Algorithms and Data Structures to Accelerate Network Analysis

Reservoir Labs

Jordi Ros-Giralt, Alan Commike, Peter Cullen, Richard Lethin
{giralt, commike, cullen, lethin}@reservoir.com

4th International Workshop on Innovating the Network for Data Intensive Science
November 12, 2017

Reservoir Labs

632 Broadway
Suite 803
New York, NY 10012

Reservoir Labs 4th International Workshop on Innovating the Network for Data Intensive Science

* Problem definition
* Optimizations

Long queue emulation

Lockless bimodal queues

Tail early dropping
LFN tables
» Multiresolution priority queues

« Benchmarks

Reservoir Labs 4th International Workshop on Innovating the Network for Data Intensive Science

Problem Definition

« System wide optimization of network components like routers,
firewalls, or network analyzers is complex.

» Hundreds of different SW algorithms and data structures interrelated in
subtle ways.

* Two inter-related problems:
« Shifting micro-bottlenecks

* Nonlinear performance collapse

Reservoir Labs 4th International Workshop on Innovating the Network for Data Intensive Science

Shifting Micro-Bottlenecks

It's difficult...

Reservoir Labs 4th International Workshop on Innovating the Network for Data Intensive Science

Shifting Micro-Bottlenecks

...to optimize...

Reservoir Labs 4th International Workshop on Innovating the Network for Data Intensive Science

Shifting Micro-Bottlenecks

...bottlenecks...

Reservoir Labs 4th International Workshop on Innovating the Network for Data Intensive Science

Shifting Micro-Bottlenecks

...that keep moving...

Reservoir Labs 4th International Workshop on Innovating the Network for Data Intensive Science

Shifting Micro-Bottlenecks

...every microsecond...

Reservoir Labs 4th International Workshop on Innovating the Network for Data Intensive Science

Shifting Micro-Bottlenecks

...0I SO.

Reservoir Labs 4th International Workshop on Innovating the Network for Data Intensive Science

Non-linear Performance Collapse

Disk
1/0

L1-1 cache: 896 kB
10.4 Gbps L1-D cache: 896 kB
L2 cache: 7168 kB
L3 cache: 71680 kB

1092 Gbps

Reservoir Labs 4th International Workshop on Innovating the Network for Data Intensive Science

10

Non-linear Performance Collapse

Healthy cache regime:
- CPU operates out of cache
- High cache hit ratios

I/1O

10.4 Gbps

L1-1 cache: 896 kB
L1-D cache: 896 kB
L2 cache: 7168 kB
L3 cache: 71680 kB

f 1092 Gbps

State 1: network is the bottleneck

Reservoir Labs 4th International Workshop on Innovating the Network for Data Intensive Science

11

Non-linear Performance Collapse

Highly inefficient memory regime:
- CPU operates out of RAM
- High cache miss ratios

I/1O

10.4 Gbps

L1-1 cache: 896 kB
L1-D cache: 896 kB
L2 cache: 7168 kB
L3 cache: 71680 kB

\ 10x penalty

40Gbps 64 Gbps 56 GHz

f 1092 Gbps

State 2: network is no longer the bottleneck

Reservoir Labs 4th International Workshop on Innovating the Network for Data Intensive Science

12

Non-linear Performance Collapse

Highly inefficient memory regime:
- CPU operates out of RAM
- High cache miss ratios

I/1O

10.4 Gbps

L1-1 cache: 896 kB
L1-D cache: 896 kB
L2 cache: 7168 kB
L3 cache: 71680 kB

\ 10x penalty

40Gbps 64 Gbps 56 GHz 5
o
-
-]
* °
1092 Gbps
State 2: network is no longer the bottleneck input

By removing the network bottleneck, system spends more time processing packets that will
need to be dropped anyway — net performance degradation (performance collapse)

Reservoir Labs 4th International Workshop on Innovating the Network for Data Intensive Science

Performance Optimization: Approach

* The process of performance optimization needs to be a
meticulous one involving small but safe steps to avoid the pitfall
of pursuing short term gains that can lead to new and bigger
bottlenecks down the path.

