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Abstract

The Science DMZ model employs dedicated network infrastructures and advanced software techniques for large-volume scientific research
traffic flows targeting high-throughput and low-latency data transfer. However, current Science DMZ framework lacks of efficient means of user-
intent expression and suffers from slow service-delivery due to the manual work involved in the management loop. As a result, a programmable
interface that facilitates user-administrator communication in a time-efficient manner is highly demanded. In this paper, we introduce FLowell,
an enhanced SDN-powered Science DMZ model deployed on our campus network. Moreover, we propose a programmable policy engine atop
the SDN controller that allows network administrators to implement configuration policies in order to manage the network, while simultaneously
offering rapid response time network resource request policies for end users. Our experiment results show that user intent in FLowell can be
responded and serviced within 1 second. In addition, FLowell reduces the network latency for the research network path by 35%, and boost the
disk-to-disk throughput by up to the 10 Gbps line rate.
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1. Introduction

ESnet has proposed the Science DMZ model [1], a scal-
able model designed for local campus networks, to satisfy the
increasing demand for high performance scientific research, in-
cluding large data transfers and real-time human to application
interaction. With Software Defined Networking (SDN) tech-
niques emerging as a preferred solution for network manage-
ment, decoupling the control plane from the data plane within
the context of a Science DMZ network environment enables ef-
ficient rule-based network control and significantly reduces the
required time for network configuration as well as troubleshoot-
ing [2, 3, 4].

Although network administrators need not log into network
devices in order to manually apply network configuration changes,
when leveraging SDN-based techniques, there exists a pronounced
latency between the time a user sends a request for a network
resource and the time the request is serviced by the network.
In this case, inefficiencies continue to endure in the interaction
between users and network administrators, which indicates an
ongoing need for manual intervention. For example, the Uni-
versity of Massachusetts Lowell (UML) campus IT department
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constitutes a Change Advisory Board (CAB). Network admin-
istrators from CAB are mandated to meet every Thursday to
approve or deny changes. All requests to CAB must be sub-
mitted by Monday for review on Thursday in the same week.
Most changes need to be reviewed off hours. Similar situation
exists in Massachusetts Green High Performance Computing
Center (MGHPCC) [5] as the administrators work on the re-
quests every Tuesday. In order to accelerate this inefficient in-
teraction, the entire process must be automated, which in turn
requires the consideration of four key requirements. Firstly,
in order to replace more traditional methods, such as phone
calls or emails, users will require a more effective method to
submit their requests. Secondly, users should have the ability
to submit high level requests that do not depend on intricate
knowledge of the low level details regarding the design of the
network. Specifically, users should only have to specify the
source and destination for the corresponding network resource
request. As a result, user requests will have to be converted
into detailed network configuration settings for the appropri-
ate switches. Thirdly, understanding there should be a rapid
response time, a given user’s request should be serviced in a
manner that reduces the required processing time as well as the
amount of manual labor carried out by a network administrator.
Lastly, although such a process will automate some portion of
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a network administrator’s work, the process itself still needs to
be under the control and management of the administrator.

In this paper, we introduce FLowell, an enhanced network
infrastructure consisting of a SDN-based Science DMZ that
supports various forms of data-driven scientific research con-
ducted at UML. Furthermore, FLowell is designed to acceler-
ate large data transfers from UML to MGHPCC, which will
be demarcated from the general purpose, campus production
network. Moreover, we propose a programmable policy en-
gine on top of the control plane to allow science research teams
from different departments the ability to access Science DMZ
resources under the purview of FLowell. In this case, the over-
arching goal is to reduce the requirements in terms of the time
to service a resource request as well as the level of manual in-
tervention on the part of a network administrator.

In this paper we make the following contributions. 1) We
design a set of simple and human-readable policy rules for defin-
ing the network data paths between end hosts and network re-
sources. 2) We design a policy engine that provides users with
policy rules for rapid response time network resource requests,
independent of whether the requests can be serviced. 3) We
design a policy engine that allows administrators the ability to
manage data paths irrespective of whether they were generated
from a user request or from a newly defined network adminis-
trator policy. 4) We design a policy engine that converts policy
rules to OpenFlow rules so that the low level knowledge of the
underlying network infrastructure is transparent to end users.

