Optimizing Data Transfer Nodes
using Packet Pacing: A Journey of
Discovery

Brian Tierney, ESnet
Nathan Hanford, Dipak Ghosal, UC Davis
INDIS Workshop, 2015

November 16, 2015
& ESnet

Observation

* When doing a DTN to DTN transfer, we often come across test results
where TCP is dropping packets, but the cause it not obvious

— No errors
— No congestion

* After more investigation, the cause is often:
— Speed mismatch
— Under-buffered devices
— Under-powered firewalls

* Examples of this on the next slides

& ESnet

Speed Mismatch Issues

*Sometimes we see problems sending from a faster host to a slower host

— This can look like a network problem (lots of TCP retransmits)
— Actually a receive host issue

*This may be true for:

3

10G to 1G host

10G host to a 2G circuit
40G to 10G host

Fast host to slower host

11/16/15

& ESnet

Example: 10G Host to a 1G host

Throughput test between Source: elpa-ptl.es.net(198.129.254.82) -- Destination: nms-
rthr.wash.net.internet2.edu(64.57.16.18)

900M

S8OM || - - ‘
=z 860M
[=
% 840M
=
(=5
<, 820M
=
=
= 800M
=

780M

760M

22Sep 29Sep 060ct 130ct 200ct
Time
<- | month | month ->
Timezone: GMT-0400 (EDT)

© 2015, http://www.perfsonar.net

Graph Key

- Src-Dst throughput
- Dst-Src throughput

& ESnet

November 16, 2015 4

Note: with larger buffers 10G to 1G can work
just fine too....

n n n Graph Key
Throughput test between Source: egx-ash-ptl.es.net(198.124.238.82) -- Destination: chic-
G ptl.es.net(198.124.252.141)

| A) M I

- Src-Dst throughput
- Dst-Src throughput

600M '

h

060ct 13O0ct 200ct 270ct 03Nov 10Nov 17Nov 24Nov
Time

O1Dec 08Dec

<- 1 month 1 month ->

& ESnet

5 11/16/15

Compare tcpdumps:
kans-ptl.es.net (10G) to eqx-chi-ptl.es.net (1G)

& ESnet

6 11/16/15

Compare tcpdumps
kans-ptl.es.net (10G) to uct2-net4.uchicago.edu (1G)

& ESnet

7 11/16/15

Sample 40G results: Fast host to Slower Host

Intel(R) Xeon(R) CPU 2.90GHz to 2.00GHz

nuttcp -i1 192.168.2.31

410.7500 MB / 1.00 sec = 3445.5139 Mbps 0 retrans
339.5625 MB / 1.00 sec = 2848.4966 Mbps 0 retrans
354.5625 MB / 1.00 sec = 2974.2888 Mbps 350 retrans
326.3125 MB / 1.00 sec = 2737.3022 Mbps 0 retrans
377.7500 MB / 1.00 sec = 3168.8220 Mbps 179 retrans

nuttcp —r -il 192.168.2.31 (reverse direction)

2091.0625 MB / 1.00 sec = 17540.8230 Mbps 0 retrans
2106.7500 MB / 1.00 sec = 17672.0814 Mbps 0 retrans
2103.6250 MB / 1.00 sec = 17647.0326 Mbps 0 retrans
2086.7500 MB / 1.00 sec = 17504.7702 Mbps 0 retrans

& ESnet

8 11/16/15

Issues due to lack of network device buffering

8.00

7.00

6.00

5.00

4.00

Gbits/sec

3.00

2.00

1.00

0.00

T NI-MLX-10Gx8-M

Buffers per 10G egress port Slide from Michael
Smitasin, LBNL
1024 | 10240 | 20000 | 32000 | 40000 | 64000 | 128000 | 256000

Tunable Buffers with a Brocade MLXe!? ‘ ESHEt

NUMA Issues

10

NUMA Architecture
means that data from
NIC may have to
traverse QPI

This is an issue for 40G/
100G hosts

N

NIRRT

QP| bus 8G each

PCIE
connections to the NICs

AR

:

N3

SATA

NUMA Issues

Sample results: TCP On Intel “Sandy Bridge” Motherboards

30% Improvement using the right core!

nuttcp -i 192.

2435.5625
2445.1875
2443.8750
2447.4375
2449.1250

nuttcp -il
3634.8750
3723.8125
3724.7500
3721.7500
3723.7500

nuttcp: http://lcp.nrl.navy.mil/nuttcp/beta/nuttcp-7.2.

