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Users have allocations on multiple compute resources
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MPICH-G
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Motivation and Goals

e Execution times of MPIl applications over WAN depend on
connection Round Trip Time (RTT) and loss rate

 Distributed computations need to account for them to be
efficient

e Estimate connection RTT & loss rate using MPl measurements
— Better align distributed computations to network connections

- Adapt workflows to dynamic network conditions, e.g., unexpected
Increase in losses

« Study strengths & limitations of ML methods in estimating
network-level parameters using application-level measurements

— Use MPI measurements to estimate connection RTT & loss rate

%OAK RIDGE

National Laboratory



Testbed

Compute cluster enhanced with Ethernet connections
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Chaotic map diagnosis code

chaotic-map: running rtt: 366ms -- test num: 102

compute
ThuJun 7 15:20:12 EDT 2018 | one | compute
Number of cores detected=24 TOi.ﬂ taif2
Diagnosis completed ."~.,. “a"‘
Diagnosis Summary: l Ethernet w Mellanox
Core 0: output: 0.932237 : 938210F1 LAN switeh 100GigE
Core 1: output: 0.932237 :938210F1 - .
Core 2: output: 0.932237 :938210F1 e — Cisco
WAN switch Nexus 7000
Core 21: output: 0.932237 :938210F1 . . 100GigE
Core 22: output: 0.932237 :938210F1 - .
Core 23: output: 0.932237 :938210F1 Ethernet ANUE/Ixia
10GigE emulator 10GigE
Thu Jun 7 15:20:39 EDT 2018
errors during
27 sec execution time for 366ms RTT WAN Ethernet transfers
MPI demonstrates over round-the-earth distances lead to different outputs
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MPI over WAN

lglgl execution times over long-distance

o5 | o
20t
—Median
S 15 | + u
$ 15 B |——25%75%
==l —9%-91%
bl =
EE
S — =
TEET
0 L L R
rtt - m
lobe
<0cross coun’rry> ACross
04K RIDGE continents
T



%OAK

MPI over WAN at different loss rates
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Five machine learning methods

- Linear regression
- Four non-linear estimates

-  Two smooth:

—  Support Vector Machine (SVM) and Gaussian Process Regression
(GPR)

- Two non-smooth:
- Ensemble of Tree (EOT) and Regression Trees (RT)
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MPI over WAN
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RTT Estimates: No loss Scenarios

RTT estimation HTCP RTT estimation CUBIC
400 - - T 400 T . : ——
+ true RTT - + true RTT T
ensemble of trees ensemble of trees i
300 + Guassian process regression | 300 | Guassian process regression
linear regression | linear regression |
regression trees ‘ regression trees |
support vector machine 200} support vector machine
- | . l i
M 100 | ifim
| o
100 | T M
A A A 0
0 W L ' L ) _1 00 ! I ! L '
0 20 40 60 80 100 120 0 20 40 60 80 100
index index
method EOT GPR RT LR SVM
CUBIC no loss - rms 22.56 | 18.05 | 20.71 16.68 16.88 l«——— CUBIC > 16
HTCP < 9 ——| HTCP no loss - rms 8.72 7.32 6.27 7.52
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Linear regression: periodic losses

LR -loss estimation: periodic
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LR - loss regression: periodic
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Linear regression: deep dive
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RTT regression HTCP
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= Under 0.1-20% losses
= Data plot has high scatter
= X-range: from [0,27] to [0,500] outliers

= Linear regression is not good fit due to
non-linear scatter



Support vector machines

= SVM -loss estimation: periodic SVM - loss regression: periodic
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Gaussian process regression

GPR -loss estimation: periodic
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Ensemble of trees
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Regression trees
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Root mean square error of ML methods

RTT
method EOT | GPR RT LR SVM
CUBIC no loss - rms 22.56 | 18.05 | 20.71 16.68 16.88
HTCP no loss - rms 8.72 7.32 6.27 7.49 7.52
HTCP periodic loss - rms | 52.67 | 48.76 | 34.14 | 102.55 | 105.24
method EOT | GPR RT LR SVM
periodic aggregate - rms 52.67 | 48.76 | 34.14 | 102.55 | 105.24
periodic 0.1, 1% loss - rms 9.19 | 10.66 8.85 54.13 42.77
periodic 10, 20% loss - rms | 84.06 | 75.39 | 69.76 | 135.79 | 14242
Loss rate
method EOT | GPR LR RT | SVM
percent -rms | 4.14 | 392 | 6.19 | 3.84 6.23
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Summary

» Studied strengths & limitations of ML methods in estimating
network-level parameters using application-level measurements

 Ensemble of Trees (EOT), Gaussian Process Regression (GPR),
Linear Regression (LR), Regression Trees(RT), and SVM

— Accurate estimates at low loss rate (1%) but inaccurate at higher rates
— Non-linearity better estimates but smoothness has mixed results

« MPI codes on federated supercomputers
- Mapping based on long-term statistics or dynamic estimation

» Future Direction:s:
- Performance under random network losses (uniform, poisson, gaussian)

- Detailed performance analysis of ML methods: Vapnik's generalization
%OAKRIDGE

National Laboratory



Acknowledgements

OAK
RIDGE

National Laboratory

This work is funded by RAMSES Project, Office of Advanced Computing Research, U.S.
Department of Energy, performed at Oak Ridge National Laboratory managed by UT-Battelle
under Contract No. DE-AC05-000R22725. This work is also supported by the United States

Department of Defense (DoD) and used resources of the DoD Computational Research and
Development Programs at Oak Ridge National Laboratory.