The remainder of the paper is organized as follows. In Sec-
tion 2, we introduce the ESnet Science DMZ model along with
our FLowell Science DMZ deployment. In Section 3 we pro-
vide the underlying motivations for our work. Subsequently,
we describe the policy engine in Section 4. Afterwards, we
evaluate the performance of our work within Section 5. Fur-
thermore, in Section 6 we provide a survey of work related to
FLowell. Finally, we provide our conclusions in Section 7.

2. Background

2.1. ESnet Science DMZ Model
Networks in research institutions and organizations normally

service two types of traffic, specifically operational business
related traffic and scientific research related traffic. However,
the majority of the existing campus networks are optimized for
business operations, which are incapable of providing low la-
tency, real-time transfers for large scale data. The lack of sup-
port for such large scale data transfers within the context of to-
day’s network infrastructure serves as a prominent obstacle that
hinders the realization of numerous scientific research objec-
tives. As a result, ESnet proposed a Science DMZ model [1] in
order to overcome the aforementioned challenges. The Science
DMZ model accomplishes this by separating the specifically
engineered high-performance data-intensive science network,
i.e. the Science DMZ, from the general-purpose network. As
a result, each portion of the network can be optimized without
interfering with the other.

Figure 1 [6] presents the Software-Defined Networking (SDN)
based Science DMZ reference architecture proposed by ESnet

to facilitate the flexible provisioning and routing of network
flows. This reference model relies upon OpenFlow switches
to manage and differentiate the various network flows, while
simultaneously enforcing network security policies.

Figure 1: ESnet Science DMZ Reference Architecture
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Figure 2: FLowell Science DMZ Network

2.2. FLowell Science DMZ

FLowell refers to ESnet Science DMZ model and leverages
existing campus cyberinfrastructure resources such as the cam-
pus data center, computing clusters located at research labora-
tories, along with a programmable network test bed consisting
of network processors to realize our Science DMZ on campus.
As illustrated in Figure 2, the 10 Gbps network connection from
UML to MGHPCC serves to bridge on campus researchers with
a massive pool of shared computing resources, while the 10
Gbps Layer 2 connection provides a gateway to national re-
search and education networks including Internet2 and ESnet.

2.2.1. UML Campus Network
The campus network is designed to meet the following ob-

jectives. 1) A host that is assigned a private IP address, but not
a public IP address, should be allowed to access both public and
private networks. 2) The network should be able to dynamically
filter out and redirect large data flows from the full set of traffic.
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3) The network should provide a full 10 Gbps optic-fiber path
for all data transfers. Cognizant of the previously stated goals,
we deploy the following elements into our campus network.

Management Switch – Management switches are currently
installed in on campus buildings, and directly face the end hosts
in the research laboratories. In addition, the management switches
serve to transfer research data from UML to MGHPCC, where
the information is stored within a Date Transfer Node (DTN).
Furthermore, the management switches provide the opportu-
nity for further scalability in the event that the number of hosts
should increase in the future. The high availability (HA) en-
abled management switches also ensures zero downtime of the
network operation.

Aggregate Switch – An aggregate switch is included in our
design in order to 1) build the connectivity between buildings to
allow the data transfers in campus Local Area Network (LAN)
without need for SDN control; 2) accumulate traffic from on
campus buildings and send the resulting traffic to the Open-
Flow switch through a single output port. The aggregate switch
serves to overcome the lack of support for the FLOOD action
by the OpenFlow switch. Given that all traffic emanates from
a single port, rather than multiple ports, the aggregate switch
serves to minimize the number of wildcard rules and conflicts
in a coarse-grained manner, particularly with reference to the
number of rules for handling ARP packets.

OpenFlow Switch – An OpenFlow switch forwards pack-
ets to different destinations based upon the appropriate flow
rules. We define the flows into two types, namely an Elephant
Flow if it is large continuous data flow and the destination is
MGHPCC, and a Mice Flow if the flow needs to go to the In-
ternet.

Big Monitoring Fabric – We deploy a Big Monitoring Fab-
ric (BMF) network packet broker to operate within inline mode
[7] with service chains designed to enable network admins to
easily deploy and manage inline security or analytics tools so as
to ensure the resilience against network or tool failures. We cre-
ate two chains, namely (an Elephant Chain and a Mice Chain)
for the two types of flows mentioned above. For the Mice Chain
we apply a series of services including a Bro, a firewall, as well
as a NAT (introduced in the next paragraph).

