

Classifying **Elephant** and **Mice** Flows in High-Speed Networks

Mariam Kiran Anshuman Chabbra (NSIT) Anirban Mandal (Renci) Presented at INDIS 2017

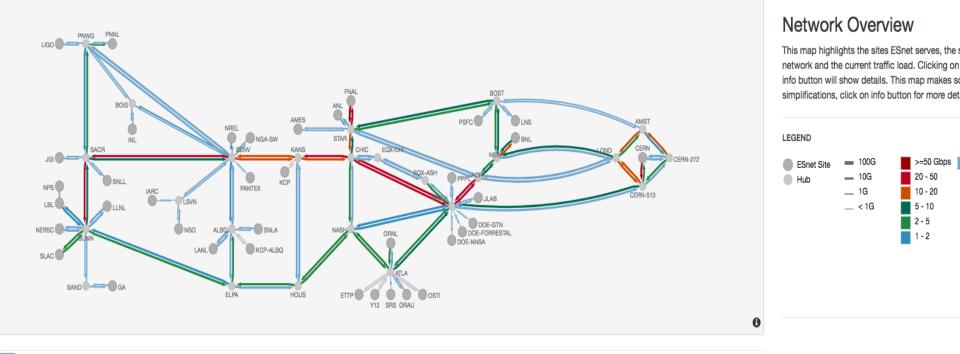
ESnet, LBNL

Funded under DE-SC0012636

Talk Agenda

- Current challenges in Elephant and Mice flows: Why bother?
- Unsupervised machine learning techniques: Why?
- Solution: Development of a learning classifier system using GMM
- Current state lessons learned and exploitation of classification results
- Evaluation and Future work

Myth not in Networks!


"Elephants scared of Mice"

- Data centers and networks get a mixture of flows
 - <u>Elephant flows:</u>
 - Large size
 - Long-lived
 - Large data transfers
 - Throughput-sensitive
 - <u>Mice Flows:</u>
 - Smaller bursty traffic
 - Short-lived
 - Latency-sensitive
- Scientific networks versus data center traffic
 - Majority flows: Elephant flows (Big data files)
 - Gobbles up network buffers causing queuing delay to mice flows
 - Challenges of adaptive routing: Changing paths on-the-go
 - Links also have to be optimized: multi-objective problem

inet

Why should we understand flows?

Our networks is very dynamic.

Losing data or jeopardizing applications prevents us to achieving our mission! Goal is to <u>detect</u> and then <u>manage</u> **ESnet**

Previous work

- Classify traffic for intrusion detection and traffic profiling
 - Number of packets transferred, flow duration, file size
 - Papers link tools to perform dynamic traffic steering
 - Isolating traffic streams
 - Based on size, rate, duration, burstiness, or combination
- However real-time detection is a challenge!
 - Online (as flow arrives) versus offline analysis (periodic)

- S. Shirali-Shahreza et al. Traffic statistics collection with Flexam, in: Proceedings of 2014 ACM SIGCOMM.
- T. Zizhong Cao et al. Traffic steering in software defined networks: planning and online routing, SIGCOMM workshop on Distributed cloud computing.
- Z. Yan et al. A network management system for handling scientific data flows, Journal of Network and Systems Management 24 (2016) 1–33.

Lets use Netflow Records

- Netflow: Collected every 5 minutes (aggregated flows)
 - Perfsonar: active testing for health

Flow first see	en Duration	Protocol	Source IP:Port Destination IP:Port	Packets	Bytes F	lows
2017-04-15	00:00:23.040) TCP	50.127.55.32:3455 -> 137.243.29.226:23	0	40	1
2017-04-15	00:00:23.040) UDP	120.129.253.114:9788 -> 121.127.238.102	0	42	1
2017-04-15	00:00:23.850) UDP	120.129.253.114:9433 -> 121.127.151.25	0	42	1

(TCP, UDP)

