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Detection Under Partial Information: Mathematical Framework

e |dentifying heavy hitter flows by inspecting all packets is not
feasible.

e Packet sampling is introduced to make detection algorithms
scalable.

e This leads to the problem of flow reconstruction under partial
information.

e Two sources of uncertainty: (1) packet sampling and (2) inability
to predict future flow performance.
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Detection Under Partial Information: Mathematical Framework

 Information theoretic framework: what is the minimum amount of information
(packets) we need to detect heavy hitter flows with a user specified level of
accuracy?

e Theory of Elephant Flow Detection under Partial Information: IEEE ISNCC 2018
Ros-Giralt et al. Reservoir Labs.
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The Problem of Elephant Flow Detection: Related Work

* To the best of our knowledge, all existing solutions require threshold parameters:
 /Zhang 2010: Bayesian single sampling (high-rate flow traffic ratio threshold p*)
e Yi 2007: ElephantTrap algorithm (sampling rate p, top talker threshold L)
e Psounis 2005: SIFT algorithm (sampling rate p).
o Etc.
e Qur contribution:
e Threshold-free algorithm.
o User-defined accuracy: first algorithm to accurately compute detection likelihood.
 Mathematically proven convergence: O(1/n)

e Scalable streaming/delta computations.
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Introduction to Dirichlet-Categorical Inference

Goal is to infer the distribution of flow sizes in a network.

Normalize flow sizes to one.

The flow distribution then turns into a categorical distribution.

Our new goal is to efficiently compute the posterior of the categorical
distribution induced by the flow sizes.

O ¥

Examples of posterior distributions over the
space of categorical distributions with three
classes
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Introduction to Dirichlet-Categorical Inference

e Dirichlet distribution is the conjugate prior of a categorical likelihood

function.
o Posterior distribution is an analytic update of Dirichlet parameters:
F.lOW Dirichlet parameters
Sizes
p@: D] Prior
Count size n — ceey n*y] ] Observations
p(0'|n) p— DZT(O‘)@ ] Posterior

Analytic
update

* Yields efficient inference procedure for categorical distributions.
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Detection of Elephant Flows by Dirichlet-Categorical Inference

Lemma 3: Lower bound detection likelihood with
Bayesian inference. The detection likelihood of a data
network at time ¢ in the framework of Bayesian inference
of the flow sizes o; satisfies:

Quantum error at time t

Objective: to efficiently
compute these terms
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Introduction to Dirichlet-Categorical Inference

e Marginals of Dirichlet distribution are Beta distributions:

Dirichlet distribution _ _1
Beta distribution ’. Hz— ( )
Marginal of Dirichlet B(Ozi, Qg — ai)
distribution

e Each flow’s marginal posterior distribution is Beta-distributed

Oti—].
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Detection of Elephant Flows by Dirichlet-Categorical Inference

 Each such term is an inequality between Beta distributions

I PO

1€Fc,jEF\Fe

XZ-": z; )= B, a9 — o) P(oi(>)o;) = /01 (/:pz'(y)dy> pj(x)dz
p(o) = Dir(o; )

X = B(a,b) Y = B(c,d)

g(a,b,c,d) = P(X >Y)
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Online Updates of Beta Inequalities

e Online Updates given by [Cook2005]
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Dirichlet-Categorical Inference: Algorithm

process_sample()

* Initialize all pairwiseO——— :
probabilities to 0.5 45

e For every sample received:

o Update the pairwiseO
probabilities

o (alculate the detectionO——

likelihoods

e |dentify the number of O—
elephant flows and
dynamically adjust the
sampling rate

Algorithm 1: process_sample()

1 Initialize p[y][7];
2 Initialize a[y];

3 Initialize b[y];

4 Initialize d[y — 1];

8 begin

or 1 <i<~vydo
for 1 <j <~vdo
| plill) = 0.5;

9 for sample s; do

10
11
(<~ )

12
13

14
15

16

17

—

18
19
20

for 1 <i<~vydo
for 1 <j<~vydo
if s; is from flow i and not flow j then
plil[j] =
pli][j] + g1.0(ald], bld], al], b[s]);
if s; is from flow j and not flow i then
plil[j] =
plillJ] + go.1(ali], i), alj], b[j]):
if s; is neither from flow i nor flow j
then
plillj] =
pli][5] + go.0(ald], bld], alj], b[s]);
if s; is from flow i then
| ali] =ali] +1;
else
| bi] = b[i] + 1;
d = calculate_detection_likelihoods();
choose_e_and_adjust_sampling_rate();
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Dirichlet-Categorical Inference: Algorithm

calculate detection_likelihoods()

 Compute a vector d which stores inQ——
position i the detection likelihood for
the top i flows to be the elephant
flows

1 begin

choose_e and_adjust_sampling_rate()

 Report best_e to be the largest e above O—
the target detection likelihood

* If no e is above the detection O
likelihood, do not report a best e and
increase the sampling rate

» Ifaneis found (we have enough—

information) decrease the sampling

o
C\DM\IU\U‘IBM]N

11
12

13

Initialize d[|F'| — 1];
for 1 <i < |F| do
if 7 =1 then
dfi] =1
for 2 < j < |F| do
| d[1] = d1] - pl1ls);

dfi] = d[i — 1;
for1<j<i—1do
4 dli] .
| dli) = ooy
for i +1<j<|F| do
| dli] = dfi] - p[d][5]

else

1 targety;: target detection likelihood;
2 begin

rate

Gl s

Y

best_e = —1;
for 1 <e<~v—-1do
if d[e] > targety then
| best_c = €;

if best_e = —1 then

| increase_sampling_rate();
else

| decrease_sampling_rate();
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Dirichlet-Categorical Inference: Theory

Lemma 4: Computational Complexity. The total cost of
the Dirichlet detection algorithm is O(~?)