Software – The following software solutions are leveraged
for the purposes of network control, network monitoring, net-
work security and network measurement. The OpenDayLight
(ODL) controller [8] and the Big Mon Controller [7] manage
the control plane for the OpenFlow switch and the BMF re-
spectively. The Bro [9] IDS is a powerful network analysis
framework. In collaboration with the ODL controller, the net-
work security monitor can perform packet analysis, determine
the flow type of the packet, and forward the packet to the ap-
propriate destination by calling the correct ODL API in order to
install the corresponding rule in the OpenFlow switch. Further-
more, pfSense [10] serves as an open source firewall which can
secure the private network while providing NAT services for
private IP addresses. Moreover, perfSONAR [11], widely used
in the context of science networks, provides our design with the
necessary network performance measurement infrastructure.

On the start of the system, the ODL controller connects to

the appropriate OpenFlow switches. Then, the Bro IDS begins
to monitor the network activities of the Mice Chain, while man-
aging the wildcard rules for ARP packet handling and ensuring
that packets forwarded to the Mice Chain are installed in the
appropriate OpenFlow switch.

As shown in Figure 3, once a host starts sending packets:
1O The Mgmt. & Aggr. switches forward the traffic to Open-
Flow switch. 2O As a result of the pre-installed rules the traffic
will be forwarded to the Mice Chain. 3O The BMF fabric spans
the traffic to the Bro IDS, which captures the packet’s source
IP along with the destination IP and decides if the flow is an
Elephant Flow based on a white list table lookup. 4O If the des-
tination IP address corresponds to a Mice Flow destined for the
Internet, the Bro IDS will perform no action and the traffic will
pass through firewall. The firewall will NAT the private source
IP address to a public IP address. 5O The traffic is sent to the
public network. 6O If the destination IP address is part of the
MGHPCC network, the Bro IDS will call the appropriate ODL
API. 7O The ODL controller will install the corresponding flow
rules into the OpenFlow switch. 8O Subsequent packets will be
re-routed to the Elephant Chain. 9O Packets part of the Elephant
Chain will be forwarded to MGHPCC.

Figure 3: FLowell Network Flow

2.2.2. MGHPCC Network
The MGHPCC network serves two functions, namely 1)

hosting a Data Transfer Node (DTN) in order to store large sci-
entific, research data and 2) sharing the research data with other
sites including, for example, AL2S [12] and Internet2 [13]. In
MGHPCC, we deploy a Dell PowerEdge R730 server with stor-
age directly attached to it as our DTN. The DTN has a private
10Gbps connection for data transfers to or from campus and
a public 10Gbps connection for sharing data with the Internet
and other sites. Two different data transfer tools are served on
these networks. Globus serves to manage data transfers over the
public network, whereby a Globus Connect Server (GCS)[14]
configures the DTN as a Globus endpoint. Globus enables all
users with local accounts on the DTN to share and transfer files
to or from this endpoint. Users need to install the Globus Con-
nect Personal (GCP)[15] client onto their computer in order to
connect to the GCS server. Fast Data Transfer (FDT)[16] serves
to manage data transfers over the private network. FDT has the
capability to perform efficient data transfers at disk speed over
networks with standard TCP. Globus and FDT were selected for
their ease of use and for their support of all major platforms.
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Table 1: Software Deployed in FLowell Science DMZ

Software Function Description
OpenDayLight Controller Network Control The control plane for OpenFlow switch
Big Mon Controller Network Control The control plane for BMF
Bro Network Monitor & Analysis Monitor the network traffic and filter Elephant Flow from it
pfSense Network Security Protect the LAN from external attack and do NATing for private IP address
pfSONAR Network Measurement Provide some active network measurement tools

3. Motivation

Our goal is to build a policy engine, a human-friendly and
automated system to dynamically dealing with users’ specified
network resource request policies. To make this realized, we
need to solve the following questions.

