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ABSTRACT
An important performance problem that we foresee with
Data Transfer Nodes (DTNs) in the near future is a fast
sending host over-running a slow receiving host, and packets
getting dropped, leading to poor performance. Due to the
design of the Transmission Control Protocol (TCP), if this
occurs over a high-latency path, the performance impact can
be quite dramatic. For example, for a 40 Gbps DTN sending
to a 10 Gbps DTN over a 100 ms path, throughput can drop
to less than 1 Gbps. Slow firewalls, under-buffered switches,
or other devices in the network path that can not handle
high speed flows also have this negative impact on through-
put. In this paper we describe a simple tuning daemon at
the sending host that detects flows when this is happening,
and then tells the Linux kernel to throttle those flows to a
rate that the network and receive host can handle. We also
describe the results of several experiments to test the feasi-
bility of such a solution, and in doing so are able to present
some of the bounds of flow pacing at these line rates.

Categories and Subject Descriptors
C.2.1 [Computer–Communication Networks]: Network
Architecture and Design; C.2.5 [Computer–Communication
Networks]: Local and Wide-Area Networks—internet

1. INTRODUCTION
A Science DMZ is a portion of a network, built at or near

a campus local network perimeter that is designed such that
the equipment, configuration, and security policies are opti-
mized for high-performance workflows and large data sets.
The basic Science DMZ model [1] has been successfully im-
plemented in numerous scenarios, including those involving
astrophysics, photon science, high-energy physics, materials
science, climate modeling, and genomics. These efforts have
been notably recognized by the National Science Founda-
tion, which has awarded multiple rounds of funding (as part
of the CC-NIE [2], CC*IIE [3], and CC*DNI [4] Campus Cy-
berinfrastructure programs) to U.S. academic institutions to
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construct Science DMZ environments on their campuses to
support research at scale.

For a classical Science DMZ, a network enclave is con-
structed using high-performance equipment (typically one
or more switch/routers) at or near the institutional network
perimeter. High performance servers, called Data Transfer
Nodes (DTNs) are connected directly to these high perfor-
mance routers. The DTNs handle all data ingest/export
tasks, and need to be tuned for maximum network through-
put.

Tuning a DTN for optimal performance can prove chal-
lenging. One problem is that most modern DTNs are
fast hosts that are connected to the Internet at speeds of
10 Gbps or 40 Gbps (sometime 2x10 Gbps, 3x10 Gbps, and
4x10 Gbps as well). If these DTNs are sending data to
a slower host or slower network, the receiving host or the
router interfacing the slower network can drop a large num-
ber of packets, and performance can suffer dramatically due
to TCP dynamics (as discussed in Section 2 below). Our
tests show that TCP’s congestion avoidance is not suitable
to address the speed mismatch between the send host and
the bottleneck device, especially with a 40 Gbps sender. The
TCP congestion avoidance algorithm is designed to address
congestion that occurs as a result of statistical multiplexing.
In the case of bandwidth mismatch, what is required is to
pace the sending rate to match the rate of the bottleneck
device, and TCP’s flow control is end-to-end. Therefore, a
total solution to the problem requires a sender-side network
flow control approach.

In this paper we show that using the Linux traffic con-
trol (tc) command to pace traffic on a per-subnet basis can
dramatically improve overall DTN throughput. tc is a net-
work layer traffic control function that can be used to shape,
schedule, police and drop packets. It is implemented in the
kernel and configurable. In this study, we consider the traf-
fic shaping component which allows the rate of transmission
at the egress to be controlled. Traffic shaping can also be
used to smooth out bursts in traffic for better network be-
havior. In this paper we propose a tc-based flow control
scheme to reduce the impact of the bottleneck device, and
improve data transfer performance. The key idea is it to use
tc based on pertinent information obtained from the Linux
socket statistics (ss) tool.

We carried out experiments based on the most typical ap-
plications in order to test our hypothesis that such a packet-
pacing management daemon would result in a significant
improvement of the download time of a large data trans-
fer. Furthermore, from our experiments, we determined a
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recent upper-limit of packet pacing capabilities on contem-
porary commodity hardware. The results demonstrate that
our daemon did significantly improve throughput and de-
crease retransmissions for long-running flows requiring large
data transfers.

