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What is sample transfer?

e Short data transfer to collect network statistics such as available
bandwidth, round trip time, loss rate, jitter, etc.

/ Transfer data \

Node 1 Bandwidth: 930 Mbps Node 2

RTT: 0.365 ms
Loss rate: 0%




Some examples...

o Iperf > Bandwidth estimation

o PerfSonar - Bandwidth estimation and anomaly
detection

« Iftop -2 Bandwidth estimation



Some examples...

« Transfer Optimization
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State-of-the-art



Fixed Duration

Using a fixed duration (e.g., 10 sec) to run sample
transfer and measure transferred data size.

Example: Iperf

Disadvantage: Hard to find optimal duration



Fixed Data Size

Using a fixed amount of data (e.g., 10GB) to
run sample transfer and measure time

[ ¢

Example: PerfSonar, Yildirim et al.”

@ Disadvantage: Long transfer time

*Modeling throughput sampling size for a cloud-hosted data scheduling and optimization service, E Yildirim, J Kim, T Kosar, Future
Generation Computer Systems, 2013



Time Series Analysis

o Use instantaneous throughput
values to derive Autoregressive
model

o Predict next throughput and
compare against actual one to
measure its accuracy
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Adaptive Deep Neural
Network



DNN: Convergence time
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DNN: Convergence time
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DNN: Convergence time
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Throughput Estimation

700
600
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 Now, since the convergence

time (i.e., 5s) is predicted, é‘soo
from neural network, we 5 400

] < 300
take average of previous 2 2 00

throughput from 100
convergence time to predict
average throughput. 600 + 580

« Predicted throughput is 590 Predicted Throughput = ——
MbpS Predicted Throughput = 590 Mbps
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EXPERIMENTS



System Specs of Experimental

Networks
Specs Storage Bandwidth (Gbps) RTT (ms) Transfer Count
XSEDE Lustre 10 40 53,796
ESnet RAID-0 100 89 16,849
Pronghorn GPFS 10 0.1 3,000
HPCLab NVMe SSD 40 0.1 41,768
Total 115,413
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Evaluation Metrics

Transfer Time: The time it takes for a model to predict
throughput of sample transfer

Error Rate: Percentage of difference between estimation
of a model and actual average throughput
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Experimental Results

Fixed- size approach takes up-to 20
seconds to run

Autoregressive estimates quickly but
causes to high error rate

Adaptive DNN reduces error rate by up-
to 70% compared to Autoregressive

Adaptive DNN keeps transfer time to less ¢
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Experimental Results
Increased Data Collection Frequency
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o So far, instantaneous throughput is 12

-
o

measured once in every second.

Error Rate (%)

o To gather more data points, we
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o Transfer time reduced from 5
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Experimental Results
Impact of Hyperparameters

Increasing number of iterations e And increase in number of hidden
decrease transfer time, while layers in neural network decrease
slightly increasing error rate. error rate, while increasing transfer
time.
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Experimental Results
Impact of probability threshold

(Starting Threshold = 0.9
Decrease Rate = 0.05
( Current Threshold = 0.
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Experimental Results
Impact of probability threshold

(Starting Threshold = 0.9
Decrease Rate = 0.05
\ Current Threshold = 0.9




Transfer Time (s)

Experimental Results

Impact of probability threshold

We have starting threshold and decrease rate, which we can adjust to get the
required performance.
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Conclusion

Sample transfers are widely used for various purposes
including network measurement and transfer optimization

Existing approaches causes high error rate (>20%) or
long transfer time (~20 seconds)

Adaptive Deep Neural Network can achieve low error rate
by up-to 70% with slight increase in transfer time

Hyperparameter tuning can help to further reduce error
rate or transfer time to meet user/application demand
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Thank you

Any questions?



Future works

Using this model to do parameter tuning and generate optimal configurations
with which if transferred data in that particular network, throughput will be
optimized.
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Deep Neural
Network Model
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Experiments - Transfer Learning

Error Rate

b 10.4%

< T

@]

E

QO +—

=84 54% 71% | 20.2%
£

S

I—

XSEDE

49%  6.4% REEEY

HPCLab ESnet XSEDE
Test Network

28



Experiments - Transfer Learning

These graph shows the
result of training the neural
network with different
network environment and
testing with different
environment.

We can see if we pick XSEDE
as training data then it
performs quite well in terms
of error rate with some
increase in Convergence
time.
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