3.1. Question 1: How Can We Speedup the Service Delivery
Process for an End User’s Request?

Firewalls installed on campus and enterprise networks help
prevent malicious external network traffic from entering LANs.
In the context of an SDN-powered Science DMZ, an OpenFlow
switch functions as a Layer 2 firewall as packets need to match
rules installed within the switch in order to pass through the
switch. The pre-installed firewall and OpenFlow rules can only
cover the most basic of network activities, such as website nav-
igation as well as sending or receiving emails. However, if a
network user wants to access a particular external resource that
is restricted by the current rule set, then the user must request
access from a network administrator. The user-admin interac-
tion process is normally carried out by way of email or phone
calls, which is not only extremely inefficient, with resolution
typically occurring within the span of hours or days, it lacks
strong accountability.

To remove the human interaction element from the process
and speedup the service delivery time, we propose a policy en-
gine design that enables network users and network adminis-
trators to work in a time-efficient manner. In particular, end
users can submit their network resource access requests via a
web graphic interface built on top of our proposed network pol-
icy rules. The user can receive an immediate response to their
request, either accepted or rejected, depending on whether the
request complies with a predefined set of criteria, i.e. a white
list, setup by the network administrator.

3.2. Question 2: Why Not Use Static OpenFlow Rules?

The first question leads us to the next, namely why a white
list is employed to respond to a given user’s request rather than
simply placing static rules into an OpenFlow switch. We an-
swer this newly proposed question from two different aspects
depending on the granularity of the rule.

Firstly, if entries in a white list are expressed in a coarse-
grained manner in order to match the majority of the user re-
quests, then routing conflicts may occur. As an example, sup-
pose an entry from the white list permits all packets from IP
range RIP to pass through the switch. When a user requests a

path from host1 in RIP1 to destination dst1 in RIP2, while an-
other user requests a path from host2 in RIP1 to dst2 in RIP2,
both are legitimate requests. However if dst1 and dst2 are on
two different physical ports of the OpenFlow switch, there are
no rules to direct the two user requests to the correct output
port.

Secondly, an OpenFlow switch is constrained by memory
resource limitations that should not be squandered. If the pre-
installed static rules are too fine-grained to direct every flow
of the network, we may unnecessarily consume considerable
memory resources on the switch. Furthermore, copious entries
within the switch will increase the flow table lookup time dra-
matically and adversely effect performance within the latency-
sensitive Science DMZ network.

Therefore, a white list is necessary in our solution and the
flow rules will be installed in the switch after users submit their
requests. What’s more, we design a module in our policy en-
gine to check flow conflict dynamically before a flow rule is
installed. Thus, only necessary rules can be pushed to Open-
Flow switch so as to save the memory space and the rules are
fine-grained without conflict.

3.3. Question 3: How Can We Map an End User’s Request to
a Set of Network Rules?

In a Science DMZ, an end user typically has no prior knowl-
edge regarding network operation and network hardware con-
figurations. Therefore, from an end user’s perspective, it is ideal
to simply submit a network resource request and have the sys-
tem determine the necessary optimal path. For example, an end
user first provides the source, host name, and destination, ser-
vice name, corresponding to the task at hand. Subsequently, the
system verifies the legitimacy of the request. If the request is
valid the system will find a load-balanced path between the re-
quested source and destination, and provide the number of input
and output ports along the path.

To this end, we provide a set of policy rules to help express
the user’s intention, and design a policy manager inside a policy
engine in order to parse the intentions from users as well as to
generate the final set of OpenFlow rules. The policy manager
interacts with the SDN controller in order to maintain the ex-
isting rule set as well as to install any missing rules. Given the
capabilities afforded to us by SDN, the centralized controller
maintains a global view of the entire network topology. Hence,
we can readily find an optimal path in order to satisfy a given
user’s request.
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4. Design

As shown in Figure 4, our FLowell Science DMZ infras-
tructure leverages a policy engine on top of the control plane,
which is capable of receiving and imposing policy rules. By
leveraging the policy rules and the corresponding policy engine,
users can easily request network resources and network admin-
istrators can simplify network path configurations by avoiding
some forms of manual work. The policy engine consists of a
web based GUI, a policy manager and a policy repository. We
will discuss the details for each portion of the design in the fol-
lowing subsections.
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Figure 4: Components of the Policy Engine

4.1. Policy Rule

Given that users and administrators may not necessarily have
in depth programming knowledge, we design a simple and intu-
itive policy rule set. The policy rule consists of three keywords,
1) the source IP address, specifying the end host, 2) the des-
tination IP address, representing the network resource, and 3)
the flow operation to perform, in terms of whether to establish
a new data path or remove an existing one. The resulting key-
word combination specifies a request suitable for configuring a
particular network path. Table 2 provides details regarding each
of the policy rule fields. For the sample policy provided below,
a user intends to request that a path be established from 10.0.0.1
to 10.0.0.2.