11 11/16/15

168.2.32
MB / 1.00
MB / 1.00
MB / 1.00
MB / 1.00
MB / 1.00
-xc 2/2 192
MB / 1.00
MB / 1.00
MB / 1.00
MB / 1.00
MB / 1.00

secC
secC
secC
secC

= 20429.
20511.
20501.
20531.
20544.

sec =

.168.

secC

sec =

secC
secC

sec =

.32
30491.
31237.
31245.
31219.

31237.

9371
4323
2424
1276
7085

2671
6346
5301
8335
6413

Mbps
Mbps
Mbps
Mbps
Mbps

Mbps
Mbps
Mbps
Mbps
Mbps

O O O OO

0
0
0
0
0
l.c

retrans
retrans
retrans
retrans
retrans

retrans
retrans
retrans
retrans
retrans

& ESnet

NUMA issues: Socket and Core Matter
Throughput (Gbps)

For more details
©2®u®r®r®x®x@ 1@ @ «@ =@ =@ see NDM
@ @ o @ @ @ @ @ @ @ e @» 2014 paper
5oinsnedig2:0 a1
ACOLORIORIORIORE S SHORY B 3
$29n9=ererer@ 13181818
6 @1 @n@n®r®r©®r©n @@ «@ =@ =@ «
-0 e e i e
@ @ -0 ® oB -0 GG n@n G-
3@ o0 ® @ @ G S @
6@ @ B B 08 @nG-
R 36 S Pt S0

Y, 1 pA o)

Application Affinity

1n 1l
o) O / [e] J 1U 11

Flow Affinity

12 ® Achieved Throughput O Line Rate

& ESnet

These issues are all worse on
long RTT paths due to TCP
dynamics

& ESnet

small amount of packet loss makes a huge
ifference in TCP performance

Throughput vs. Increasing Latency with .0046% Packet Loss

10000
9000 — ————
—
K Local Whith lace hiagh -narfarmanca hove m—
8000 \ (LAN) iTNIoss, Nign perrormance neyo
§ 7m0 \\ metro distances is essentially [
£ 6000 impossible International }
2 —_—) \
b3 00 \\ \I Metro Area P NN
5 | . N
£ o \\ Regional Continental \
] A\\ - TS N\
2
£ 3000
2000 N AN
1000 \aarr - = = _
. A B AA A L X) ﬁ..num'ﬁ #,
0 10 20 30 40 50 60 70 80 %0

g IS ST Measured {HTCP)

=== \leasured (Reno) === Measured (htcp)

Feril IS i

*+ A “Theoretical (reno) ==+=No Packet Loss

Impact of Packet Loss on High Latency Paths,
Log Scale

Throughput vs. Increasing Latency with 0% and .0046% Packet Loss (Log Scale)

10000 9 N m— —— =
< 1000 Je—— - . & '
% \ AT., N » —
£ AL TYRRRIYS P Y v —
E -------------------- Beeecresesecscctorssnssconcncns
§. 100 ‘\
B
r A |
F o

1
0 10 20 30 40 50 60 70 80 90 100
Round Trip Time (milliseconds)
=={==Measured (Reno) ~ ==i==Measured (http) ~ **/** Theorectical 9000B MTU ~ ===Theoretical 1500B MTU ~ “=*==Measured (no loss)

& ESnet

=
wu

Q: Can we solve these issues
with Packet Pacing?

& ESnet

Packet Pacing Techniques

* Hardware-based Pacing
— E.g.: “Data Reservoir” project from Univ Tokyo
— First demonstrated advantage of packet pacing in 2004 using “TGNLE-1"” (FPGA-based NIC)

* Kernel-based pacing

— Linux Hierarchical Token Bucket (HTB) queue and traffic rates that are slightly below the
bottleneck capacity greatly improve TCP performance.

— E.g: For a 10Gbps host sending to a 1Gbps circuit on a 36ms RTT path, performance went
from 25Mbps to 825Mbps, a dramatic improvement!

Sample Linux tc example to set up a 900Mbps shaper to a particular subnet.

