
OpenFlow Based Multi-Domain VPN Prototype
Architecture

Ronald van der Pol∗, Marijke Kaat∗,
Bart Gijsen†, Piotr Zuraniewski†

and Daniel Cabaca Romão‡

∗SURFnet
Radboudkwartier 273

3511 CK Utrecht, The Netherlands
Email: ronald.vanderpol@surfnet.nl, marijke.kaat@surfnet.nl

†TNO
Brasserplein 2

2612 CT Delft, The Netherlands
Email: bart.gijsen@tno.nl, piotr.zuraniewski@tno.nl

‡University of Amsterdam
Science Park 904

1098 XH Amsterdam, The Netherlands
Email: d.f.romao@uva.nl

Abstract—This paper describes the architecture of a prototype
for an OpenFlow based multi-domain VPN service, which is built
in the Community Connection (CoCo) project. The prototype that
is being developed will let end-users set up CoCo instances (VPNs)
via an easy to use web portal, without needing the help of network
administrators to do manual configurations of the network
switches. The CoCo prototype handles the automatic setup and
tear down of the instances by configuring the OpenFlow switches.
Typical users are research communities that form a closed user
group and want their e-science resources (servers, VMs, laptops,
storage, instruments, etc.) interconnected, but reachable for their
closed group only.

I. INTRODUCTION

The CoCo project is one of the open calls funded by the
European GN3plus project. It runs from October 2013 until
March 2015. The prototype that is being built in the CoCo
project consists of several parts. The data plane (forwarding
plane) consists of OpenFlow switches. The switches in a
domain are controlled by the OpenDaylight SDN controller.
Each domain runs its own OpenDaylight controller. CoCo
agents are an extension to the OpenDaylight controller and add
specific CoCo functionality to the OpenDaylight controller.

The core of the network is based on MPLS label forwarding
and is implemented over several domains. MPLS is only used
as encapsulation. The forwarding paths are calculated by and
provisioned from the OpenDaylight controllers. As such, we
use no data plane label distribution protocols such as the Label
Distribution Protocol (LDP [5]).

The CoCo agents use the BGP protocol to exchange VPN
and end point information with each other. BGP is only used

for exchanging information. BGP does not do any forwarding
(FIB) manipulations. The forwarding tables in the OpenFlow
switches are controlled via OpenDaylight. The first CoCo
prototype supports L3 VPNs only. At a later stage the CoCo
prototype can be extended to L2 VPN functionality.

II. COCO USE CASES

The advent of Software Defined Networking is creating
innovation opportunities for a wide range of use cases. The
CoCo service will enable scientists from multiple organisations
to dynamically create virtual, private networks for sharing
services and facilities as if they were collaborating within a
single network environment.

A particular use case demonstrating this innovative power
of the CoCo service is the DNA sequencer as a Service.
DNA sequencers are increasingly important instruments for
scientists in the genomics science field. These sequencer
instruments and the specific bioinformatics solutions required
for the storage, processing and transport of their output are
very expensive and get outdated relatively quickly, due to the
current rapid developments. Therefore, research organizations
can only justify such investments if the (re-)utilization of
the sequencers and bioinformatics solutions is sufficiently
high. The opportunity to strongly improve this return on
investment by offering DNA sequencing as a Service, that can
be consumed by scientists from multiple institutes, has been
identified as a key innovation in the genomics research field.

Figure 1 presents an overview of a technical solution for
a DNA sequencer as a Service. Currently, the automation of

DNA sequencing and processing is increasingly being applied
via workflow management solutions, such as the Galaxy plat-
form [6]. At their back-end such platforms will manage and
interface to the resources that execute these processes. These
resources include storage, processing and network connectiv-
ity. The CoCo service is a good candidate for providing man-
agement services for the connectivity resources. In particular,
the CoCo service will provide the on-demand, multi-domain
connectivity between the resources. CoCo will contribute to
the ease-of-use by relieving the genomics scientists from the
need to login on multiple, separate systems. Moreover, the
CoCo service is being designed to be incorporated in future
integrated resource management solutions.