Src IP : 10.0.0.1,
Dst IP : 10.0.0.2,
Flow OP : install

Table 2: Policy Rule Keywords

Keyword Value
Src IP IP address of the end host
Dst IP IP address of network resource

Flow OP install, remove

4.2. Policy Manager

In the policy engine, we implement a policy manager as the
core component responsible for receiving policies sent by users
and network administrators from the web based GUI, parsing
the policies, checking for conflicts, determining the shortest for-
warding paths, generating the necessary OpenFlow rules and

storing the rules to the policy repository. As shown in Table
3, in order to service the various tasks, the policy manager can
be divided into four components, namely the policy parser, the
policy checker, the policy converter and the policy implementer.
We explain the functionality of each block in details as follows,
and the pseudo-code demonstration is shown in Algorithm 1.

When the policy manager receives a policy rule from the
GUI, it first calls the policy parser function to parse the policy
using regular expressions (RegEx), extracts the values of the
keywords referenced in Table 2 and check if all values are valid,
for example an IP address should be described with the correct
format and range. If the policy originates from a user, the pol-
icy manager performs a white list look up to verify whether the
request is permitted. Afterwards the policy manager verifies
whether or not the requested network path is duplicated in the
Flow array by calling the policy checker function. In this case,
we must perform duplicate detection as repeated requests may
result in flow rule conflicts within the OpenFlow switch. If the
policy originates from a network administrator, the installation
operation will skip performing the white list lookup, but will
continue to check for duplicates. Furthermore, we validate the
existence of a path in the event an administrator would like to
remove a path due to some reasons, e.g., malicious activities
detected on this path. Subsequently, the policy manager calls
the policy converter function to extract the network topology
from the ODL controller, constructs a graph of the topology,
determines the shortest network path by employing Dijkstra’s
algorithm and generates a flow object that contains the rules to
be installed within the network. The example below illustrates
the format of a flow object. For this object, the path key con-
tains the user’s requested path, while the connector key lists the
switches as well as the ingresses and egresses along the network
path. Subsequently, the policy implementer method is called
to update the Flow array or the Pending array depending on the
results of the policy checker function. Figure 5 illustrates the
work flow carried out by the policy manager.

flow obj = {′path′ : [′10.0.0.1′,′ 10.0.0.2′],
′connector′ : [[′switch1′,′ 1′,′ 2′], [], []...]}

4.3. Web-based GUI
We provide a simple and intuitive web based GUI to al-

low authorized network administrators and end users the ability
to easily create and implement policy rules. Within the GUI,
we provide a set of forms so that users can fill in the source
and destination IP addresses along with the operation to be per-
formed. Users can conveniently issue their policy request via a
submit button. Furthermore, end users can verify the result of
the submitted network resource request through the same GUI
interface, while network administrators can view all approved
network paths and pending paths in order to better understand,
control and manage the network.

4.4. Policy Repository
We implement a policy repository to store the white list as

well as the flow objects in the Flow array along with the Pend-
ing array. The Flow array consists of the permitted paths as
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Table 3: Functions in Policy Manager

No. Function Explanation
1 policy parser(str policy) Parse the policy and check for validation
2 policy checker (str src ip, str dst ip, str flow op) Check for feasibility and rule existence
3 policy converter (str src ip, str dst ip) Map policy to flow rule(s)
4 policy implementer(dict flow obj,str flow op) Install flow rule(s) into the system
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Figure 5: Policy Manager Work Flow

well as flow installation information, while Pending array gives
the paths that are not listed in the white list a second chance
and these paths will be viewed by administrators for further de-
cision. Thus, we increase the error-tolerant rate in case of the
request path is reasonable but not in the white list. There are
three reasons why the arrays needed to be stored. 1) Upon re-
ceipt of a packet the Bro IDS will need to inspect the Flow
array in order to determine if the packet matches one of the ap-
proved paths and if so fetch the corresponding flow installation
information. 2) A user will need to check the GUI interface in
order to determine if the requested flow has been approved. 3)
Administrators will need to inspect the GUI interface in order
to collect a comprehensive list of the approved network paths.
Policies will be stored in the repository in the following format.