Reservoir Labs 4th International Workshop on Innovating the Network for Data Intensive Science

14

Performance Optimization: Algorithms and Data Structures

Long queue emulation Reduces packet drops due to fixed-size
hardware rings

Lockless bimodal queues Improves packet capturing performance

Tail early dropping Increases information entropy and extracted
metadata

LFN tables Reduces state sharing overhead

Multiresolution priority queues Reduces cost of processing timers

Reservoir Labs 4th International Workshop on Innovating the Network for Data Intensive Science 15

Long Queue Emulation

Dispatcher Model: Long queue emulation Model:
@ @ @ Fetch packet °
(P e H
| [— — E
I BT (. [Unlimited size LSR ! usQ
queues (USQ) v
]
|
1
GD ‘Soﬂware
"""“-“““““““““““““““““““““-i'-l;lrdware Forward packet
Limited R
size ring |
(LSR)
LQE

) Packgt read cache penalty. - Packet drop penalty under certain
- Descriptor read cache penalty conditions

Reservoir Labs 4th International Workshop on Innovating the Network for Data Intensive Science 16

Long Queue Emulation

Lemma 1. Long queue emulation performance.

A : average packet arrival rate

Muax - Maximum packet arrival rate

W, : packet processing rate of the DT model
W, : packet processing rate of the LQE model

s, - Size of the LSR ring

s Yes
4[A2 ulqui No

Use DT

Yes I
{ Amax < Sisr * Hige ?J 1 UselQE

Reservoir Labs 4th International Workshop on Innovating the Network for Data Intensive Science

17

Long Queue Emulation

Table 1. Maximum packet pracessing time for a Solarflare SFN7122F NIC

MAnax (Gbps) [1 2 4 6 8 10
S,/ Mmax (S€CS)| 1.09 10.55 | 0.27 0.18 0.14 0.11 }\max < Sisr * Mige ?
Table 2. Packet processing time distribution. |::> Use LQE
[0, [10us, [100us,
10us) 100us) 1ms) [1ms, 10ms)|([10ms, 100ms)
305 405493 3387846 127 T
Total packets: | 3793778

Packet processing time distribution

» 3387846
| '

[0, 10us) [10us, 100us) [100us, 1ms) [Ims 10ms) lwms 100ms)

Number of packets

Packet processing time

Reservoir Labs 4th International Workshop on Innovating the Network for Data Intensive Science

Long Queue Emulation

* Optimal LQE size

Packet drops at 10Gbps

6

drops %

150buffers 750buffers 1500buffers 2048buffers 4096buffers

Size of USQ (buffers)

Reservoir Labs 4th International Workshop on Innovating the Network for Data Intensive Science

19

Lockless Bimodal Queues

« Goal: move packets from the memory ring to the disk
without using locks

Fetch packet @7
AT

usQ LSR2

Store packet

LSR1

Y

Disk

il

Forward packet

LQE+SPC

Reservoir Labs 4th International Workshop on Innovating the Network for Data Intensive Science

Lockless Bimodal Queues

« Goal: move packets from the memory ring to the disk
without using locks

1-producer-0-consumers 1-producer-1-consumer
mode mode

AQLRC -
T —©

Lockless real-time
transition

Reservoir Labs 4th International Workshop on Innovating the Network for Data Intensive Science

21

Lockless Bimodal Queues

Lockless bimodal queue without using CAS
(producer must be permanently active to avoid consumer starvation)

1 typedef struct {

2 volatile unsigned int offset_p;

3 volatile unsigned int offset_c;

4 volatile bool req; // owned by consumer
5 volatile bool ack; // owned by producer
6 packet_t* vector[RINGSIZE];

7)} ring_t;

8

9 void enqueue(ring_t* ring, packet_t* pkt) {
10 if(lring->req) {

11 if(ring->ack)

12 ring->ack = false;

13 if(ring->offset_p == ring->offset_c)
14 dequeue(ring);

15

16 else {

17 if(!ring->ack)

18 ring->ack = true;

19 while(ring->offset_p == ring->offset_c);
20 1

21 ring->vector[ring->offset_p++] = pkt;
22 }

23

24 packet_tx dequeue(ring_t*x ring) {

25 if(ring->offset_p == ring->offset_c)