III. COCO OVERALL ARCHITECTURE

The CoCo prototype will consist of multiple domains. Each
domain represents an NREN (National Research and Educa-
tion Network) . The implementation will use several testbeds
(e.g. the SURFnet OpenFlow testbed and the GÉANT Open-
Flow testbed), each representing a separate domain. Figure 1
shows the inter-domain architecture of CoCo. Each domain
has an OpenFlow based infrastructure and each domain runs
its own CoCo agent. These CoCo agents are extensions of the
OpenDaylight SDN controller. The OpenFlow infrastructure
consists of OpenFlow switches that have either a Provider
Edge (PE) function or a Provider (P) function. The PE
switches connect to either Customer Equipment (CE) via a
UNI interface or to PE switches in other domains via a E-
NNI interface.

The CoCo agents are responsible for topology discovery
within a domain and do intra- and inter-domain path calcula-
tion. The intra-domain path calculation is based on the domain
topology only. The inter-domain path calculation is based on
BGP path information that is exchanged with neighbouring
domains. In the inter-domain case each CoCo agent configures
forwarding entries on the OpenFlow switches in its own
domain that form a path between two PEs in that domain.
This can be either two PEs directly connected to the source
and destination CE, or it can be a PE that is connected to
the E-NNI port to the inter-domain link that has been chosen
by the BGP path selection process towards a CE in another
domain. For simplicity, we start with one shortest path between
each pair of PEs. At a later stage we can easily extend it with
backup paths.

There is one centralised web portal for the CoCo service.
End users login to this portal and they can then setup or tear
down CoCo instances. CoCo instances are set up by choosing
end sites from a list and entering prefix and port based VLAN
information for each site. End users can join multiple CoCo
instances simultaneously. The web portal distributes the prefix
and VLAN information to the CoCo agents in the various
domains.

IV. COCO DATA PLANE FORWARDING

The CoCo network core consists of Provider Edge (PE)
and Provider (P) OpenFlow switches as shown in Figure 2.

The P switches are internal core network switches. The PE
switches connect to either end-sites (via UNI interfaces) or
other domains (via E-NNI interfaces).

MPLS based forwarding is used in the core of the network
in order to keep the forwarding tables small by aggregating all
IP prefixes that are behind a PE OpenFlow switch. Two MPLS
labels are used. The outer MPLS label is used to identify the
PE to which a packet must be sent. The inner MPLS label is
used to identify the CoCo instance (VPN). PE switches take
care of encapsulating the user traffic received from Customer
Edge (CE) equipment with the proper MPLS labels. When
sending traffic from the backbone to the CE the PE removes
the MPLS labels.

V. ENCAPSULATION AND DECAPSULATION AT THE UNI
INTERFACES

At the edges of the domain on the UNI interfaces towards
the CE of the customer encapsulation and decapsulation takes
place. We use VLAN based port services on the UNI inter-
faces. This means that traffic between CE and PE is VLAN
tagged and the VLAN ID maps to a particular CoCo instance.
The customer is responsible for putting traffic of nodes in
the correct VLAN. The PE switches match on the VLAN
ID and pop the VLAN header. Before forwarding the packet
the PE switches add the two MPLS labels corresponding to
the destination PE and CoCo instance. The CoCo agent that
installs the flow forwarding rules on the PE switches needs to
know what the destination PE for each IP prefix is. The CoCo
agent learns this by running BGP and exchanging BGP/MPLS
IP VPN information (RFC 4364 [3]). The CoCo agent also
needs to know about the mapping between customer VLAN
ID and CoCo instance and the IP prefixes that the customer
uses in that CoCo instance. In the initial implementation of the
CoCo prototype, the person adding a site to a CoCo instance
configures this manually via the web portal.