Flow = [{′path′ : [′10.0.0.1′,′ 10.0.0.2′],
′connector′ : [[′switch1′,′ 1′,′ 2′], [], []...]}, {}, {}...]

4.5. Policy Engine Control Flow

In this subsection, we discuss how the components of the
policy engine collaborate with one other in order to carry out
automated network resource control as well as management.

Algorithm 1 Policy Manager
1: WL[] : array for white list
2: Flow[] : array for approved path
3: Pending[]: array for pending path
4: dict f low ob j: flow object
5:
6: function policy parser(policy)
7: Use regex to extract values from policy according to keywords
8: if all values are valid then
9: return src ip, dst ip, f low op

10:
11: function policy checker(src ip, dst ip, f low op)
12: f low = [src ip,dst ip]
13: if User and f low in WL or Admin then
14: if f low op is ”install” and f low not in Flow then
15: f low ob j = policy convertor(src ip, dst ip)
16: policy implementer( f low ob j, f low op)
17: else if f low op is ”remove” and f low in Flow then
18: f low ob j[’path’] = f low
19: policy implementer( f low ob j, f low op)
20: else if User and f low not in WL then
21: f low ob j[’path’] = f low
22: policy implementer( f low ob j, f low op)
23: return f lag
24:
25: function policy converter(src ip, dst ip)
26: Call ODL API to get the detail of network topology
27: Calculate the shortest path for given src ip and dst ip
28: Determine the in and out ports of each switch in the path
29: Generate f low ob j
30: return f low ob j
31:
32: function policy implementer( f low ob j, f low op)
33: if ′connector′ in f low ob j and f low op is ”install” then
34: Add f low ob j to Flow
35: else if flow op is ”remove” then
36: Remove f low ob j from Flow
37: Remove corresponding flow(s) from OF switch
38: else
39: Add f low ob j to Pending

The policy engine control flow, shown in Figure 6, can be
divided into the control path for a user and the control path
for a network administrator. The difference between the two
control flows is that network administrators have the necessary
privileges to remove an approved path from the network, while
end users can only request that a flow be instantiated.

End User’s Control Path: An end user, e.g., a researcher,
will first create a policy through the web based GUI and send
it to the policy manager. The policy manager then parses the
policy to determine the next course of action. Upon receipt
of a new packet, the Bro IDS verifies whether the source and
destination IP address pair is in the Flow array within the policy
repository. If so, the Bro IDS will fetch the network connection
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Figure 6: Policy Engine Control Flow

information for the corresponding path and call the ODL API
to install the necessary rules into switch(es).

Administrator’s Control Path: The control path for a net-
work administrator, e.g., a campus network IT or network man-
ager, is similar in nature to an end user’s control path, how-
ever, if an administrator plans to add a new path or approve a
pending one, the policy manager does not perform a white list
lookup and directly saves the flow object to the Flow array. If
an administrator would like to remove a malicious flow which
was previously approved, after receiving the policy, the policy
manager will first delete the flow object from the Flow array to
make sure Bro IDS will not keep installing rules in switches and
then communicate with the ODL controller in order to remove
the corresponding flow.

5. Evaluation

In this section, we evaluate our work with two experiments:
1) we evaluate the network performance to illustrate the advan-
tages of the Science DMZ infrastructure; and 2) we evaluate the
performance and overhead of the policy engine. As shown in
Figure 7, in the first evaluation we set up a DTN node within the
local UML campus network and run both latency and through-
put experiments with the remote DTN node located within the
MGHPCC network. The remote DTN server retains both public
and private IP address for external and internal access. We com-
pare the performance metrics with or without employing Sci-
ence DMZ dedicated path over the network link. In the second
evaluation, we implement our policy engine within the server
hosting the SDN controllers and measure the policy manager’s
response time, as shown in Figure 8. The hardware specifica-

tions of the machines we used in the two experiments are listed
in Table 4.