26 return NULL;

27 ring->offset_c = ring->offset_c + 1 % RINGSIZE;
28 return(vector([ring->offset_c - 1]);

29 }

31 void start_c(ring_t* ring) {
32 ring->req = true;

33 while(!lring->ack);

34 }

36 void stop_c(ring_t*x ring) {
37 ring->req = false;

38 while(ring->ack);

39 }

Lockless bimodal queue using CAS
(producer does not need to be permanently active)

typedef struct {
volatile unsigned int offset_p;
volatile unsigned int offset_c;
volatile bool trans; // used to transition modes
volatile bool state; // the current mode
packet_t* vector[RINGSIZE];

} ring_t;

Wo~NaWtbd WK

void enqueue(ring_t* ring, packet_t* pkt) {
10 while(!cas(&ring->lock, false, true));
11 if(!ring->state) {

12 if(ring->offset_p == ring->offset_c)

13 dequeue(ring);

14 else

15 while(ring->offset_p == ring->offset_c);

16 ring->trans = false;

iy ¢ ring->vector[ring->offset_p++] = pkt;

18 }

19 packet_t* dequeue(ring_t*x ring) {

20 if(ring->offset_p == ring->offset_c) return NULL;
21 ring->offset_c = ring->offset_c + 1 % RINGSIZE;
22 return(ring->offset_c - 1);

23 }

24

25 void start_c(ring_t*x ring) {

26 while(!cas(&ring->trans, false, true));

27 ring—->state = true;

28 ring->trans = false;

29 }

30

31 void stop_c(ring_tx ring) {

32 while(!cas(&ring->trans, false, true));

33 ring->state = false;

34 ring->trans = false;

35 }

Reservoir Labs 4th International Workshop on Innovating the Network for Data Intensive Science

22

Tail Early Dropping

(6,) A A
t Nted
o :
N
T :
: ’
Xe] :
?.lll!!::::::::: 4

H
«—il > b,

Connection bits in sequence of arrival

Reservoir Labs

4th International Workshop on Innovating the Network for Data Intensive Science

23

Tail Early Dropping

—_—
O
— |

N
>

A ted

Information/Entropy

«—il > b
Connection bits in sequence of arrival

Fetch packet °
‘shunt TED

n

| 1 Upon receiving a packet, do:
: usQ 2 conn = lookup_connection_table(packet)
Connection| ! 3 if conn.shunt or conn.packet_rec > ted_thr:
cache E L 1] 4 drop the packet
. | [1] 5 else:
: 5 [1 6 forward the packet
; ! I 7 Periodically, do:
—+ Forward? : o 8 if system is congested:
: no 9 ted_thr = min(ted_thr / 2, ted_min);
....................) 10 else:
TED ~—— Drop f 11 ted_thr += 1;
LQE + TED

Reservoir Labs 4th International Workshop on Innovating the Network for Data Intensive Science 24

Tail Early Dropping

HTTP events
100 B w/o TED
B w/TED

o 75
[
(0]
>
)
o 50
2
3
=
o
© 25
o
5

0

500Mbps 5Gbps File events
100 . /o TED
Throughput "
W w/ TED

75

50

25

% captured events

500Mbps 5Gbps

Throughput

Reservoir Labs 4th International Workshop on Innovating the Network for Data Intensive Science 25

LFN Tables

DUL(0,5) & fumm

False negative

get(o)
. null

1

-
o’
Lt
el

True J—
S

..‘:‘ -

o S =58
get(O) s' I= null

False positive

Reservoir Labs 4th International Workshop on Innovating the Network for Data Intensive Science

26

LFN Tables

Initial state: T[e] = NULL for all e such that 0 = e < n;
Parameters:
n: size of the table
1: processor’s integer space size (typically 2732 or 2764)
h(x, k): the hash value of k modulo x
cat(x, y): concatenates the bytes from and x and y
put(k, v)
1 T[h(n, k)].value = v
2 T[h(n, k)].hash = h[1l, cat(k, v)]
get (k)
3 if T[h(n, k)].hash == h(1l, cat(k, T[h(n, k)].value)):
4 return T[h(n, k)].value
5 else:
6 return NULL