This paper is organized as follows: In Section 2, we dis-
cuss TCP issues and go into more details on DTN design.
We also discuss related work on TCP pacing. In Section 3,
we describe the various components of the tcbased packet
pacing tool. In Section 4, we discuss the experimental setup
and in section 5 we discuss the results. Finally, in Section 6,
we give a summary of the results and the future research
directions.

2. MOTIVATION
Networks have become a critical piece of the scientific en-

terprise. Many disciplines now rely on networks to sup-
port the conduct of scientific research, above and beyond
the ubiquitous use of email, web, and other commodity-like
services. Scientific use of the network ranges from the col-
laborative use of multi-point high definition video conferenc-
ing systems to the global distribution of massive datasets.
For example the Dark Energy Survey (DES) [5] is designed
to probe the origin of the accelerating universe and help
uncover the nature of dark energy, by measuring the 14-
billion-year history of cosmic expansion with high precision.
More than 120 scientists from 23 institutions in the United
States have built an extremely sensitive 570-Megapixel dig-
ital camera, DECam, which is mounted on the Blanco 4-
meter telescope at Cerro Tololo Inter-American Observatory
high in the Chilean Andes. DES surveys a large swath of
the southern sky out to vast distances (hence back in time),
in order to provide new clues to the most fundamental of
questions regarding the Big Bang and dark matter. DES
gathers terabytes of data every night, and this will continue
for 5 years. The National Center for Supercomputing Ap-
plications (NCSA) at the University of Illinois at Urbana-
Champaign, which operates the data management pipeline
for DES, receives 100,000 files each night. The bulk of the
processing can be carried out in a data parallel fashion–
each of the images within an exposure can be processed
through the steps of detrending and calibration indepen-
dently of the rest of the images. Their system is designed to
capitalize on this data parallel capability by parceling the
data out into independent jobs running in parallel. They
use high-performance computing resources provided by the
NSF’s XSEDE (Extreme Science and Engineering Discovery
Environment) project [6].

While the super computing and high performance com-
puting facilities are connected to high-speed networks, when
scientists attempt to run high performance applications over
their institutional “general-purpose” networks, the result is
often poor performance. With the increase of data set com-
plexity and size, scientists often wait hours, days, or weeks
for their data to arrive. The Science DMZ model was de-
veloped to specifically address these local area network is-
sues, providing research institutions with a clear framework
for improving their network environments to support data-
intensive science. When developing the Science DMZ, sev-
eral key principles provided the foundation to its design.
First, these design patterns are optimized for science. This
means the components of the system – including all the
equipment, software and associated services – are config-

ured specifically to support data-intensive science. Second,
the model is designed to be scalable in its ability to serve
institutions ranging from large experimental facilities to su-
percomputing sites to multi-disciplinary research universi-
ties to individual research groups or scientists. The model
also scales to serve a growing number of users at those fa-
cilities with an increasing and varying amount of data over
time.

2.1 TCP Performance
In addition to addressing the architectural issues that can

hinder science productivity, the Science DMZ model was
developed to combat the inherent performance limitations
of Transmission Control Protocol (TCP) [7]; a broadly de-
ployed protocol used for bulk data transfer and remote data
access applications. While most scientific applications that
need reliable data delivery use TCP-based tools for data
movement, TCP’s interpretation and reaction to network
instability (e.g. the loss of data) can cause serious perfor-
mance issues.

TCP is robust in many respects – in particular it has so-
phisticated capabilities for providing reliable data delivery
in the face of packet loss, network outages, and network con-
gestion. However, the very mechanisms that make TCP so
survivable also make it perform poorly when network condi-
tions are not ideal. In particular, TCP interprets packet loss
as network congestion, and reduces its sending rate when
loss is detected. For the many situations where the packet
loss was not due to congestion, TCP backs off more than
necessary, and can take a very long time to recover. In
practice, even a tiny amount of packet loss is enough to dra-
matically reduce TCP performance, and thus increase the
overall transfer time required. When applied to large tasks,
this can mean the difference between a scientist completing
a transfer in days rather than hours. Therefore, networks
that support data-intensive science must strive to provide
TCP-based applications with loss-free service if TCP-based
applications are to perform well in the general case.