VI. COCO CONTROL PLANE INFORMATION EXCHANGE

A CoCo agent has several tasks. One task is to control the
OpenFlow switches in its domain by doing topology discovery
and configuring flow forwarding rules on the switches. The
other task is in the inter-domain control plane of CoCo. BGP
is used to exchange information between the CoCo agents.
This will be done similar to RFC 4364 [3] ”BGP/MPLS IP
Virtual Private Networks (VPNs)”. There are BGP peering
relationships between neighbour CoCo agents. The CoCo
agents also work with the concept of transit. E.g., CoCo
agent a1 has a peering relation with CoCo agent a2 only (see
Figure 1). CoCo agent a1 exchanges information with CoCo
agents a3 and a4 via CoCo agent a2, which in this case acts
as a transit agent.

For each PE in its domain, a CoCo agent sends the following
information to its CoCo BGP peers:

• VPN-IPv4 address family (12 bytes) (RFC 4364 [3])
The 12 bytes consist of an 8 byte Route Distinguisher
(RD) and a 4 byte IPv4 address. An RD is encoded as
a 2 byte Type and a 6 byte Value. We will use Type 2

customer c1 customer c2

customer c3

domain d4

domain d3
domain d1

domain d2

data

plane

control

plane
CoCo agent a1

CoCo agent a2

CoCo agent a3CoCo agent a4

Web Interface

service

plane

MPLS
MPLS

MPLS

MPLS

OpenFlow
OpenFlow

OpenFlow

BGP

BGP

BGP

BGP

REST

REST REST REST

HTTPS

ConnectComputeStore

“DNA sequencer as a Service”

Web Interface

HTTPS

ConnectComputeStore

“Shared Electron Microscope”

Fig. 1. CoCo Layers Architecture

RDs that consist of a 4 byte AS number followed by a 2
byte value. This value is managed by each domain, so by
each CoCo agent. The CoCo agent manages a list of free
values and assigns a unique value to each CoCo instance.

• VPN-IPv6 address family (24 bytes) (RFC 4659 [4])
The 24 bytes consist of an 8 byte Route Distinguisher
(RD) and a 16 byte IPv6 address. The RD will be the
same value as for IPv4.

• Next hop (VPN-IPv4 route with RD == 0)
The next hops in the route announcements should point
to the PE that has the prefixes behind it. The CoCo agent
assigns unique IPv4 addresses (from 10.0.0.0/24) to each
PE in its domain to be used as next hop.

• MPLS label to reach that PE (RFC 3107 [1])
This is done in the NLRI by using a AFI of VPN-IPv4
and a SAFI of 4. The NLRI is encoded as one or more
triples of the form <length, label, prefix>. The length
is in bits and includes prefix and label(s). Each label is
encoded as 3 octets, where the high order 20 bits contain
the label value, and the low order bit contains Bottom of
Stack. The prefix field contains address prefixes followed
by enough trailing bits to make the end of the field fall

on an octet boundary.
• CoCo instance identifier (2 bytes) encoded in Route

Target (RFC 4360 [2])
A Route Target is sent via BGP Extended Communities
(8 bytes) (RFC 4360 [2]) and is structured the same as
a Route Distinguisher. We will use a Type 2 RD again
with a 4 byte AS number and a 2 byte value. The value
identifies the CoCo instance and will be used as inner
MPLS label in the data plane for all traffic belonging to
that CoCo instance.

VII. OPENDAYLIGHT

OpenDaylight [7] is a community-driven open source SDN
controller framework hosted at the Linux Foundation [8]. The
OpenDaylight project started in April 2013 and the first release
was in February 2014. It is currently seen as one of the
major open source SDN controllers. We have chosen to use
OpenDaylight in the CoCo project because of this large and
growing user and developer community.