Reservoir Labs 4th International Workshop on Innovating the Network for Data Intensive Science

LFN Tables

10°
4+ —t) /
107" +
A] T
/ 4 . v
_8 10
E £, . S———
3 / /,) I Sh—
g [- A :
s
3 10° o |
3 / o
” ﬂ R -
2 [y -
% | e
g 10 | £ 7
o / =
0 /
: / 102
5] |/
R 105 |- |
ot i — RSN S
| ——
10 | B
n=10% 107
n=10a v
n=109 2
107 | n=10° [I s
[Z]
0 200000 400000 600000 800000 1e+06 o 4p8 |
Number of objects (k) _:
z
2
2 1070 | |
2
£
o
o
2 12
ﬁ 10
=
o
=®
- *77%*7*777*\;777—
10 i - £} :
1076 |
32
1=2 4
64
107 ‘ | i |=2 0
Y 200000 400000 600000 800000 1e+06

Number of objects (k)

Reservoir Labs 4th International Workshop on Innovating the Network for Data Intensive Science 28

Multiresolution Priority Queues

* Priority queue: element at the front of the queue is the greatest of all
the elements it contains, according to some total ordering defined by

their priority.

* Found at the core of important computer science problems:

» Shortest path problem

» Packet scheduling in Internet routers

« Event driven engines

« Huffman compression codes

* Operating systems

« Bayesian spam filtering

 Discrete optimization

« Simulation of colliding particles

« Artificial intelligence

Reservoir Labs

4th International Workshop on Innovating the Network for Data Intensive Science

29

Multiresolution Priority Queues

Year | Author Data structure | Insert Extract | Notes
1964 | Williams [3] Binary heap O(log(n)) | O(log(n)) | Simple to implement.
1984 | Fredman et al. | Fibonacci Heaps | O(1) O(log(n)) | More complex to implement.
[4]
1988 | Brown [8] Calendar queues | O(1) O(c) Need to be balanced and resolution

cannot be tuned.

2000 | Chazelle [9] Soft heaps O(1) O(1) Unbounded error.
2008 | Mehlhorn et Bucket queues O(1) O(c) Priorities must be small integers and
al. [7] resolution cannot be tuned.
2017 | Ros-Giralt et Multiresolution O(1), O(1) Tunable/bounded resolution error.
al. (this work) | priority queue O(r) or Error is zero if priority space is
O(log(r)) multi-resolutive.

n: number of elements in the queue
c: maximum integer priority value
r: number of resolution groups supported by the multiresolution priority queue

Reservoir Labs 4th International Workshop on Innovating the Network for Data Intensive Science 30

Multiresolution Priority Queues

« A multiresolution priority queue is a container data structure that at all
times maintains the following invariant:

Property 1. Multiresolution Priority Queue (MR-PQ) Invariant. Let ¢, and ¢, be two
arbitrary elements with priorities p, and p;, respectively, where p ., <p, <p,, and
Pmin =P; < Pmax - Then for all possible states, a multiresolution priority queue ensures that

element ¢, is dequeued before element ¢; if the following condition is true:

|_(pi _pmin)/pAJ < |_(pj‘ - pmin)/pAJ (1)

* Intuitively: :

1. Discretize the priority space into a sequence of slots or resolution
groups 2,y Lyin TPa) s [Poyin ¥ PasPyin T2 Pa) s s [Py = PasPinax)

2. Prioritize elements according to the slot in which they belong.

Elements belonging to lower slots are given higher priority.

4. Within a slot, ordering is not guaranteed. This enables a
mechanism to control the trade-off accuracy versus performance.

@

Reservoir Labs 4th International Workshop on Innovating the Network for Data Intensive Science 31

Multiresolution Priority Queues

* The larger the parameter p, — the lower the resolution of the queue — the
higher the error — the higher the performance (and vice versa)

* Instead of ordering the space of elements, an MR-PQ orders the space of
priorities.

