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Distributed computations across geographically dispersed facilities

Supercomputer
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Near real-time analysis

Tues, Nov. 19th 1:15pm at SC theater near SCinet booth 1081
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SC19 technology challenge – Near real-time analysis of streaming synchrotron data
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Users have allocations on multiple compute resources
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Performed Data Transfers in steps 2-4:
2: Projection dataset (input) transfer
3: Script file (e.g. bash) transfer
4: Reconstructed image (output) transfer
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MPICH-G
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• Execution times of MPI applications over WAN depend on 
connection Round Trip Time (RTT) and loss rate

• Distributed computations need to account for them to be 
efficient

• Estimate connection RTT & loss rate using MPI measurements
– Better align distributed computations to network connections 
– Adapt workflows to dynamic network conditions, e.g., unexpected 

increase in losses

• Study strengths & limitations of ML methods in estimating 
network-level parameters using application-level measurements
– Use MPI measurements to estimate connection RTT & loss rate

Motivation and Goals
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chaotic-map: running rtt: 366ms -- test num: 102

Thu Jun  7 15:20:12 EDT 2018

Number of cores detected=24

Diagnosis completed

Diagnosis Summary:     

Core 0: output: 0.932237   : 938210F1     

Core 1: output: 0.932237   : 938210F1     

Core 2: output: 0.932237   : 938210F1     

Core 21: output: 0.932237   : 938210F1     

Core 22: output: 0.932237   : 938210F1     

Core 23: output: 0.932237   : 938210F1

Thu Jun  7 15:20:39 EDT 2018
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errors during
WAN Ethernet transfers 
lead to different outputs

27 sec execution time for 366ms RTT
MPI demonstrates over round-the-earth distances

Chaotic map diagnosis code
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across country
globeacross 

continents

MPI over WAN
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MPI over WAN at different loss rates
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Five machine learning methods

▪ Linear regression
▪ Four non-linear estimates
▪ Two smooth: 

– Support Vector Machine (SVM) and Gaussian Process Regression 
(GPR)

▪ Two non-smooth: 
– Ensemble of Tree (EOT) and Regression Trees (RT)
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CUBIC TCPHamilton TCP

MPI over WAN



1313

CUBIC > 16
HTCP < 9

Performance of ML methods is different for CUBIC and HTCP

RTT Estimates: No loss Scenarios
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RMS error: 
102.55 

RMS error: 
6.19 

Linear regression: periodic losses
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losses

RMS error: 
16.68 

RMS error: 
7.49 

RMS error: 
102.55 

Linear regression: deep dive

▪ Under 0.1-20% losses
▪ Data plot has high scatter
▪ X-range: from [0,27] to [0,500] outliers
▪ Linear regression is not good fit due to 

non-linear scatter
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RMS error: 
105.24

RMS error: 
6.23

Support vector machines
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RMS error: 
48.76

RMS error: 
3.92

Gaussian process regression
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RMS error: 
102.55 

RMS error: 
4.14 

Ensemble of trees
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RMS error: 
34.14

RMS error: 
3.84

Regression trees
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Root mean square error of ML methods

RTT

Loss rate
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• Studied strengths & limitations of ML methods in estimating 
network-level parameters using application-level measurements

• Ensemble of Trees (EOT), Gaussian Process Regression (GPR), 
Linear Regression (LR), Regression Trees(RT), and SVM
– Accurate estimates at low loss rate (1%) but inaccurate at higher rates
– Non-linearity better estimates but smoothness has mixed results

• MPI codes on federated supercomputers
– Mapping based on long-term statistics or dynamic estimation

• Future Directions: 
– Performance under random network losses (uniform, poisson, gaussian)
– Detailed performance analysis of ML methods:  Vapnik’s generalization

Summary
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MPI has been predominantly used in single facility systems with connections over 
– Ethernet LAN
– Infiniband (IB) network
– custom interconnects of supercomputers

IB networks deployed in HPC facilities  
– subject to 2.5ms timeout - effective to tens of miles 

Longer connections: Ethernet
– Transmission Control Protocol (TCP) is a primary transport mechanism utilized by MPI

Motivation
• Recent experimental results show MPI primitives scale to round-the-earth distances

– Rao et al, Syscon2019
• Execution times of MPI communications operations, hence entire computation, depend 

on connection RTT and loss rate 
– highly non-linear TCP lead to complicated dynamics of execution times

• Question addressed here: How to “invert” the measured execution times to estimate 
connection RTT and loss rate?