#create a Hierarchical Token Bucket

/sbin/tc gdisc add dev eth0 handle 1: root htb

#add a 'class' to our route queue with a rate of 900Mbps

/sbin/tc class add dev ethO parent 1: classid 1:1 htb rate 900mbit

Hcreate a filter that restricts our tc queue and class to a specific source subnet

/sbin/tc filter add dev eth0 parent 1: protocol ip prio 1 u32 match ip dst X.Y.Z.0/24 flowid 1:1

& ESnet
>, See: http://fasterdata.es.net/host-tuning/packet-pacing/

10G host to 1G host with Pacing
kans-ptl.es.net (10G) to uct2-net4.uchicago.edu (1G) with pacing

18 11/16/15

Packet Pacing Helps at 40G too

40G to 10G tests

Retransmissions (average) RTT Throughput
367 .5 ms 9.4 Gbps
826 47 ms 7.1 Gbps
With Pacing

Retransmissions (average) RTT Throughput
3 .5ms 9.8 Gbps

2 47 ms 9.3 Gbps

@ ESnet

Q: Can we write a daemon that
will automatically figure out
what to pace, and how much?

& ESnet

DTN Tuning Daemon Goals

* Develop a DTN Tuning daemon that can pace TCP so that fewer packets are
dropped

— Help with fast host to slow host issues
— Help with under buffered switch issues
— Help with under powered firewall issues
— Better allocation of available resources

* Use end-system awareness to put “back pressure” closer to the sender:
avoid invoking TCP congestion avoidance

& ESnet

21

Can we build a tool to auto-pace?

Several tools exist to get detailed information from TCP sockets
— Lots of information ends up in /proc on Linux

Create a database of previous TCP sessions on the DTN

Based on the analysis of internal per-flow TCP parameters, apply packet
pacing

Use ‘tc’ to pace flows to certain endpoints

(More details are in our paper)

& ESnet

22

TCP instrumentation

We explored the following options:

— ss (socket statistics)
* http://man7.org/linux/man-pages/man8/ss.8.html

— TCP Probe kernel module

* http://www.linuxfoundation.org/collaborate/workgroups/networking/
tcpprobe

— tstat TCP Statistics tool : http://tstat.polito.it/
— Netlink and the NETLINK_INET_DIAG socket-family
* http://kristrev.github.io/2013/07/26/passive-monitoring-of-sockets-on-linux/

& ESnet

23

Sample ‘ss’ tool (ss —it) output

* Older kernels (e.g.: CentOS):

htcp wscale:5,13 rto:315 rtt:104.75/22.75 cwnd:5
ssthresh:4 send 522.4Kbps rcv space:17896

* Newer kernels (e.g.: Debian):

htcp wscale:5,13 rto:321 rtt:118.453/20.801 mss:1368
cwnd:3 ssthresh:3 send 277.2Kbps lastsnd:43 lastrcv:
1212906624 lastack:43 pacing rate 923.9Kbps unacked:o6
retrans:1/8127 lost:1 sacked:3 rcv space:26844

& ESnet

24

Why this turned out to be hard

* We don’t know the actual link capacity of the receivers beforehand

* Heuristic condition used: max cwnd >> avg cwnd and losses occurred
— High max cwnd shows sender witnessed a high BDP.
— Low average cwnd

* Problem: the above case could still come from a variety of sources
— dirty fiber optic connection
— Actual congestion
— Receiver over wireless link/link with changing throughput

* Many “slow” transfers over known fast links were due to disk read/write limitations

* We needed more data, but the data source is changing...

& ESnet

25

New Features in the Linux Kernel

& ESnet

TSO sizing and the FQ scheduler to the rescue

* New enhancements to Linux Kernel make a huge difference!

* TSO Sizing
— On by default starting with 3.12 kernel

* FQ Scheduler
— tc qdisc add dev SETH root fq

& ESnet
27 https://lwn.net/Articles/564978/

TCP segmentation offload (TSO) fixes

28

TCP segmentation offload (TSO) is a hardware-assisted technique to improve performance of
outbound data

— A NIC that supports TSO can accept a large buffer of data and do segmentation in hardware.
— This reduces the load on the host CPU, making the transmission process more efficient.
— This was a good idea 10-15 years ago

Problem with TSO on fast hosts
— causes the NIC to dump a large number of packets onto the wire in a short period of time.

— Packets end up sitting in a buffer somewhere, contributing to bufferbloat and increasing the
chances that some of those packets will be dropped

— Impact worse on high latency paths due to TCP dynamics

If those packets were transmitted at a more steady pace, the stress on the network is reduced
— and throughput will increase!