* The information theoretic barriers of the problem are broken by introducing
error in a way that entropy is reduced:

- In many real world problems, the space of priorities has much lower
entropy than the space of keys.

- Example:
- Space of keys is the set of real numbers (S,)
- Space of priorities is the set of distances between any two US cities (Sp)

- Entropy(S,) >> Entropy(Sp)

Reservoir Labs 4th International Workshop on Innovating the Network for Data Intensive Science 32

Multiresolution Priority Queues

* How it works through an example.

Let a multiresolution priority queue have parameters p, = 3, p_. = 7 and

min
Py = 31, and assume we insert seven elements with priorities 19, 11, 17,
12, 24, 22 and 29 (inserted in this order). Then:

queue :

l RG 1 RG 2 RG 3 RG 4 RG 5
1

——————————— '-——__-||____—.||_____——___Il___

| 1 | 1 1

4 P 12 Ma 11 M 17 W 19 B 22 Ma 24 Ma 29 |
| 1 | 1 :

1

________ “{
: [

7‘10‘13‘16‘19‘22 25‘28

Reservoir Labs 4th International Workshop on Innovating the Network for Data Intensive Science

Multiresolution Priority Queues: Base Algorithm

BUILD(q)

sentinel = alloc_element();
queue = sentinel;
queue->next = queue;
gqueue->prev = queue;
gltsize = (pmax-pmin)/pdelta + 1;
for i in [1, qltsize):
glt[i] = NULL;
glt[0] = queue;
queue->prio = pmin - pdelta;

OWCoOoO~NOOUTLDA, WN K

Reservoir Labs 4th International Workshop on Innovating the Network for Data Intensive Science

34

Multiresolution Priority Queues: Base Algorithm

QLTSLOT(e)

24

slot = (int) ((e->prio - queue->prio)/pdelta);

25 return slot;

INSERT(e)

10 slot = slot_iter = QLTSLOT(e);

11 while qlt[slot_iter] == NULL:

12 g lot._Ater—;

13 if slot_iter == slot: // Add to the left
14 e->next = qlt[slot];

15 e->prev = gqlt[slot]->prev;

16 glt[slot]->prev->next = e;

17 glt[slot]->prev = e;

18 else: // Add to the right

19 e->next = glt[slot_diter]->next;
20 e->prev = glt[slot_-iter];

21 glt[slot_iter]->next->prev = e;
22 glt[slot_iter]->next = e;

23 glt[slot] = e;

Reservoir Labs

4th International Workshop on Innovating the Network for Data Intensive Science

35

Multiresolution Priority Queues: Base Algorithm

QLTREPAIR(e)

34 slot = QLTSLOT(e);

35 1if glt[slot] = e:

36 return; // Nothing to fix

37 1if slot == QLTSLOT(e->prev):

38 gqlt[slot] = e->prev; // Fix the slot

39 else:

40 glt[slot] = NULL; // No elements left 1in
slot

EXTRACT(e)

30 e->prev->next = e->next;

31 e->next->prev = e->prev;

32 QLTREPAIR(e);

33 return e;

Reservoir Labs

4th International Workshop on Innovating the Network for Data Intensive Science

36

Multiresolution Priority Queues: Base Algorithm

PEEK()

26 e = g->next;

27 1if e == q:

28 return NULL; // Queue 1is empty
29 return e;

EXTRACTMIN()

41 e = PEek();
42 EXTRACT(e);
43 return e;

Reservoir Labs

4th International Workshop on Innovating the Network for Data Intensive Science

37

Multiresolution Priority Queues: Correctness and Complexity

Lemma 1. Correctness of the MR-PQ algorithm. The Inserr and Remove
routines preserve the MR-PQ invariant (Property 1).

Lemma 2. Complexity of the MR-PQ algorithm. The worst case
complexity of the MR-PQ algorithm for the Insert routine is O(r), where
r = Qe — PP 18 the number of resolution groups supported by the
queue. The complexity of the Inserr routine becomes O(1) if there is at

least one element in each slot. The complexity of the Peek, ExtractMin and
ExtracT routines is O(1).