OpenDaylight is mostly written in Java and uses OSGi [9]
to dynamically load components (bundles). It supports several
protocols towards network elements, including OpenFlow 1.0

CE
PE P PE

PE P PE

CE
VPN

customer c1

customer c2

domain d1

domain d2

PE P PE

PEdomain d3

CE

customer c3

OF

OF UNI

UNI

E-NNI

E-NNI

internet

Fig. 2. Interdomain Data Plane Forwarding

and 1.3. Many components support REST APIs that can be
used by SDN applications. Our initial implementation uses a
REST API to configure forwarding entries in the OpenFlow
switches. A later version of the prototype will be implemented
as an OpenDaylight bundle so that it can use more of the
internal OpenDaylight functionality, such as the topology
manager.

VIII. L2 VPN CHALLENGES

The initial version of the CoCo prototype offers a L3 VPN
service. Each site has one or more IPv4 and/or IPv6 prefixes
and forwarding is based on IP address. A later version will
extend this to also provide a L2 VPN service. However, there
are some scalability challenges that need to be addressed,
especially in the multi-domain case.

A L2 VPN service requires three major additional features:

• IP address assignment and avoiding duplicates.
• MAC learning (or an equivalent) is needed at the edges.
• The network must support broadcast for broadcast and

unknown traffic.

In a L2 VPN service all nodes at all sites reside in the same
L2 network and thus share the same IP prefix. There is no
routing. Each node must get a unique IP address from that
prefix.

One option is to use DHCP (or DHCPv6). This requires
either a single server (with backup servers for redundancy)
providing addresses from one big pool or multiple servers,
each using a pool with a unique part of the total available
address space. The latter option is difficult to manage, as it
is usually hard to predict how many addresses are needed at
each site.

For IPv6 there is the option to use SLAAC (Stateless
Address Autoconfiguration). This requires a mechanism for
ICMPv6 prefix announcement and discovery. However, this
traffic does not need to traverse the backbone, as it is only
needed at the edges. It is probably best to implement this at

each site by using a proxy mechanism that intercepts discovery
messages before they reach the backbone.

When an Ethernet frame coming from a CE device reaches
a PE edge device there are two possibilities. When the desti-
nation MAC address is known, the frame can be forwarded on
the proper interface. When the destination MAC address is not
known, a L2 VPN service would usually broadcast that frame
towards all destination PEs. This requires broadcast support in
the backbone network. VPLS implements this with a full mesh
of circuits between all PEs. This has clearly scalability issues.
Recent work in the IETF L2VPN working group tries to solve
this scalability problem with the EVPN specifications. With
EVPN, MAC/IP address information is explicitly exchanged
between PEs via the BGP protocol. By doing this there are no
unknown MAC destinations anymore.

When a host in one site wants to communicate with a host
in another site, it needs to know its IP address. This is done
via the ARP and ND protocols. These messages are broadcast
(multicast) and usually the destination node responds with a
reply. In a L2 VPN service this requires broadcast (multicast)
support in the backbone. Another option is to use proxy ARP
(and ND). At the edge the ARP (ND) requests are intercepted
and a proxy (that knows the destination IP address) replies to
the sending node. The ARP (ND) messages never enter the
backbone.

IX. COCO SERVICE VALIDATION

As mentioned before, the CoCo service is intended to be
easy to use by its end-users, however, rolling out such a
new service will require some initial efforts from the network
administrators. Fortunately, there are possibilities to validate
and tweak the CoCo service in a separated environment before
deploying it in a production network. One of the options
which requires almost no resources (except for the running
PC) is to use Mininet [10]. Mininet is a software emulator
allowing the creation of a virtual SDN network which can
use either its internal OpenFlow controller or be instructed to

use an external one, e.g., OpenDaylight. Moreover, Mininet
switches use OVSDB (Open vSwitch Database, [11]) which
is recognized as a de facto management protocol standard for
SDN [12].