As described in ESnet’s Science DMZ paper [1], an exam-
ple of TCP’s sensitivity was clearly demonstrated due to fail-
ing hardware. In 2012, ESnet had a bad 10 Gbps router line
card that was dropping 1 out of 22, 000 packets, or .0046%
of all traffic. Assuming the line card was working at peak
efficiency, or 812, 744 regular sized frames per second1, 37
packets were lost each second due to the loss rate. This re-
sulted in an overall drop of throughput of 450 Kbps on the
device itself, but reduced end-to-end TCP performance as
demonstrated in Figure 1. This packet loss was not being
reported by the router’s internal error monitoring, and was
only noticed using the owamp active packet loss monitoring
tool, which is part of the perfSONAR Toolkit [8] [9].

Because TCP interprets the loss as network congestion, it
reacts by reducing the overall sending rate. The sending rate
then slowly (linearly) increases due to the dynamic behavior
of the control algorithms, but can be further reduced at any
point due to conditions on the network. This becomes more
problematic as the distance between communicating hosts
is large resulting in large round-trip times (RTTs). In such
cases, the feedback (through ACKs) regarding bottlenecks
in the network or the end-system takes longer to return.
The relationship between latency, data loss, and network

1Performance Metrics. http://www.cisco.com/web/about/
security/intelligence/network performance metrics.html.
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capability was described by Mathis et al. as a mechanism
to predict overall throughput [10]. The “Mathis Equation”
states that maximum TCP throughput is at most:

maximum segment size

RTT
× 1√

packet loss rate
(1)

Figure 1 shows the theoretical rate predicted by the Mathis
Equation, along with the measured rate across ESnet. These
tests are between 10 Gbps connected hosts configured to
use 9 KByte (“Jumbo Frame”) maximum transmission unit
(MTU).

Note that the Mathis equation is for TCP Reno, and that
there is no currently well accepted equivalent formula for
TCP CUBIC [11] or H-TCP [12]. Figure 2 which plots the
same data in log scale, clearly shows that shape of the curve
is identical for Reno and H-TCP, so overall the formula still
applies.

This example is indicative of current operational reality in
science networks. TCP is used for the vast majority of high-
performance science applications. Since TCP is so sensitive
to loss, a science network must provide TCP with a loss-free
environment, end-to-end. This requirement, in turn, drives
a set of design decisions that are key components of the
Science DMZ model.

2.2 The Data Transfer Node (DTN)
Systems used for wide area data transfers perform far

better if they are purpose-built for and dedicated to this
function. These systems, which we call data transfer nodes
(DTNs), are typically PC-based Linux servers constructed
with high-quality components and configured specifically for
wide area data transfer. The DTN also has access to storage
resources, whether it is a local high-speed disk subsystem, a
connection to a local storage infrastructure such as a Stor-
age Area Network (SAN), or the direct mount of a high-
speed parallel file system such as Lustre2 or GPFS3. The
DTN runs the software tools used for high-speed data trans-
fer to remote systems—typical software packages include
GridFTP4 [13] and its service-oriented front-end Globus On-
line5.

DTNs are widely applicable in diverse science environ-
ments. DTNs typically have high-speed network interfaces
such as a 10 Gbps or a 40 Gbps network interface controller
(NIC). For example, DTNs are deployed to support a single
beamline at Lawrence Berkeley National Laboratory’s Ad-
vanced Light Source6, and as a means of transferring data
to and from a departmental cluster. At larger scale, sets of
DTNs are deployed at supercomputer centers (for example
at the United States Department of Energy’s Argonne Lead-
ership Computing Facility7, The National Energy Research
Scientific Computing Center8, and Oak Ridge Leadership
Computing Facility9) to facilitate high-performance trans-
fer of data both within the centers and to remote sites. At
even larger scales, large clusters of DTNs provide data ser-
vice to the Large Hadron Collider collaborations—the Tier 1

2Lustre. http//www.lustre.org/.
3GPFS. http://www.ibm.com/systems/software/gpfs/.
4GridFTP. http://www.globus.org/datagrid/gridftp.html.
5Globus Online. https://www.globusonline.org/.
6LBNL ALS. http://www-als.lbl.gov.
7ALCF. https://www.alcf.anl.gov.
8NERSC. http://www.nersc.gov.
9OLCF. http://www.olcf.ornl.gov/.

centers deploy large numbers of data transfer nodes to sup-
port thousands of scientists. These are systems dedicated
to the task of data transfer so that they provide reliable,
high-performance service to science applications10.