Reservoir Labs 4th International Workshop on Innovating the Network for Data Intensive Science 38

Multi-resolutive Priority Spaces

Definition. Multi-resolutive priority space. Let P be the set of possible priorities that the
elements in a priority queue can take and assume that {p,(?), p,(?), ..., p,(¥)} is the set

of priorities of the elements stored in the queue at an arbitrary time t. We will say that
is multi-resolutive with resolution r if there exists a set {P,, P,, ..., P} such that the

following three conditions are true

(M UP=Pand P, NP, =S fori#j (ie. {P, P, ..., P}is anr-part partition of P)

i=1

(2)if p,t) € P, then p;(®) € P, Vj#i and Vit
(3)and r is minimal.

« Example:

Consider the priority set of real numbers, P = R and assume that at any arbitrary time,
any two elements ¢; and e in the queue are guaranteed to not have priorities closer than

a nor further than b: |p,-p|>a and |p,—p|<b. Then we can say that P is
multi-resolutive with resolution ™ = [b/a],

Reservoir Labs 4th International Workshop on Innovating the Network for Data Intensive Science

39

Multi-resolutive Priority Spaces

* Problems with multi-resolutive priority spaces can be
resolved by a multi-resolution priority queue at a faster
speed and without adding any additional error. In this
case, we achieve better performance at no cost.

 If condition (2) does not hold, then an error is

introduced but the entropy of the problem stays
constant. In this case, we also achieve Dbetter
performance but at the cost of losing some accuracy.

Reservoir Labs 4th International Workshop on Innovating the Network for Data Intensive Science

40

Multi-resolutive Priority Spaces

* We can apply the rules of multi-resolutive priority spaces to optimize
the performance of problems involving priority queues.

« Example. Consider the classic shortest path problem, known to have a
complexity of O((v+e)log(v)), for a graph with v vertices and e edges
(See Section 24.3 of [2]). By using a multiresolution priority queue we
have:

- If the graph is such that the edge weights define a multi-resolutive
priority space, then using MR-PQ we can find the exact shortest
path with a cost O(v+e).

- Otherwise, we can find the approximate shortest path with a cost
O(v+e) and with a controllable error given by the parameter r.

Reservoir Labs 4th International Workshop on Innovating the Network for Data Intensive Science

41

Multiresolution Priority Queues: Support for Sliding Priorities

* The base MR-PQ algorithm assumes priorities are in the
set [pmin, pmax).

- Data structure can be generalized to support priorities in
the set [p_. +d(t), p__+d(t), where d(t) is any
monotonically increasing function of a parameter t.

* The case of sliding priority sets is particularly relevant to
applications that run event-driven engines. (See for
example Section 6.5 of [2].)

Reservoir Labs 4th International Workshop on Innovating the Network for Data Intensive Science 42

Multiresolution Priority Queues: Support for Sliding Priorities

+ Sliding priorities can be supported with a few additional lines of code:

QLTSLIDE(prio)

44 shift = (prio - queue->prio)/pdelta - 1;
45 +if shift < 1:

46 return;

47 for i 1in [1, qltsize):

48 if i < gltsize - shift:

49 gltl7] = gleli + shift]l;
50 else

51 glt[i] = 0;

52 queue->prio = prio - pdelta;

EXTRACTMIN()

53 e = PEek();

54 EXTRACT(e);

55 QLTSLIDE(e->prio); // Added to support sliding
// priorities

56 return e;

Lemma 3. Correctness of the MR-PQ algorithm with sliding priorities. The
modified ExtractMin routine preserves the MR-PQ invariant (Property 1).

Reservoir Labs 4th International Workshop on Innovating the Network for Data Intensive Science 43

Multiresolution Priority Queues: Binary Heap Based Optimization

« When not all the slots in the QLT table are filled in, performance can be
improved by implementing the QLT table using a binary heap.

* Let a multiresolution priority queue have parameters p,=3,p . =7andp__ =
31, and assume we insert seven elements with priorities 19, 11, 17, 12, 24, 22

and 29 (inserted in this order). Then:

| A N n A I A 1
L L T R T S S T, T I

Reservoir Labs 4th International Workshop on Innovating the Network for Data Intensive Science 44

Multiresolution Priority Queues: Complexity Analysis

Table 1. Computational cost.