& ESnet
https://lwn.net/Articles/564978/

TSO automatic sizing

* New “TSO automatic sizing” tries to spread out transmissions
more evenly

* New idea: make intelligent choices about how much data
should be handed to the interface in a single TSO transmission.

— With the automatic sizing patch, that buffer size is reduced
to an amount that will take roughly 1ms to transmit at the

current flow rate.
* Result: each transmission will produce a smaller burst of data

& ESnet

29

TCP comparison 3.10 vs 4.2 kernel, 40G hosts

30

Bandwidth (Gbits/second)

TCP performance using iperf3
40

35

310 kernel —fi—

4.2 kerne| ——fp— |

0 5 10 15
time (seconds)

20

25

RTT =90ms

& ESnet

TCP comparison 3.10 vs 4.2 kernel
40G to 10G hosts

31

Bandwidth (Gbits/second)

14 |

TCP performance: 40G to 10G host

5.10 kernel? ——

10 20 30
time (seconds)

40 50 60

2500

41 2000

1 1500

41 1000

4 500

RTT=47ms

Fair Queuing

* FQ (Fair Queue) is a classless packet scheduler designed to achieve per flow pacing.

* An application can specify a maximum pacing rate using SO_MAX_PACING_RATE
setsockopt call.
— This packet scheduler adds delay between packets to respect rate limitation set by
TCP stack.

* Dequeueing happens in a round-robin fashion.

— A special FIFO queue is reserved for high priority packets (TC_PRIO_CONTROL
priority), such packets are always dequeued first.

* TCP pacing is good for flows having idle times, as the congestion window permits TCP
stack to queue a possibly large number of packets.

— This removes 'slow start after idle’, which hits large BDP flows in particular

& ESnet
3 http://man7.org/linux/man-pages/man8/tc-fq.8.html

History of TSO autosizing and FQ Updates

* Added to 3.12 kernel in August 2013
— Written by Eric Dumazet, Google

* Releases:
— Ubuntu 13.10 (October 2013)
— Fedora 20 (December 2013)
— Debian 8 (April 2015)
— Unfortunately RHEL 7.1 / CentOS 7.1 still using 3.10 kernel

e Back-port of TCP stack from 3.18 will be in 7.2 (beta available now):

- https://access.redhat.com/documentation/en-US/Red Hat_Enterprise Linux/7-Beta/html/
7.2 Release Notes/networking.html

* Beta came out in September, releases are usually 6-7 months later

* Note: you can easily install the most recent “stable” kernel from kernel.org on
RHEL6/7 using packages from elrepo.org
& ESnet

33

Linux Fair Queuing Testing: Wenji Wu, FNAL

 tc qdisc add dev SETH root fq

34

Throughputs (Gbps)
O N W Ao U o N ® O

HTCP-1500

HTCP-S000 CUBIC-1500 CUBIC-9000

“With FQ © Without FQ

FQ Results: tcptrace/xplot (FQ on left)

Linux Fair Queuing Testing: Michael Smitasin, LBNL

TCP Throughput on Small Buffer Switch
(Congestion w/ 2Gbps UDP background traffic)

8.00 *tc qdisc add dev EthN root fq

o0 — Enable Fair Queuing
6.00
* Pacing side effect of Fair
>:00 Queuing yields ~1.25Gbps
2 400 m FQ Off increase in throughput @
© . = FQ On 10Gbps on our hosts
2.00 -
* TSO differences still
1.00 - negligible on our hosts w/
0.00 - Intel X520

TSO on TSO off

Results from older Arista 7120T with very small buffers ‘ Esnet

© 2015 Internet2

Summary and Conclusions

& ESnet

Problem Solved?

* Maybe?
— Need lots more testing, but so far looks very promising
— Please try it out and let us know what you find.

* Improvement may be due to other changes in the kernel and NIC drivers as
well

& ESnet

38

Lots of useful information on fasterdata.es.net

* http://fasterdata.es.net/host-tuning/40g-tuning/

* http://fasterdata.es.net/host-tuning/packet-pacing/

* http://fasterdata.es.net/host-tuning/linux/fair-queuing-scheduler/

* http://fasterdata.es.net/host-tuning/linux/recent-tcp-enchancements/

* http://fasterdata.es.net/performance-testing/troubleshooting/network-
troubleshooting-quick-reference-guide/

& ESnet

39