DTN Science DMZ DTN

Internet

UML Campus MGHPCC

private private

public public

Figure 7: Science DMZ Performance Test Bed

ODL 

Policy Engine 

Server Mininet Topo

Figure 8: Policy Engine Performance Test Bed

5.1. Latency and Throughput

Typically, latency refers to the amount of time it takes for
data to travel from a sender to a receiver. However, in the case
of our experiment we consider the Round-Trip-Time (RTT) as
the network latency. The RTT can be simply measured by us-
ing the ICMP protocol. For packets traversing the Internet, the
average RTT is approximately 5.424 ms. For packets travers-
ing the Science DMZ, the average RTT decreases to approxi-
mately 3.483 ms with a decrease rate by 35%. Please note that
since both UML campus and MGHPCC locate geographically
in Massachusetts, the RTT of the Internet path is not signifi-
cantly large. However, with the expansion of our network in
the future, the benefit of applying Science DMZ will be more
salient.

Throughput measures the data transfer rate and serves as
an indication as to how much data can be transferred from a
given sender to a given receiver within a specified unit of time.
The higher the throughput, the lower the transmission delay. In
order to measure throughput, we leverage iperf as well as FDT
to transfer 10 GB of data between two DTNs with & without the
Science DMZ and observe both memory-to-memory and disk-
to-disk throughput. In addition, we vary the number of parallel
connections and observe the resulting effects on the throughput.
Table 5 displays the recorded results. By observation, we know
that the throughput of the campus public network is limited to
100 Mbps. By contrast, in the case of the Science DMZ 10
Gbps network, we can achieve almost 100× the memory-to-
memory and disk-to-disk throughput when transferring the data
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Table 4: Hardware Specification of Machines in the Test Beds

DTN Server
Model Dell PowerEdge R730 Server Dell PowerEdge R730 Server
CPU 2× Intel Xeon E5-2643 3.4GHz 6 Cores 2× Intel Xeon E5-2643 3.4GHz 6 Cores

Memory 6× 16G RDIMM 4× 8G RDIMM
Hard Disk 16× 1.8TB SAS Hard Drive 1× 1TB SATA Hard Drive

NIC Broadcom Corporation NetXtreme II BCM57810 10Gb Broadcom Corporation NetXtreme BCM5720 1Gb
Mellanox Connect X3 Dual Port 10Gb SFP+

using 4 parallel connections. The factor “4” in parallelism is a
practical number suggested by ESnet [17] to render the optimal
line rate performance. In our experiments, when increasing the
parallelism factor from 4 to 8, we can only observe a slight gain
by 0.1 Gbps in throughput.

Table 5: Throughput Test Results

Tool w/ DMZ File Size Parallelism Avg. Throughput
iperf No N/A 4 95.6 Mbps
iperf Yes N/A 4 9.40 Gbps
FDT No 10 GB 1 91.605 Mbps
FDT Yes 10 GB 1 6.681 Gbps
FDT No 10 GB 4 91.792 Mbps
FDT Yes 10 GB 4 9.191 Gbps

5.2. The Performance and Overhead of the Policy Manager

In Algorithm 1, three factors will affect the response time
once the policy manager receives a new rule. Firstly, the size of
the white list determines how long the policy manager will take
to approve the path request. Secondly, the size of the Flow array
affects the processing time to check for path conflicts. Thirdly,
the number of switches and the network topology determines
the time to build the graph and find the appropriate flow path.

To study how each factor affects the response time, we first
define the baseline experiment scenario. As the baseline, we
initialize the white list with a single path in order to ensure that
all requests will be approved. We also create an empty Flow
array so that duplicated checks will be passed, and we only in-
stantiate a single OpenFlow switch connected to two end hosts
in order to reduce the time to build a graph and find the short-
est path. With the baseline, we study the performance effect of
three different factors in the policy manager by changing only
one factor at a time. Figure 9 demonstrated the collected re-
sults. In the case of the base line the observed response time is
11.86 ms. In Figure 9 (a), we increase the number of paths in
the white list from 1 to 1k, 10k and 100k. In order to maximize
the search time, we organize the list such that the matching path
is always the last entry. For a white list size of 100k entries, the
response time is 153.1 ms. In the case of Figure 9 (b), we fo-
cus on varying the number of objects in the Flow array. Each
new object can simply be appended to the array, given that there
should be no duplicates. For an array size of 100k elements the
observed response time is 320.732 ms. In Figure 9 (c), we vary
the complexity of the network topology. We use Mininet[18]