Algorithm INSERT Peek | ExTRACTMIN EXTRACT
BH-PQ log(n) O(1) log(n) log(n)
MR-PQ| O(r) or O(1) | 0Q1) 0(1) O(1)

BT-MR-PQ| O(log(r)) 0(1) 0(1) O(1)

Reservoir Labs 4th International Workshop on Innovating the Network for Data Intensive Science

45

Multiresolution Priority Queues: Benchmarks

* We use MR-PQ to resolve a real world HPC problem.

* Problem statement: when running the Bro network analyzer [12] against very
high speed traffic consisting of many short lived connections, the
BubbleDown operation in the (binary heap based) priority queue used to
manage Bro timers becomes a main system bottleneck.

* Top functions in Bro according to their computational cost:

Total: 63724 samples
4139 6.5% PriorityQueue: :BubbleDown
2500 3.9% SLL_Pop

1899 3.0% Ref

1829 2.9% Unref

1701 2.7% PackedCache: :KeyMatch
1587 2.4% Attributes::FindAttr
1249 2.0% Dictionary::Lookup
1184 1.9% NameExpr::Eval

Reservoir Labs 4th International Workshop on Innovating the Network for Data Intensive Science 46

Multiresolution Priority Queues: Benchmarks

net_run

20 (0.0%
of 63491 (99.7%)

- Call graph showing the s

. PkiSrc Manager
Process FindSoonest
BubbleDown function
of 55053 (86.4%) of 4404 (6.9%)

as the main bottleneck o™

Y
fosource
PktSre
NextTimestamp
19.(0.0%)
of 2903 (4.6%)
N ;
| 19987 > 11433 12883
\ <
A 4 L W | fosource
NetSessions expire_timers, PkiSrc
NextPacket (inline) ExtractNextPacketInternal
44(0.1%) 15 (0.0%) inline)
of 19987 (31.4%) of 12211 (19.2%) 12 (0.0%)
of 2883 (4.5%)
19913 12157
A 4 A
NetSessions PQ_TimerMgr
DoNextPacket DoAdvance
60 (0.1%) 30 (0.0%)
of 19913 (31.3%) of 12157 (19.1%)
‘ .
1375*\4184 13744 . 3218
§ “a
Connection NetSessions. Connection
NextPacket NewConn DeleteTimer
14 (0.0%) (0.0%) (
of 13757 (21.6%) of 3813 (6.0%) of 4184 (6.6%) of 3218 (5.1%)
13743 \3805
analyzer X “ pow —
Analyzer PriorityQueue NetSessions
NextPacket 509 | R s @i 0
130 (0.2%) of 3805 (6.0%) of 5518 (8.7%)
of 13743 (21.6%) T
q .
\ \
158 10445 3230 13800 3189
analyzer 1 h | —
pe: analyzer PriorityQueue bt
p udp BubbleD fep
TCP_Analyzer UDP_Analyzer OO TCP_Analyzer
2 . (inline) 649
DeliverPacket 2 26.01%)
201 (0.3%) rarst o) of 4209 (66%) 1200%)
3230 (5.1% 2 %; 4733 (7.4%
of 10445 (16.4%) — i of 4733 (7 4%) |
T \
6781 3140 \as14
/
" 14 PriorityQueue A /
4 analyzer analyzer
TCP_Amlyrer Analyzer BubbleDown Anayzer
DeliverData ForwardPacket 4073 6 47 Done
(inline) 33(0.1%) 146 (0.2%;
2(0.0%) of 3140 (4.9%) (: 0) o
of 6781 (10.6%)

\ of 4161 (6.5%) | Lo

Reservoir Labs 4th International Workshop on Innovating the Network for Data Intensive Science 47

Multiresolution Priority Queues: Benchmarks

BH-PQ: Bro with its standard binary heap based priority queue to manage timers
MR-PQ: Bro using a multiresolution priority queue to manage timers

Packet drop rate (%)

50
N BH-PQ M MR-PQ

38

25

13

0

2000 4000 6000 8000 10000
Input rate (Mbps)