The set of applications that run on a DTN is typically
limited to data transfer applications such as GridFTP. In
particular, user-agent applications associated with general
purpose computing and business productivity (e.g. email
clients, document editors, media players) are not installed.
This is for two reasons - first, the dedication of the DTN to
data transfer applications produces more consistent behav-
ior and avoids engineering tradeoffs that might be part of
supporting a larger application set. Second, data transfer
applications are relatively simple from a network security
perspective, and this makes the appropriate security policy
easier to apply.

Several campuses are currently deploying 40 Gbps DTNs,
and 100 Gbps host NICs became available in June, 2015 11,
so production 100 Gbps DTNs are coming soon.

2.3 TCP Flow Pacing
Burstiness in network traffic can lead to packet loss which

can cause reduced TCP throughput significantly in high-
speed networks with large RTTs. Traffic pacing which at-
tempts to space out packets, so that a group of packets
clumped together are spaced out and do not result in packet
losses in the network. TCP flow spacing has been studied ex-
tensively since the initial study in [14]. Much of this study
has focused on ways to pace TCP and reduce burstiness.
The benefits of TCP pacing on the network and the flow
performance are not obvious and depend on many factors.
Results in [15] show that in general TCP pacing can degrade
TCP performance. On the other hand for networks with
small buffers TCP pacing is required necessary to achieve
high-link utilization [16]. Other than TCP pacing, packet
drops in small buffer networks have been addressed using
traffic conditioning [17] which rely on the global network-
wide coordinated scheduling. These studies address buffer
overflows that arise due to statistical multiplexing, and do
not address the rate mismatches that arise in the case of
DTN nodes addressed in this paper. Previous results have
also shown that custom NIC hardware that does packet pac-
ing can greatly improve performance [18].

3. TUNING DAEMON COMPONENTS
Our tuning daemon is based on a standard Linux TCP in-

strumentation available from the“socket statistic”command
(ss -it) , and the “traffic control” packet pacing capabili-
ties. These are described in more detail below.

3.1 Linux TCP instrumentation
Linux TCP sockets are well instrumented, and a wealth of

information from the kernel made available in the user space
via the /proc file system. The “socket statistic” command
(ss -it) is a convenient way to get most of this diagnostic
data, including the TCP round-trip time (RTT), the num-
ber of packet retransmits, the congestion window (cwnd), the
window scale settings (wscale), which congestion avoidance

10LHCOPN. http://lhcopn.web.cern.ch/lhcopn/.
11Mellanox 100G NIC, http://www.mellanox.com/page/
products dyn?product family=204&mtag=connectx 4 en
card
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Figure 1: Throughput vs. latency for .0046% packet loss.

Figure 2: Throughput vs. latency: H-TCP vs reno.

algorithm is being used (e.g.: CUBIC, H-TCP, or Reno),
and the current sending rate (send). While some informa-
tion has been available from Linux for a while, the full set of
information required by our tuning daemon is only available
in kernel version 3.19 or higher. This means that depend-
ing on which OS distribution is installed, it may be neces-
sary to install a newer kernel and corresponding version of
the iproute2 package, which includes ss. The interested
Linux user-space system programmer can also access this
information directly through the netlink interface and its
derivatives, made available in various socket libraries.

Our tuning daemon uses the following information:

• We use a combination of the round-trip time, conges-
tion window, and window scale to see if the host needs
to be tuned. The daemon will recommend a set of host
tuning commands based on this monitoring.

• We use a combination of retransmission, round-trip
time, and congestion window data to see if traffic to a
given host should be paced.

The details on how these data is used is described below.