Lemma 5: Order of Time Convergence. As the number
of the packets observed n increases, under the assumption
of expected asymptotic behavior, the probability of our
algorithm misclassifying any flow goes to O at a rate of
0 (1).

n
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Dirichlet-Categorical Inference: Synthetic Experiments

Gaussian | Laplace | Sech-square | Cauchy Linear
— 142 —i T8 ° T4 :
Tie 2 Tie " (te 02 T2 Ti(y — %)

e (reated synthetic flow distributions following Gaussian, Laplace, Sech-square, Cauchy, and
Linear distributions

e Randomly generated flows from these distributions and measured detection likelihoods
based on these samples

« Measured entropy of posterior distribution after each iteration

« Performed experiment for 10, 20, 50, 100, and 200 flows
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Dirichlet-Categorical Inference: Synthetic Results
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Dirichlet-Categorical Inference: SDN Experiments

o (Created an SDN testbed using Open vSwitch for network engineering and Linux KVM for
virtualization of hosts on our network

* Simulated network had two nodes and one virtual switch between them
o Packets were sampled on the switch using sFlow
 Modified sFlow to perform dynamic sampling

e Server hosting the network had 2 Xeon E5-2670 CPUs for a total of 32 cores and 64GB of
RAM.

o Traffic alternated at 30s intervals between disjoint distributions with 5 elephant flows
and 10 elephant flows

o Traffic on link was on average on the order of 100Mb/s

 Comparison between static sampling method with sampling rate of 0.01 [Psounis], and
Dirichlet method with dynamic sampling
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Dirichlet-Categorical Inference: SDN Results

Elephant flows

Elephant flows and Detection Likelihood
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Comparison with Static Sampling Rate

e Quantum error: the number of flows that an algorithm misclassifies
divided by the true number of elephant flows

e Quantum error rate (QER): average quantum error over all time points:
e Static sampling: 0.19844
e Dirichlet method: 0.008953
* Improvement by a factor of 22

 In addition, detection likelihood is a standalone module that can be
placed on top of any existing static sampling rate method.

o Detection likelihood is complementary, not competitive.
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Conclusion

« We have presented a new algorithm which identifies elephant flows
within the Bayesian inference framework.

e Qur algorithm is threshold-free, uses dynamic sampling, has proven
convergence, and high classification accuracy.

 Dynamic sampling is based on detection likelihood, a quantification of
uncertainty in our algorithm.

e (apable of automatically finding the cut-off sampling rate.

o Forthcoming work will integrate this algorithm in real datacenter and
wide-area SDN environments.

Reservoir Labs  Supercomputing Conference: Innovating the Network for Data-Intensive Science (INDIS) Workshop 20



Thank You

Reservoir Labs

632 Broadway
Suite 803
New York, NY 10012

812 SW Washington St.
Suite 1200
Portland, OR 97205

Reservoir Labs

Supercomputing Conference: Innovating the Network for Data-Intensive Science (INDIS) Workshop

21



References

J. D. Cook, “Exact Calculation of Beta Inequalities,” UT MD Anderson Cancer Center Department of
Biostatistics, Houston, Texas, Tech. Rep., 2005. [Online]. Available:
https://www.johndcook.com/UTMDABTR-005-05.pdf

K. Psounis, A. Ghosh, B. Prabhakar, and G. Wang, “SIFT: A simple algorithm for tracking elephant
flows, and taking advantage of power laws,” 2005.

L. Yi, W. Mei, B. Prabhakar, and F. Bonomi, “ElephantTrap: A low cost device for identifying large
flows,” in Proceedings - 15th Annual IEEE Symposium on High-Performance Interconnects, HOT
Interconnects, 2007, pp. 99-105.

Y. Zhang, B. Fang, and Y. Zhang, “Identifying high-rate flows based on Bayesian single sampling,” in
ICCET 2010 - 2010 International Conference on Computer Engineering and Technology, Proceedings,
vol. 1, 2010.

Reservoir Labs  Supercomputing Conference: Innovating the Network for Data-Intensive Science (INDIS) Workshop



Additional Backup Slides for Q&A
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Dirichlet-Categorical Inference: Implementation

Flow counts are stored in a cache of size gamma

Flow housekeeping

* Flows which have not been seen within a certain period of time are removed from the
cache

Unique count optimization
* Pairwise probability updates are same for flows with the same observation counts
* Flow counts follow a power law distribution [Zhang2010]

e Drastically reduces the amount of redundant computation, as flow counts are
concentrated in a few small numbers

Ghost Flow Protocol

o Always keep a ghost flow in the pairwise probability table with a count size of 1
« When a new flow enters, copy the ghost flow probabilities

 Amortise the cost of adding a new flow
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Dirichlet-Categorical Inference: QER Supplementary Material

e Measured the QER of Dirichlet Method over all time points, including time
points when Dirichlet refrained from producing output
o Static sampling: 0.19844

o Dirichlet: 0.03072625698
 |mprovement by a factor of 6.5
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