Reservoir Labs

4th International Workshop on Innovating the Network for Data Intensive Science

48

Multiresolution Priority Queues: Benchmarks

BH-PQ: Bro with its standard binary heap based priority queue to manage timers
MR-PQ: Bro using a multiresolution priority queue to manage timers

Events (Millions)

90
Il BH-PQ N MR-PQ

75

60

74 |8
45
36
0 5

2000 4000 6000 8000 10000
Input rate (Mbps)

Reservoir Labs

4th International Workshop on Innovating the Network for Data Intensive Science 49

Multiresolution Priority Queues: Benchmarks

BH-PQ: Bro with its standard binary heap based priority queue to manage timers
MR-PQ: Bro using a multiresolution priority queue to manage timers

Files (Millions)

5.0
I Files BH-PQ Il MR-PQ

2000 4000 6000 8000 10000
Input rate (Mbps)

Reservoir Labs 4th International Workshop on Innovating the Network for Data Intensive Science

50

Multiresolution Priority Queues: Benchmarks

BH-PQ: Bro with its standard binary heap based priority queue to manage timers
MR-PQ: Bro using a multiresolution priority queue to manage timers

Cache miss ratio (%)

24
N BH-PC N MR-PQ

18

2000 4000 6000 8000 10000
Input rate (Mbps)

Reservoir Labs 4th International Workshop on Innovating the Network for Data Intensive Science

51

Multiresolution Priority Queues: Benchmarks

BH-PQ: Bro with its standard binary heap based priority queue to manage timers
MR-PQ: Bro using a multiresolution priority queue to manage timers

Instructions per cycle
1.40

N EH-PQ W MR-PQ
1.20
1.00
0.80

0.60

0.40

2000 4000 6000 8000 10000
Input rate (Mbps)

Reservoir Labs

4th International Workshop on Innovating the Network for Data Intensive Science

52

R-Scope Network Security Sensor: System Wide Benchmarks

Events (Millions)

1o B Stock Bro Myri B R-Scope Myri/mCore B R-Scope SF/mCore+

84 i

75

50

25

2000 4000 6000 8000 10000
Throughput (Mbps)

Reservoir Labs 4th International Workshop on Innovating the Network for Data Intensive Science 53

R-Scope Network Security Sensor: System Wide Benchmarks

Connections (Millions)

50 B Stock Bro Myri B R-Scope Myri/mCore B R-Scope SF/mCore+

44
40 41

30

20

10

2000 4000 6000 8000 10000

Throughput (Mbps)

Reservoir Labs 4th International Workshop on Innovating the Network for Data Intensive Science 54

R-Scope Providing Deep Network Visibility at SC2017 / SCinet

Denver to Become Epicenter for Fastest Internet and Computers in the
World

Massive 1 Terabit Network to Support High Performance Computing

Demonstrations at SC13 Conference

N e R W T o ot
(=7 CenturyLink> (zavo e A) 1
ek) 1 & — ~m 8 : "7
4 4 A 4 o c0|hpc TS eors, Taa
Bl i . e S ey

U

Seu

Y ’

e . 5\~,,\ e
[|

EEi

£

40 Gigabl Ethemet

nnnnnnnnnnnn

Reservoir Labs 4th International Workshop on Innovating the Network for Data Intensive Science

R-Scope Providing Deep Network Visibility at SC2017 / SCinet

,' S W»‘- ‘ :“ @mx ("
&) = e O Ton ik 1
IR G Gigamon’® GigaVUE-HDS8
%) ~ 3 =
< o 2 5. :
” *I-OX ,%5,5.6,5:5,5'6.5 50_05; 98¢ I
3 NE°¢ v o @ e $%6%%: < "9%% |1

== 1§
=— —ﬁ,
EI

eanan |

lll¥l1l!l{l! I I

Thank You

Reservoir Labs

632 Broadway
Suite 803
New York, NY 10012

812 SW Washington St.
Suite 1200
Portland, OR 97205

Reservoir Labs

4th International Workshop on Innovating the Network for Data Intensive Science

o7