3.2 Linux “traffic control” command
In Linux, traffic control is the term given to the entire

packet queuing subsystem in a network or network device.
Traffic control consists of several distinct operations. These
include“classifying”, a mechanism by which to identify pack-
ets and place them in individual flows or classes. “Policing”
is a mechanism by which one limits the number of pack-
ets or bytes in a stream matching a particular classification.

“Scheduling” is the decision-making process by which pack-
ets are ordered and re-ordered for transmission. “Shaping”
is the process by which packets are delayed and transmitted
to produce an even and predictable flow rate. Our tuning
daemon is using the scheduling facility, and uses the “hier-
archical token bucket” (htb) packet scheduler [19]. Details
on how htb works is beyond the scope of this paper. We are
using commands similar to the following:

#create a Hierarchical Token Bucket

/sbin/tc qdisc add dev ethX handle 1: root htb

#add a ’class’ to our route queue with a rate

# of 900Mbps

/sbin/tc class add dev ethX parent 1: classid 1:1

htb rate 900mbit

#create a filter that restricts our tc queue

# and class to a specific source subnet

/sbin/tc filter add dev ethX parent 1: protocol

ip prio 1 u32 match ip dst W.X.Y.Z/32 flowid 1:1

3.3 Other components
Our daemon consists of a simple python script that calls

ss -it every five seconds, and keeps track of active sock-
ets. An ongoing summary for the entire data transfer is
generated and stored in a SQLite 12 database. We are only
interested in tuning long-lived “elephant” flows, so sampling
once every five seconds is frequent enough to find these large
flows.

12sqlite. https://www.sqlite.org/
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3.4 Tuning Heuristics
Our daemon is based on the assumption that on most

DTNs, the same users are retrieving files over long periods of
time. We looked at GridFTP logs from the NERSC DTNs
to confirm this. Focusing on the most heavy users of the
DTN will lead to a bigger overall impact in terms of overall
system performance.

We are not worried about every connection being tuned
immediately, but rather we first establish a performance
baseline, and then try to make it better. We collect data
for ten transfers, and then start pacing traffic if our algo-
rithm thinks pacing should help. We then watch ten more
transfers, and if performance does not improve, we remove
the pacing configuration for that path. To ensure our dae-
mon learns about path or host upgrades, every two weeks
we remove the pacing settings and start over.

We also try to figure out if there are multiple DTNs on the
same subnet (i.e.: a DTN cluster), and pace traffic to the en-
tire subnet, not just individual hosts, in order to reduce the
processing overhead of unnecessarily pacing multiple flows
to the same subnet separately.

3.4.1 Host Tuning
Our tuning daemon is designed for use on a DTN, which

by definition should be well tuned, as described here:
https://fasterdata.es.net/science-dmz/DTN/tuning/. How-
ever, for high latency, high bandwidth paths such as a
10 Gbps path between a DTN in the USA and an DTN
in Europe or Asia, the default TCP buffer size it not big
enough, and TCP performance will be limited by the con-
gestion window size (cwnd). In this case, packet pacing will
not help. However, using the RTT and cwnd information
from the ss command, its possible to tell if the transfer is
congestion window limited. This is very useful information
to a DTN administrator, who may want to figure out which
regular users of their service need to tune their hosts such
that they are not limited by a congestion window that is
too small. Our tuning agent logs this information in a clear,
easy to search way to enable this sort of analysis. Our tun-
ing daemon will detect this problem and generate a report
on which remote endpoint hosts need tuning, and what that
tuning should be. If the remote DTN is being managed by
Globus, it would be easy for Globus to contact that user and
suggest these tuning changes.

To determine if the path is congestion window limited, we
compute the bandwidth delay product from the round-trip
time reported by ss. We have no way to tell if the end-to-
end path is 1 Gbps, 10 Gbps, or 40 Gbps, so we compute
the optimal starting congestion window for a 10 Gbps path.
However, this alone is not enough to consider a particular
path as a candidate for pacing. Additionally, we monitor
the maximum and average congestion window. Taking the
difference, we can begin to determine which paths have dis-
covered a larger throughput than they are experiencing in
the steady-state.

We note that the round-trip time reported by ss is often
more than double that reported by the ping command, so we
use the shortest time seen by ss in this calculation, which
is usually similar to the ping time. If the largest congestion
window seen is less than 50% of this value, this is a good can-
didate for checking the remote host tuning settings. We also
check which congestion avoidance algorithm is being used,
and if ss reports TCP Reno, we suggest H-TCP instead.