The CoCo project will release some configuration and
validation scripts which can be used to setup a Mininet-based
experiment network for a CoCo service. For a quick start,
a supplied predefined network topology can be utilized but
using a custom topology (i.e., reflecting a production network
where CoCo is actually to be deployed) is also entirely
possible. An example of a command for running Mininet
with a custom topology could be
mn --custom /my/path/setup_topo.py --topo cocotopo

where /my/path/ localizes a Python script which contains
the instructions for adding the devices to be emulated (hosts,
switches), their properties (like names or addresses) as well
as connectivity information. Finally, cocotopo is a custom
identifier of a given topology. Various other parameters can
be supplied, for example if on IP address 1.2.3.4 we
have an OpenDaylight controller listening on port 6633,
with OVSDB plugin enabled, running OpenFlow v. 1.3, the
following options should be appended to the command above:
--switch ovsk,protocols=OpenFlow13 --controller

remote,ip=1.2.3.4,port=6633

The network created with Mininet allows for some perfor-
mance validation to be conducted. However, due to the nature
of Mininet (software emulator) there are certain limitations in,
for example, attainable speed transfers, see [13] for the details.
Nevertheless, Mininet can be regarded as a good (but not the
only one, see for example [14]) option for experimenting with
SDN and we plan to continue to use it in CoCo project, next
to a physical testbed.

X. SUMMARY

The Community Connection (CoCo) project is in the front-
line of the OpenFlow and OpenDaylight developments. The
prototype CoCo service that is being developed will facilitate
a new generation of improved on-demand, user empowered
and multi-domain connectivity services. In combination with
recently emerging cloud services the CoCo service will meet
the demand for innovative business services, such as a DNA
sequencer as a Service in the eScience community. Although
we encountered a number of unresolved issues when working
with the fast developing technology of OpenFlow and Open-
Daylight, we have illustrated how the innovative CoCo service
is feasible and we implemented an initial prototype. In our
following research we will further validate the CoCo prototype
with testbed experiments and Mininet simulations. In addition,
we will further explore the extension of the CoCo prototype
to an on-demand, multi-domain L2 VPN service.

ACKNOWLEDGMENT

This paper has been produced with the financial assistance
of the European Union. The contents of this document are
the sole responsibility of SURFnet and TNO and can under

no circumstances be regarded as reflecting the position of the
European Union.

REFERENCES

[1] Y. Rekhter and E. Rosen, RFC 3107, Carrying Label Information in BGP-
4, 2001

[2] S. Sangli, D. Tappan and Y. Rekhter, RFC 4360, BGP Extended Commu-
nities Attribute, 2006

[3] E. Rosen and Y. Rekhter, RFC 4364, BGP/MPLS IP Virtual Private
Networks (VPNs), 2006

[4] J. De Clercq, D. Ooms, M. Carugi and F. Le Faucheur, RFC 4659, BGP-
MPLS IP Virtual Private Network (VPN) Extension for IPv6 VPN, 2006

[5] L. Andersson, I. Minei and B. Thomas, LDP Specification, 2007
[6] Galaxy Project http://galaxyproject.org/
[7] OpenDaylight http://www.opendaylight.org/
[8] OpenDaylight http://www.linuxfoundation.org
[9] OSGi (Open Services Gateway initiative) http://www.osgi.org/
[10] Mininet http://www.mininet.org/
[11] B. Pfaff and B. Davie, Ed., RFC 7047, The Open vSwitch Database

Management Protocol (OVSDB), 2013, http://tools.ietf.org/html/rfc7047
[12] https://wiki.opendaylight.org/view/OVSDB Integration:Design
[13] What are Mininet’s limitations? https://github.com/mininet/mininet/wiki/

Introduction-to-Mininet#what-are-mininets-limitations
[14] ns-3 vns-3-dev documentation: OpenFlow switch support http://www.

nsnam.org/docs/release/3.13/models/html/openflow-switch.html
[15] R. van der Pol, B.M.M. Gijsen, R.J. Strijkers, Community Connection

Service for eScience https://tnc2014.terena.org/getfile/980