to simulate the network environment and apply fat-tree topolo-
gies consisting of between 5-7 layers. The response time for
a 7 layer fat-tree topology, consisting of 127 switches, is ap-
proximately 201.733 ms. In addition, we test the performance
of the policy manager in the case where the white list and the
Flow array consist of 100k entries each and the topology con-
sists of a 7 layer deep fat-tree topology. The average response
time in this scenario is 619.561 ms. For each of the above four
experiments, although the response time increased to hundreds
of milliseconds, it still can be considered to be of significantly
short duration. We conclude that our policy manager is both
scalable and can immediately respond to a user’s request.

6. Related Work

Network management continues to be an ongoing challenge.
SDN attempts to simplify this challenge by offering a clear sep-
aration between the control plane and the data plane. In recent
years a significant amount of work has been done in applying
SDN related technologies towards network management.

Balas et al. [4] proposed a system named SciPass, which
is implemented with OpenFlow and the Bro IDS system in or-
der to increase the security and performance of their Science
DMZ environment. In the SciPass system, the authors applied
a load balancer to divide the traffic into a set of IDS sensors.
Furthermore, the system can help filter flows, such as large
data-intensive flows, which can then be configured to bypass
the firewall in order to improve performance. Although FLow-
ell similarly filters out Elephant flows from the comprehensive
set of network traffic, the system includes a policy engine and
a set of policy rules in order to provide users and network ad-
ministrators with the ability to request, configure, and approve
such large data flows.

Kim et al. [2] proposed to implement a policy layer on
top of an SDN controller in order to allow network operators
the ability to create network policies in the Procera [19] lan-
guage. By leveraging policies, their work was shown to reduce
the workload of network configuration and management within
the context of campus and in-home networks in response to
changes in the current network state, such as, for example, in-
creases in the data transfer rate. Although their proposal lever-
ages flow fields within their policy language in order to facil-
itate changes in network behavior, our work focuses upon ac-
celerating the service delivery process for end users with the
intervention of admins. More importantly, our policy rules are
more intuitive and assume neither technical knowledge nor the

8
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(a) (b) (c)

Figure 9: Policy Manager Response Time

understanding of network configuration from the users/admins
comparing with the Procera language.

PolicyCop [20] was proposed by Bari et al. as an open
and flexible QoS policy management framework for SDN. The
framework allows specifying QoS-based Service Level Agree-
ments (SLAs) and enforcing them by leveraging the SDN con-
troller’s API. By contrast, FLowell focuses upon simplifying
the network resource request and response process while si-
multaneously assisting network administrators with managing
the accessibility of resources by end users.

Lara et al. [3] proposed an OpenFlow-based framework that
allows the network operator to create and implement network
security policies. For the given framework and the correspond-
ing set of policies, flows can be spanned and sent to different
services, such as an IDS as well as a spam detection system.
Once the security services alert upon a set of malicious activi-
ties, the corresponding policies specify the necessary actions to
perform. While the focus of the paper is related with network
security threat detection, the primary goal of FLowell is upon
accelerating network resource management in response to end
user requests, while simultaneously offering end users the abil-
ity reserve paths within the network and indirectly change the
flow state within the switches.

7. Conclusion

In this paper, we first introduce our FLowell Science DMZ
infrastructure, which is designed to overcome the shortcom-
ings in our current campus network in order to accelerate large-
volume data transfers. With the dedicated Science DMZ path,
we are able to achieve reducing latency from 5.4 ms to 3.5 ms
while simultaneously increasing throughput from 91.8 Mbps to
9.2 Gbps. As a result, the file transfer time is reduced signif-
icantly, particularly for large file sizes. More importantly, we
propose a policy engine on top of the network control plane.
The policy engine enables network users to submit demands for
network resources, which, for valid requests, are automatically
and immediately serviced. As a result, user to administrator
interactions, specifically in terms of the network resource re-
quest approval process, are simplified and can be finished in 1
second. At the same time, network administrators can leverage
policy rules to manage the data paths within the network.
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