Here is a sample tuning report:

Remote host ’hostname’ may need to be tuned.

The host is CWND limited if it is connected at 10Gbps.

The host RTT is 100ms, and is running TCP Reno.

Suggest the following settings for /etc/sysctl.conf

net.core.rmem_max = 268435456

net.core.wmem_max = 268435456

net.ipv4.tcp_rmem = 4096 87380 134217728

net.ipv4.tcp_wmem = 4096 65536 134217728

net.core.netdev_max_backlog = 250000

net.ipv4.tcp_congestion_control = htcp

Our tuning daemon currently assumes both endpoints
are Linux systems. There is not a good way to de-
termine if the endpoint is some other operating sys-
tem such as Microsoft WindowsTM or Apple OS XTM.
More information on Linux host tuning is available at
http://fasterdata.es.net/host-tuning/linux/.

4. EXPERIMENTAL ANALYSIS
At a high-level, our proof-of-concept design and deploy-

ment approach was split into three phases. First, we per-
formed tests on two different closed-loop ESnet testbeds.
Second, the tool was deployed as a monitoring system run-
ning solely in the user space on ESnet production DTNs.
Third, the tool will be deployed into the ESnet production
environment. The first stage involved using operating sys-
tems very similar to those found in the production environ-
ment. However, findings in the second stage prevented us
from completing a full production deployment.

4.1 Testbed Experiments
To validate our results and ensure our method works

across multiple host and network environments, we used two
different test environments.

1. LAN test: Two Intel Haswell XeonTM E3-1275 v3
3.5 GHz-based hosts with 40 Gbps and 10 Gbps NICs
running Ubuntu Linux version 15.04, kernel version
3.19, connected by a IBM RackSwitchTM G8264 switch
on a LAN. These machines are similar to our latest-
generation perfSONAR [8] hosts. Therefore, they have
less processing power and less memory than our latest-
generation DTNs.

2. WAN Test: An Intel Haswell Dual-XeonTM E5-2643
v3 3.4 GHz-based host with a 40 Gbps NICs run-
ning CentOS 7, Linux kernel version 3.10, to a AMD
OpteronTM Processor 6140-based host, both connected
to an Alcatel-Lucent SR7750 router, over a 50 ms RTT
path and a dedicated 100 Gbps long-distance fiber-
optic connection (“wave”). These machines are most
similar to our latest-generation disk-based DTNs.

In both cases there was no other network traffic, so all
packet loss was due to receive host issues. We also note that
the results here are for a network path with a round trip time
of .5 ms and 50 ms. If the path was longer, the performance
without our proposed packet-pacing scheme would be much
worse, as shown table 2.

For all results we ran iperf3 -O 5 -t 30, which runs 30
second single stream test, and ignores the first 5 seconds of
the test to ensure TCP slow-start has completed. Each test
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was run 10 times. Additionally, we ran experiments using
GridFTP as a data application, throttling several simulta-
neous flows from 40 Gbps to 10 Gbps, in order to ensure the
processor performance feasibility of pacing at these rates.

4.2 Production DTN Monitoring
After developing and deploying our traffic shaping tool on

the ESnet testbeds, we modified the tool so that it would
only run in a “monitor only” capacity. That is, it would
not be able to actually shape any traffic, only monitor traf-
fic from the user-space. We then deployed the monitoring
tool on several DTNs in our production network. As with
our testbed experiments, we monitored the same variables
that the tool monitored when shaping traffic on the testbed,
including Maximum Segment Size (MSS), Interface, RTT,
Maximum and Average (cwnd), Retransmissions, and TCP
implementation (e.g. H-TCP). This data was collected for
each discrete flow over periods of several days at a time. The
resulting dataset was examined to see if the heuristics em-
ployed on the testbed would be feasible in production. We
will discuss the results of this monitoring in Section 5).