MPI – A Distance Scalability Perspective
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Five Machine Learning Methods

Support Vector Machine and 
Gaussian Process Regression
• smooth estimator
• non-linear mapping from input space 

into destination space

Ensemble of Tree and 
Regression Trees
• non-smooth estimator
• mapping input dataset into 

collection of trees 

Represent different design principles – no rigorous way to identify universally best method
• Linear regression (LR): baseline estimator
• Four non-linear estimates:

• two smooth: Support Vector Machine (SVM) and Gaussian Process Regression (GPR)
• two non-smooth: Ensemble of Tree (EOT) and Regression Trees (RT)

Results based on matlab toolbox
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R: random variable representing RTT 
L: random variable representing loss rate
E: random variable representing execution time of MPI primitive code 
▪ distributed according to

– quite complex and typically unknown distribution – depends on various properties
• network connection: RTT, loss rate
• host system: CPUs, NIC
• software stack: OS, network and MPI modules

▪ RTT-regression function: expected value of RTT at E = e given by

which is averaged over both R and L
– its estimate         using method

▪ Loss-regression function: expected value of loss rate at E = e given by

– Its estimate         using method

Regression Estimation Formulation

Methods:
Ensemble of Tree (EOT) 
Gaussian Process Regr. (GPR)
Linear regression (LR)
Regression Trees (RT)
Support Vector Machine (SVM)
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Estimates Presented as Composite Plots

Composite Plot: Provides a snapshot of the estimate at all measurements
• loss rate:  increased left to right
• at each loss rate, RTT increased left to right
• at each RTT, measurements are repeated 10 times

composite plot: RTT

Regression Tree (RT) Estimates
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Measurements Summary: 
Average Execution times: different loss rates

periodic losses

External packet losses are introduced by ANUE/Ixia emulator
Observations:
• Low loss rates: execution times determined primarily by RTT
• Higher loss rates: execution times dominated by loss rates - result of TCP loss recovery response:

• higher loss rates:  few code executions are not completed due to communications time-out
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Study of strengths and limitations of machine learning methods to:

• Estimate connection RTT and loss rate using execution times of MPI Sendrecv operations

• Using measurements over 10Gbps emulated connections with
– 0-366ms Round-Trip Times (RTT)

• represent connection lengths ranging from local to round the earth distances
– Additionally, externally introduced packet losses over these connections

Machine Learning Methods:

• Ensemble of Trees (EOT), Gaussian Process Regression (GPR), Linear Regression (LR), 
Regression Trees(RT), and Support Vector Machines (SVM)

• Disparate design properties: (a) linear and non-linear, and (b) smooth and non-smooth

Provide useful qualitative insights into strengths and limitations of machine learning methods: 
• Low loss rates: execution times determined primarily by RTT and accurately estimated
• Higher loss rates: execution times dominated by complex, non-linear TCP  response:

– loss rates of 10% or higher:  show limitations of machine learning methods

Results Summary
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Summary: Studied strengths and limitations of machine learning methods for estimating network 
parameters using application-level measurements:

• Recent results: distance-scalability of MPI over long connections under external packet losses

• In this paper: machine learning methods can be applied in principle to estimate connection RTT 
and loss rate using execution time measurements of MPI SendReceive operations

• Datasets: MPI_measurements over 10Gbps Ethernet emulated connection with 0-366 RTT under 
periodic losses up to 20%

• Conclusions: Accurate estimates under low loss rate (1%) but inaccurate at higher rates
– Non-linearity provides better estimates but smoothness has mixed results: RT and GPR are top two

Implications: MPI codes on federated supercomputers located sites across the globe
– Codes account for latency and loss rates – mapping based on long-term statistics or dynamic estimation

Future Directions: 

– Performance under random network losses
• uniform, Poisson and Gaussian – to be presented at MLN2019
• more realistic scenarios

– Detailed performance analysis of machine learning methods: Vapnik’s generalization

Conclusions


