we only implement the BGP adapter which
feeds the next-hop information of the inter-domain routing
from the bgp-rib model.

Cross-domain resource discovery. The cross-domain
resource discovery implements the two algorithms, path
query (Algorithm 1) and resource query (Algorithm 2)
and aggregate resource state abstraction from multiple do-
mains to provide a aggregated resource state abstraction

to the Global Resource Orchestration. It provides a high-
level API getGlobalResourceView which accepts a set of
node pairs (srcIP, dstIP ) as the queried flow set, and re-
turns a set of linear inequalities as the global resource view.
In addition, it also provides some lowel-level APIs includ-
ing: getDomainPath that implements the Algorithm 1 and
returns the domain path; and getDomainResource that re-
trieves the intra-domain resource view from a domain via
resource discovery protocol.

Global resource orchestration. We implement the
global resource orchestrator to subscribe to the analytics
job management database. Once new jobs are inserted
into the database, the orchestrator fetches them, performs
cross-domain resource discovery and then make resource
allocation decisions. It provides numerous Python APIs
for developing new resource allocation algorithms. There-
fore it is flexible for administrators to update the resource
allocation policy. Our current orchestrator makes resource
allocation decisions by solving the optimization problem
defined in Section 5.

7. Performance Evaluation

We evaluate the performance of Unicorn through trace-
based simulations. In particular, we focus on the e�ciency
of Unicorn in (1) discovering and represent a cross-domain
resource view with minimal information exposure; and (2)
performing global resource allocation decisions for data
analytics jobs. All the simulations are conducted on a
laptop with two 1.6GHz Intel i5 Cores and a 4GB memory.

7.1. Methodology

We emulate three multi-domain data analytics networks
with di↵erent number of domains and topologies. For each
setting, we first randomly select one topology from Topol-
ogy Zoo [23] and let that topology be the domain-level
topology with each node represent a single domain. And
we also generate the intra-domain topology, i.e., switches
and the intra-domain links, for each domain. The emu-
lated multi-domain topologies are labeled as Arpanet (com-
posed of 4 domains), Aarnet (composed of 19 domains) and
Chinanet (composed of 42 domains). We set the available
link bandwidth within each domain to be 0.2-1Gbps and
the available link bandwidth between domains to be 2-
4Gbps. And we assume the I/O bandwidth of storage and
computation resources are way larger than the bandwidths
of links. We assume each domain’s intra-domain and inter-
domain routing policies both use the typical routing poli-
cies, i.e., the shortest path routing, except that the former
is on the router level and the latter is on the domain level.
We vary the number of data analytics jobs J from the same
task to be from 5 to 30, each of which requires reading 1000
gigabytes of data.

7.2. Results

Cross-domain resource discovery and representa-
tion. We first present the compression ratio of the Uni-
corn in discovering and representing the accurate, minimal
intra- / cross- domain resource views. This is computed
as by dividing the number of linear inequalities in the ac-
curate, minimal intra- / cross- domain over the number of
original, linear inequalities used to represent the resource
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Service Path Query Resource Query
HTTP Method POST POST
Media Type application application

Accept Subtype alto-flowfilter+json alto-flowfilter+json

Content Subtype alto-nextas+json alto-pathvector+json

Function Implement getNextDomain() in Algorithm 1.
Implement resourceQueryByDomain()
in Algorithm 2.

Table 1: Unicorn Resource Discovery Protocol

availability across domains. Figure 7 shows this compres-
sion ratio in a 19-domain data analytics network derived
from the Aarnet topology [23] with di↵erent number of
data analytics jobs, and Figure 8 shows this ratio under
di↵erent number of domains when fixing the number of
jobs to be 20. From these results we observe that the
average compression ratio of intra-domain resource view
is only around 60-70% while that of the cross-domain re-
source view is around 25-45%. These show that Unicorn
provides a highly compact view of cross-domain resource
availability for data analytics jobs. The higher compres-
sion ratio in the cross-domain view is because a multi-
domain data analytics network provides more resources for
data analytics jobs, i.e., there are fewer jobs sharing the
same set of resources. On the other hand, the fact that the
highest cross-domain compression ratio is still 45% shows
that even with more resources, jobs sharing the same set of
resources is still a common situation, indicating the neces-
sity and importance for discovering the accurate, minimal
resource availability across domains.
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Figure 7: Compression ratio of intra-domain resource view and cross-
domain resource view with varying numbers of jobs.
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Figure 8: Compression ratio of intra-domain resource view and cross-
domain resource view with di↵erent topologies.

We also plot the number of linear inequalities in the
intra- /cross- domain view discovered by Unicorn in Fig-
ure 9 and Figure 10. We see that as the number of domains

and the number of jobs grow, the number of linear inequal-
ities in the accurate, minimal resource view computed by
Unicorn increases at a very slow rate, which demonstrates
the scalability of Unicorn.
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Figure 9: Number of linear inequalities in intra-domain resource view
and cross-domain resource view with varying numbers of jobs.
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Figure 10: Number of linear inequalities in intra-domain resource
view and cross-domain resource view with di↵erent topologies.

Global resource orchestration. We next demonstrate
the e�ciency of Unicorn in performing global resource or-
chestration for data analytics jobs. In particular, we focus
on the latency of a task composed of a job set J , which
is computed as the longest execution time of all jobs. In
our evaluation, we assume all the computation nodes have
the same computation power, hence we only need to focus
on minimizing the maximal data accessing delay among
all jobs, as defined in Equation (6). We compare the
task latency provided by Unicorn with that provided by a
domain-path based resource allocation scheme, which allo-
cates computation and storage resources for a job based on
the shortest AS path and use the classic max-in fairness
mechanism to allocate bandwidth among data accessing
flows of analytics jobs. We summarize the results under
the combinations of di↵erent multi-domain topologies and
di↵erent numbers of jobs in Table 2. We see that Unicorn
provides an up to 65% task latency reduction in all cases.
This shows that Unicorn provides a significant latency re-
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duction for multi-domain data analytics.

Topology
#Jobs

5 10 20 30

Arpanet 31% 24% 27% 65%
Aarnet 27% 46% 55% 10%

Table 2: The reduction of task latency of Unicorn over the domain-
path allocation scheme with max-min fairness.

8. Conclusion and Future Work

Summary. In this paper, we identify the objective and
the fundamental challenge for designing a resource orches-
tration system for multi-domain, geo-distributed data an-
alytics system through analyzing the data analytics trace
from one of the largest scientific experiments in the world
and examining the design of existing resource manage-
ment systems for single-domain clusters. We design Uni-
corn, the first unified resource orchestration framework
for multi-domain, geo-distributed data analytics systems.
Unicorn realizes the accurate, cross-domain resource avail-
ability discovery with minimal information exposure of
each domain through the RSDP and a novel, e�cient cross-
domain resource availability query algorithm. Unicorn also
provides a global resource orchestrator to compute optimal
resource allocation decisions for data analytics tasks. We
present the implementation details and the preliminary
evaluation results of Unicorn.

Prototype and full demonstration at SuperCom-
puting 2017. The source code and more comprehensive
evaluation results of Unicorn will be open-sourced at [24].
A full demonstration of the Unicorn prototype will be
given at SuperComputing 2017. In this demonstration,
we will demonstrate the e�ciency and e�cacy of Unicorn
on cross-domain resource discovery and global resource al-
location in a multi-domain, geo-distributed data analytics
system involving the Caltech booth, the USC booth and
the UNESP booth at the conference exhibition, the SCi-
nent network, and the Caltech testbed at Pasadena.
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