5. RESULTS

5.1 Testbed Results (Phase One)
Table 1 shows results with and without our packet pacing

daemon for a 30 second test. Tests were done with 2 hosts
(40 Gbps sender, 10 Gbps receiver) on a LAN with .5 ms
RTT. Our testing showed that without pacing, we saw on
average 367 packets retransmitted, for an average loss rate of
.00001%. With pacing the packet loss rate was .00000001%.

We also ran similar tests over the WAN (also 40 Gbps
sender, 10 Gbps receiver) to confirm the performance
speedup results apply to other environments. Our testing
showed that without pacing, we saw on average 826 packets
retransmitted, for a loss rate of .000003% With pacing the
packet loss rate was again only .00000001%.

Table 1: Test Results

No Pacing

retransmissions RTT Throughput

367 .5 ms 9.4 Gbps
826 47 ms 7.1 Gbps

With Pacing

retransmissions RTT Throughput

.3 .5 ms 9.8 Gbps

.2 47 ms 9.3 Gbps

We suspect the reason the impact of retransmissions on
WAN performance is that the network devices on the WAN
path had much more buffering, and that retransmissions
came in bigger bursts. We believe this loss pattern means
that the Mathis equation will not directly apply for this sort
of network. This result also underscores the importance of
the delay factor in the bandwidth delay product (BDP), and
in turn, the Mathis equation. Our daemon will not pace
flows with short RTTs as the effect on throughput is min-
imal, and therefore, it is not worth the processor overhead
required of packet-pacing.

Perhaps one of the most critical points of this testbed ex-
perimentation is the processor overhead involved in pacing a
high-speed flow. We determined, using mpstat, that pacing
from 40 Gbps to 10 Gbps using GridFTP as an application
with 1500 byte MTUs, created no significant increase in the
processor resource utilization on either our WAN or LAN
testbeds. The transfer was performed from /dev/zero on
the sender to /dev/null on the receiver, to avoid a disk
I/O bottleneck. In the worst case on the LAN testbed, the
transfer used no more than 30% of a single core and 15% of a
quad-core package. In the worst case on the WAN testbed,
the transfer used no more than 30% of a single core and
10% of the 12 total cores on the system. However, there are
upper-limits to pacing which we describe later.

5.2 Interpolated Results
Results for longer RTTs are shown in Table 2, and com-

puted using the Mathis equation using the Switch TCP
Throughput Calculator [20]. We note that since we are
using the H-TCP and not the Reno congestion avoidance
algorithm, these results will be low, but still indicative of
poor performance, as shown in Figure 2.

Table 2: Results computed using Mathis equation

No Pacing

retransmissions RTT Throughput
367 10 ms 8.3 Gbps
367 50 ms 1.6 Gbps
367 100 ms .83 Gbps

With Pacing

retransmissions RTT Throughput

.3 10 ms 9.8 Gbps

.3 50 ms 9.8 Gbps

.3 100 ms 8.3 Gbps

Based on these results, packet pacing using tc appears
to be a very promising way to increase application perfor-
mance. We note that there are limitations to what tc can
do. For example, we have found that a 40 Gbps host can
not reliably pace traffic to 35 Gbps due to processor limi-
tations. The fastest tc can reliably pace on a modern host
is around 20-34Gbps, depending on the speed of the CPU.
This means that a very fast DTN capable of 39 Gbps send-
ing to a slightly slower host that can only receive 36 Gbps
may need to pace down to 30 Gbps or so to avoid heavy
processor utilization.

We expect tc-based pacing to help in any environment
where a slow device in the path is dropping packets. This
includes firewalls, inline intrusion prevention systems, and
so on.