PT

LBL

throughput, loss, utilization

) ESnet

CRN

ANL

FNL

- Every site is unique: traffic received

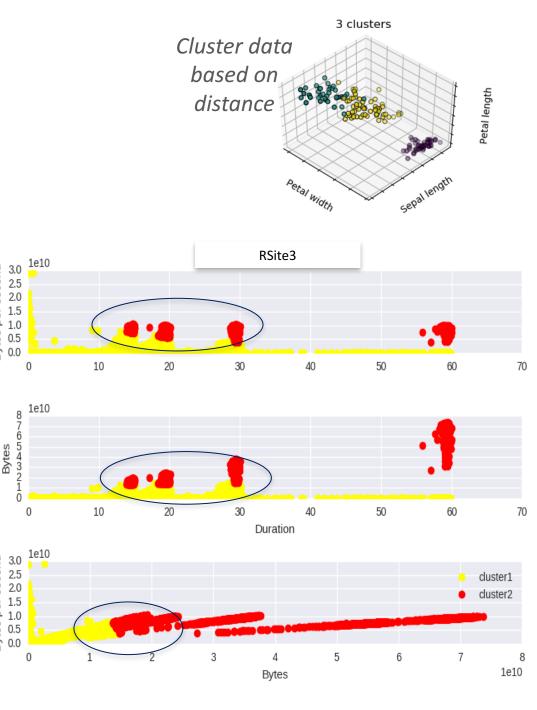
Site (1 month)	Mean (size)	Max (size)	Mean (duration)	
ROne	0.15	25.6	23.19	
RTwo	0.03	36.4	4.14	
RThree	0.02	72.5	6.63	

Finding elephants and mice in flows

- Exploring Netflow data
- Cluster traffic into TWO groups with <u>NO</u> prior knowledge

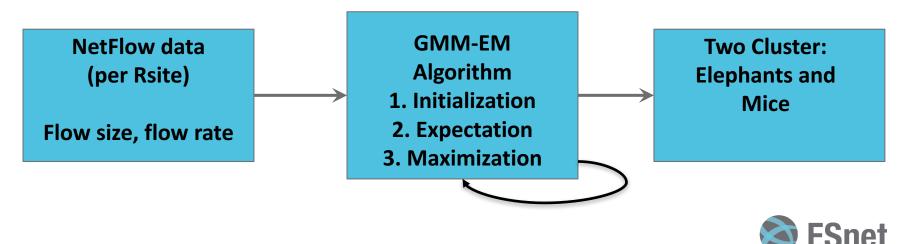
Supervised	Semi-super	vised	Unsupervised	
SVM	Naïve-Bayes		K-means	
Decision tree		GMM		
Random Fore	est			

- Unsupervised learning: Organize data into clusters based on attribute values:
 - Find patterns, relationships, similarity across data

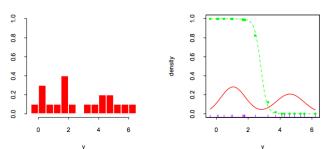

K-means results

- Start with no knowledge and find centroids with closest data points
- Target: Form 2 clusters based on size and bytes/s

Bytes per second


Bytes per second

- Results:
 - Overlapping data points in clusters
 - Algorithm fails due to different density and data size in flows
- We need some knowledge in the algorithm


Gaussian Mixture Model (Semi-supervised)

- Supervised Semi-supervised Unsupervised SVM Naïve-Bayes K-means Decision tree GMM Random Forest
- Scikit-learn python library for GMM-EM (Expectation maximization)
 - Only 30 lines of code
 - Semi-supervised: Initialize with some knowledge
 - Assume 10% elephant and 90% mice and then refine $\mu_e\text{=}0.1,\,\mu_m\text{=}0.9$
 - Compute probability of flow belonging to cluster and update $\mu_{e},\,\mu_{m}$
 - Compute mixture coefficients per site
 - Repeat process until converge to a local optimum.

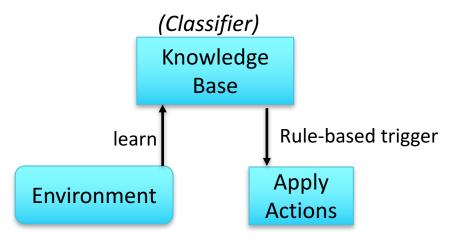
Working of GMM-EM algorithm

- Flow characteristics are dependent:
 - Per site
 - Per time of the day
- GMM assumes there is a Gaussian distribution of mixture of classes
 - Data set is a mixture of elephant and mice flows

 Maximum likelihood fit to Gaussian density (red)

 $p(X) = \pi_{e} \mathcal{N}(X|\mu_{e}, \Sigma) + \pi_{m} \mathcal{N}(X|\mu_{m}, \Sigma)$

• Observation data set (green) also called responsibility $\mu_{
m e} = \mu + \pi_{
m e}(max(X))$

