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Motivation

Computer systems are getting ever more sophisticated, and human-lead empirical-
based approach towards system optimization is not the most efficient way to realize the
full potential of these modern and complex high performance computing systems.

@ The effectiveness of parameters are not straightforward or intuitive understandable.
@ The system is dynamic. Fairly impossible to design a one-size-fits-all rule.
@Parameter space is very big and very time consuming to explore.

@Environment and platform are different.

The data transfer nodes (DTN) are compute systems dedicated for wide area data
transfers in distributed science environments.

Inspired by work from Google Deepmind about using reinforcement learning to play games
(e.g., AlphaGo, Atari). We use reinforcement machine learning methods to discover the “just
right” control parameters for data transfer nodes in dynamic environment.
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* Aggregate incoming transfer rate vs. total concurrency (i.e., instantaneous number of GridFTP server
instances) at two heavily used endpoints, with Weibull curve fitted.
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* Aggregate incoming transfer rate vs. total concurrency (i.e., instantaneous number of GridFTP server
instances) at two heavily used endpoints, with Weibull curve fitted.

Luckily, the optimal operating point of these two endpoints are almost fixed. However, the optimal operating point of
most endpoints are dynamical because of continuously changing external load.
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Reinforcement Learning

[Idea] An agent interacting with an environment, which provides its current state and numeric reward
signals after each action the agent takes.

[Goal] Learn how to take actions in order to maximize reward.
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[Idea] An agent interacting with an environment, which provides its current state and numeric reward
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[Goal] Learn how to take actions in order to maximize reward.

Environment / Object

https://en.wikipedia.org/wiki/Q-learning Argon ne é

NATIONAL LABORATORY




Reinforcement Learning

[Idea] An agent interacting with an environment, which provides its current state and numeric reward
signals after each action the agent takes.

[Goal] Learn how to take actions in order to maximize reward.

St The state of environment (control object) at any given time t

State

St
Environment / Object

https://en.wikipedia.org/wiki/Q-learning Argon ne é

NATIONAL LABORATORY

Action
At




Reinforcement Learning

[Idea] An agent interacting with an environment, which provides its current state and numeric reward
signals after each action the agent takes.

[Goal] Learn how to take actions in order to maximize reward.

St The state of environment (control object) at any given time t

At The corresponding optimal action at any given time t

State

St
Environment / Object

https://en.wikipedia.org/wiki/Q-learning Argon ne é

NATIONAL LABORATORY

Action
At




Reinforcement Learning

[Idea] An agent interacting with an environment, which provides its current state and numeric reward
signals after each action the agent takes.

[Goal] Learn how to take actions in order to maximize reward.

St The state of environment (control object) at any given time t

At The corresponding optimal action at any given time t

Rt The actual reward from At , I.e., what we want to optimize

State

St
Environment / Object

https://en.wikipedia.org/wiki/Q-learning Argon ne é

NATIONAL LABORATORY

Action
At




Reinforcement Learning

[Idea] An agent interacting with an environment, which provides its current state and numeric reward
signals after each action the agent takes.

[Goal] Learn how to take actions in order to maximize reward.

St The state of environment (control object) at any given time t

At The corresponding optimal action at any given time t

Rt The actual reward from At , I.e., what we want to optimize

State

St
Environment / Object

https://en.wikipedia.org/wiki/Q-learning Argon ne é

NATIONAL LABORATORY

Action -
n Q-learning




Reinforcement Learning

[Idea] An agent interacting with an environment, which provides its current state and numeric reward
signals after each action the agent takes.

[Goal] Learn how to take actions in order to maximize reward.
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Reinforcement Learning

[Idea] An agent interacting with an environment, which provides its current state and numeric reward
signals after each action the agent takes.

[Goal] Learn how to take actions in order to maximize reward.

St The state of environment (control object) at any given time t

At The corresponding optimal action at any given time t

Rt The actual reward from At , I.e., what we want to optimize

State Acti
ction Q | -
St -learning
Rt At learned value
Q(81,a:) « (1 —a) - Q(8t,a:) + \a/ : ry  + ¥ : max Q(8¢:1,a) ,
. . R — a
EnVIrOnment / ObjeCt old value learning rate reward discou\nt,.‘;actor L —
estimate of optimal future value

Policy Gradient
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Smart Data Transfer Node
Workflow
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(D) A file transfer tool requests a file to transfer from the KE. The KE (2) checks the current DTN state and

@ responds to the transfer tool with a chunk of file and corresponding optimal transfer parameters (the

steering action). (4) The transfer tool transfers the associated chunk with the parameters and monitors the

aggregate DTN throughout during this transter. @ Once completed, DTN'’s average aggregate throughput
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State, Action and Reward

Context — High performance wide area data transfer scheme
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State, Action and Reward

State 5:
@CPU usage (# of GridFTP instance here);

@ Total number of TCP streams on DTN,;

@ The aggregate ingress and egress throughout of the DTN’s network interface card;

@ The aggregate disk read and write throughput.

Action 4:

@ Wether start transferring a new file chunk (True/False). It controls the total Concurrency.
@ Parallelism used to transfer the file chunk

@ The size of file chunk to transfer. It controls the transfer duration, e.g., command frequency.

Reward £

@ The aggregated transfer throughput (of all transfers).
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Knowledge Engine

Reinforcement learning model architecture
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Results and discussion

Reinforcement learning model accuracy versus DTN’s aggregated throughput (credit) in dedicated environment.
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Effectiveness of the knowledge engine (KE) in a dedicated environment. DTN performance increases as
the KE’s prediction accuracy improves. (64 iterations per epoch)
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Reinforcement learning model accuracy versus DTN’s aggregated throughput (credit) in dedicated environment.
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Effectiveness of the knowledge engine (KE) in a dedicated environment. DTN performance increases as
the KE’s prediction accuracy improves. (64 iterations per epoch)

It works!
The knowledge engine is able to find the optimal operating point and,

keep DTN working in the optimal operating region.
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Results and discussion

Experiment in shared environment (adding artificial, reproducible external load to storage)
Heuristic configuration (2.040 Gbps)
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Results and discussion

Overhead issue

@ GridFTP does not support dynamic concurrency and parallelism.
@We have to restart GridFTP to apply the new parameters.

@ There is an overhead for changing parameters.

Knowledge engine configuration, adjusted to remove overheads (2.273 Gbps)
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With knowledge engine, we get about 11.3% improvement compare with heuristic configuration.



Results and discussion

Cumulative distribution of throughput
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Conclusion

The knowledge engine that powers the conventional data transfer node with smartness are:

M Fully unsupervised, does not need labeled historical data;
M Changes parameters automatically according the state of environment;
M Training is online, self-optimization;

M Suitable for any deployment without specialist;
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Future work

M Tuning more parameters;
M Testing in practical environment.

M Embed in distributed workflow:

M Smart autonomous science ecosys.;
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Thank you for your attention!
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