5.3 Results on ESnet DTNs (Phase Two)
We have also tested our tuning daemon on

ESnet’s public anonymous GridFTP hosts (See:
http://fasterdata.es.net/performance-testing/DTNs/).
These hosts are available for anyone in the research and
education community to use for performance testing, and
typically do around 250 file transfers per day. As we
mentioned earlier, rather than opt for a full deployment of
the tuning capability of the daemon, we chose to first only
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use the daemon’s internal monitoring component. We chose
a default interval of 5 s, in order to focus on data from
elephant flows. Table 3 gives insight into some of the data
the daemon collected. We were able to use hosts running
on a slow (100 Mbps) connection at UC Davis in order to
demonstrate how the daemon collects data from flows from
an ESnet DTN located at Lawrence Berkeley Laboratory to
a real university campus network. Because we had access
to both of the endpoints in this experiment, we were even
able to test a full-deployment of the daemon, using packet
pacing, and restricting the pacing to only one subnet at
UC Davis. However, as in many real-world tests, this was
not a perfect experiment; H-TCP works very effectively at
slow speeds and low latencies (5 ms in this case) so while
we did not witness a significant gain in throughput, we did
witness the expected results in our two key data categories:
the average retransmissions per interval fell to 0, and the
difference between the maximum and average cwnd fell by
an order of magnitude. Had this path been high latency,
H-TCP would have had a much more difficult time keeping
the pipe full.

Table 3: Results from our daemon’s internal
database

No Pacing

Average retransmissions
per interval

Difference between maxi-
mum and average cwnd

84.0 302168

With Pacing

Average retransmissions
per interval

Difference between maxi-
mum and average cwnd

0 31715

From these results we are comfortable making the claim
that pacing flows does yield the effects that our daemon
looks for when selecting candidates for pacing. That is, our
daemon would not select this same flow for pacing again,
given the fact that the retransmissions have fallen to 0. How-
ever, the converse of this claim is much more difficult to
prove. Such a claim would be that our daemon is actually
effective at selecting good candidates for flow pacing from
a large set of unrelated flows, many of which could be suf-
fering from a variety of different causes of retransmissions
other than being congestion-window limited. Also, while
the difference between the maximum and average cwnd is
theoretically a good criteria for flow pacing, we have seen in
practice that, even for flows on the same path, it can vary
greatly, with or without correlation Figure 3 is an exam-
ple of the difficulty in selecting candidates for pacing. All
of the data points in the figure are separate flows from the
same end-to-end connection. This intercontinental connec-
tion path has a known bandwidth of 10 Gbps, an RTT of
165 ms from the same DTN mentioned earlier, and an MSS
of 1448 bytes. Since these flows were generated for testing
purposes, they range in length from 20 s to 50 s, and are
affected by a variety of different network conditions (unlike
our closed-loop 100 Gbps testbed).
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Figure 3: Key performance data for a high-
throughput, high-latency path.

Figure 3 is just one example out of several different paths
which have an interesting correlation between retransmis-
sions and the difference between the maximum and average
cwnd. So far, our daemon uses RTT, the difference between
the maximum and average cwnd, and retransmissions as the
criteria for determining good candidates for pacing. How-
ever, this is not enough. As we alluded to in Section 4, our
lack of understanding of paths like these has delayed our full
deployment of the packet pacing daemon (Phase Three). We
will continue to employ other data sources as described in
Section 6 to ensure our daemon does not generate false pos-
itives for pacing.

6. CONCLUSION AND FUTURE WORK
In Section 4, we described the type of data our pacing tool

collects in its internal database. In Section 5, we described
the subset of this data that our pacing tool uses to deter-
mine good candidates for pacing, but we noted that we are
not yet able to claim that the tool can discern cwnd-limited
flows from the thousands of flows originating from our pro-
duction DTNs. Since our tuning daemon is designed to run
on DTNs, and since GridFTP is commonly used on DTNs,
it would make sense for our daemon to use the information
in the GridFTP logs to help determine when to pace the
traffic. Depending on what GridFTP server logging options
are enabled, GridFTP can log things like transfer perfor-
mance, number of parallel streams used, the file size, and
the destination host. This is helpful information for the
tuning daemon. We also want to do more testing on scala-
bility limits for the number of tc route queue classes on a
single host to ensure this will work for a heavily-used DTN.
Furthermore, we are looking into inet_diag and netlink as
possible callback-triggered data-sources.

From a practical perspective, we have concluded that the
wealth of tools, including ss and tc made available in the
iproute2 package included with the Linux kernel provide a
great resource for tuning end-systems concerned with a vari-
ety of network flows. The effective utilization of these tools
should be of interest to systems engineers concerned with
network performance. Furthermore, we have concluded that

7



it is indeed possible to use these tools to improve the per-
formance of “elephant” flows in our application, particularly
when the source of the flow is a 40 Gbps host.
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