OAK
RIDGE

National Laboratory



MPI - A Distance Scalability Perspective

MPI has been predominantly used in single facility systems with connections over
- Ethernet LAN
- Infiniband (IB) network
- custom inferconnects of supercomputers
IB networks deployed in HPC facilities
- subject to 2.5ms timeout - effective to tens of miles
Longer connections: Ethernet

- Transmission Conftrol Protocol (TCP) is a primary transport mechanism utilized by MPI

Motivation
» Recent experimental results show MPI primitives scale to round-the-earth distances
- Rao et al, Syscon2019

» Execution times of MPI communications operations, hence entire computation, depend
on connection RTT and loss rate

- highly non-linear TCP lead to complicated dynamics of execution times

» Question addressed here: How o “invert” the measured execution times to estimate
connection RTT and loss rate?
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%

Five Machine Learning Methods

Represent different design principles — no rigorous way to identify universally best method
* Linear regression (LR): baseline estimator
* Four non-linear estimates:
» two smooth: Support Vector Machine (SVM) and Gaussian Process Regression (GPR)

» two non-smooth: Ensemble of Tree (EOT) and Regression Trees (RT)

Support Vector Machine and Ensemble of Tree and

Gaussian Process Regression Regression Trees

* smooth estimator * non-smooth estimator

* non-linear mapping from input space * mapping input dataset into
into destination space collection of trees

‘_._‘Q

Results based on matlab toolbox
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Regression Estimation Formulation

R: random variable representing RTT
L: random variable representing loss rate
E: random variable representing execution time of MPI primitive code

= distributed according to Pg,r,L
— quite complex and typically unknown distribution — depends on various properties

. network connection: RTT, loss rate
. Methods:
: host system: CPUs, NIC Ensemble of Tree (EOT)

e software stack: OS, network and MPI modules Gaussian Process Regr. (GPR)
= RTT-regression function: expected value of RTT at E = e given by Linear regression (LR)

Regression Trees (RT)
o) = [ Rabrp

Support Vector Machine (SVM)
which is averaged over both R and L
— its estimate ff using method A € A = {EOT,GPR,LR,RT,SVM }
= Loss-regression function: expected value of loss rate at E = e given by

FH(e) = / LdPp 1.

lts estimate ffg using method 4 € A= {EOT,GPR,LR,RT,SVM}
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Estimates Presented as Composite Plots

Composite Plot: Provides a snapshot of the estimate at all measurements
® Joss rate: increased left to right

® at each loss rate, RTT increased left to right
® at each RTT, measurements are repeated 10 times
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Measurements Summary:
Average Execution times: different loss rates

periodic losses
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External packet losses are introduced by ANUE/Ixia emulator
Observations:
* Low loss rates: execution times determined primarily by RTT

» Higher loss rates: execution times dominated by loss rates - result of TCP loss recovery response:
* higher loss rates: few code executions are not completed due to communications time-out
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Results Summary

Study of strengths and limitations of machine learning methods to:
» Estimate connection RTT and loss rate using execution times of MPI Sendrecv operations

* Using measurements over 10Gbps emulated connections with
- 0-366ms Round-Trip Times (RTT)

* represent connection lengths ranging from local to round the earth distances
- Additionally, externally infroduced packet losses over these connections

Machine Learning Methods:

 Ensemble of Trees (EOT), Gaussian Process Regression (GPR), Linear Regression (LR),
Regression Trees(RT), and Support Vector Machines (SVM)

» Disparate design properties: (a) linear and non-linear, and (b) smooth and non-smooth

Provide useful qualitative insights into strengths and limitations of machine learning methods:
* Low loss rates: execution times determined primarily by RTT and accurately estimated
» Higher loss rates: execution fimes dominated by complex, non-linear TCP response:

- loss rates of 10% or higher: show limitations of machine learning methods

OAK RIDGE
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Conclusions

Summary: Studied strengths and limitations of machine learning methods for estimating network
parameters using application-level measurements:

* Recent results: distance-scalability of MPI over long connections under external packet losses

e In this paper: machine learning methods can be applied in principle to estimate connection RTT
and loss rate using execution time measurements of MPI SendReceive operations

e Datasets: MPI_measurements over 10Gbps Ethernet emulated connection with 0-366 RTT under
periodic losses up to 20%

» Conclusions: Accurate estimates under low loss rate (1%) but inaccurate at higher rates
- Non-linearity provides better estimates but smoothness has mixed results: RT and GPR are top two

Implications: MPI codes on federated supercomputers located sites across the globe
— Codes account for latency and loss rates — mapping based on long-term statistics or dynamic estimation

Future Directions:
— Performance under random network losses
* uniform, Poisson and Gaussian — to be presented at MLN2019
e more redalistic scenarios

OAKRI_DGI[ZDeTO“ed performance analysis of machine learning methods: Vapnik’s generalization
National Laboratory