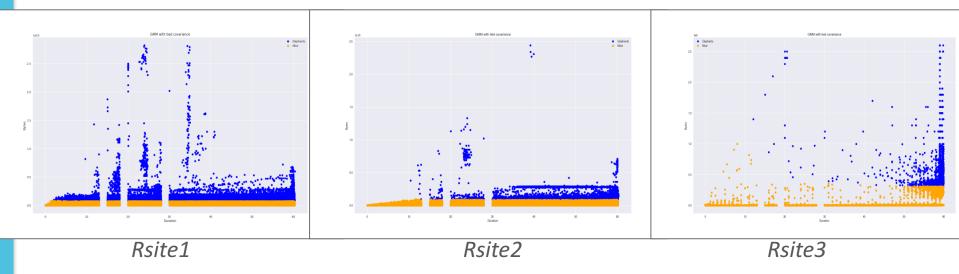

- Initialization Step: 10% flows are elephant in my traffic (0.1,0.9)
- Expectation Step: Compute belonging to a cluster based on Gaussian equations
- Maximization Step: Keep re-iterating till converge

 $\mu_{\rm m} = \mu - \pi_{\rm m}(min(X))$

Use Classification to build a LCS

• LCS = Learning Classifier System

- Each site is different, and flow characteristics change over time
- Classifier will find different characteristics of elephants and mice:
 - Not have a predefined definition e.g. thresholds

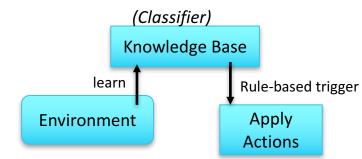


Results

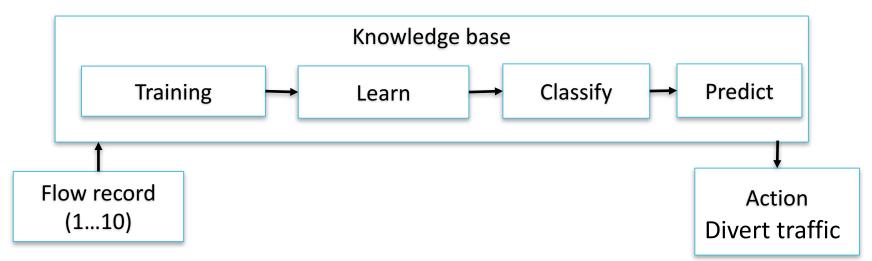
Semi supervised gives better results

- Clear clusters found!
- Each site cluster has different characteristics

- Blue = Elephant, Orange = Mice
- Rsite1 more Elephants flows compared to Rsite2/Rsite3
- Mice flow ranges are different for Rsite3


What lessons did we learn?

- Clustering leads to more statistical analysis on what elephants/mice are
- Too much Noise in data:
 - First few netflow records contained Perfsonar tests,
 - being classified as elephant flows, had to be cleaned
- Needed some knowledge for semi-supervised:
 - Leads to skewed results of elephants lying in top 10% size and rate
 - Need an independent verification with ground truth data
 - E.g. Simulating GridFTP transfers to see if recognized as elephants
- ML BlackBox problem:
 - Using ML libraries does not expose internal algorithm workings
 - Propose building 'open' libraries


Is Netflow enough?

- Initial idea was:
 - Can we to Active Traffic Steering using identified clusters?
- There is Noise: difficult to recognize
 - Link testing data
 - No track of congestion on link
 - Bad configuration
 - Sampling rate can be altered
- Additional infrastructure required
 - Sflow: Expensive but is it worth it?
- More end-to-end data
 - Whether flows captured belong to same stream? Interface/port data
 - I/O data

Building Learning classifier system

- Active steering: Netflow data is past data
 - Thresholding mechanisms are good approaches!
 - Needs more testing for how flows can be isolated
- Not do active steering but learn about sites
 - how heavy traffic is?
 - Add more links, add more infrastructure, fault management ESnet

Conclusion

- Overall was easy to implement but has its caveats
- Focused on online training and learning per site: Unique compared to existing works in area
- Processing time is fairly fast
- Next steps
 - Working through the GMM algorithm to plot how Gaussian mixture changes
 - Run real-time tests to see if we can isolate traffic streams based on netflow classification
 - Understand flow behavior across sites

Thankyou

Any Questions?

- We do have an open PostDoc position (ML in Networks)
 Please reach out
- <mkiran@es.net>

