
Enhancement of GridFTP through Hardware

Offloading

Mohammad Javad Rashti, Gerald Sabin

RNET Technologies, Inc.

Dayton, OH 45459, USA

{mrashti, gsabin}@rnet-tech.com

Rajkumar Kettimuthu

Mathematics and Computer Science

Argonne National Laboratory

Argonne, IL 60439, USA

kettimut@mcs.anl.gov

Abstract — Extreme-scale scientific collaborations require

high-performance wide-area end-to-end data transports to

enable high data volumes. GridFTP is the de facto protocol for

Grid-wide transfer of data. Existing predominant network

transport solutions such as TCP have serious limitations that

consume significant CPU power and prevent GridFTP from

achieving high throughput on long-haul networks. These

limitations have caused underutilization of existing high-

bandwidth links in scientific and collaborative grids. To address

this situation, we have enhanced Globus GridFTP, the most

widely used GridFTP implementation, by developing transport

offload engines such as UDT and iWARP on a programmable

10GbE NIC. Our results show significant reduction in server

utilization and full line-rate sustained bandwidth in high-latency

networks, as measured for up to 100 ms of network latency. In

our work, we also offload OpenSSL security on SmartNIC to

reduce host utilization for secure file transfers. The offload

engine can provide line-rate data channel encryption/decryption

on top of UDT offload without consuming additional host CPU

resources. Lower CPU utilization leads to increased server

capacity, which allows data transfer nodes to support higher

network and data-processing rates. Alternatively, smaller or

fewer DTNs are needed for a particular data rate requirement.

Keywords— Scientific Collaboration; GridFTP; UDT; Network

Offload; RDMA

I. INTRODUCTION

Extreme-scale scientific computations, experiments, and
collaborations require unprecedented wide-area end-to-end
capabilities in the form of high-throughput data transports to
enable the transfer of high data volumes between organizations
or facilities. Such requirements arise in a number of science
areas including climate, high energy physics, astrophysics,
combustion, Nano-science, and genomics. The modeling of
complex systems, such as climate or supernovae, at higher and
higher fidelity generates proportionately larger volumes of data
that must be visualized, examined, and analyzed by widely
dispersed scientist teams looking for insight and discovery.
Unfortunately, the amount of data being created by many
computational codes faces significant transfer limitations,
despite the available 10 Gbps and 100 Gbps capacities of grid
network backbone connections. Supernovae simulation,
genomics, and combustion modeling are some of the areas
affected by such shortcomings.

The current data transfer limitations are no longer an
artifact of the limited capacity in the network backbone as
originally surmised. Indeed, the 10Gbps and 100Gbps
backbones of either the Energy Science Network (ESNet) ‎[3]
or Internet2 ‎[15] can currently offer such capacity to connect
pairs of sites for extended periods. These networks enable
scientific applications to transfer extremely large data files,
primarily by using high-performance data transfer protocols
such as GridFTP ‎[2]. However, the fact that science users
rarely see or use this bandwidth is symptomatic of much
deeper challenges, which will only get worse with the next
generation of multi-petascale and future exascale projects.
Effectively utilizing the available bandwidth requires efficient
underlying transport protocols and end-to-end implementations
that can sustain a high bandwidth in high-latency transfers.

Historically, wide-area data transport has been handled
mostly by the Transmission Control Protocol (TCP), which has
been the basis for the File Transfer Protocol (FTP),
GridFTP ‎[2], bbcp ‎‎[4], and HyperText Transfer Protocol
(HTTP). The unprecedented demands that extreme-scale
applications place on data transport, and the geo-diversity of
today’s‎ scientific‎ collaborations have pushed TCP beyond its
useful envelope. The fundamental problem with TCP
ultimately reduces to its treatment of bandwidth as a shared
resource. A number of efforts have been made to develop high-
performance versions of TCP ‎[5]‎[36]‎[37], but with only limited
success.

Research shows that the UDT transport protocol ‎[8], a
reliable user-level protocol on top of UDP, can achieve a much
better throughput than a TCP connection can over a long-haul
network ‎[24]. Nevertheless, the user-level processing incurred
by UDT consumes many more resources than does a TCP
connection (for the same data rate), effectively preventing the
widespread realization of UDT benefits. In addition, host
resource requirements are expected to limit the maximum
achievable bandwidth of GridFTP, since on many systems the
processing time required to process the UDT messages will be
even larger than the data transfer time. Clearly needed,
therefore, is a‎ means‎ to‎ achieve‎ near‎ “wire”‎ transfer‎ speeds,‎
while using fewer host resources, allowing for more host
capacity.

Another challenge is data transfer security. Many
applications (e.g., medical, pharmaceutical, aerospace, and

This material is based upon work supported by the U.S. Department of
Energy Office of Science, Office of Advanced Scientific Computing Research

SBIR program under Awards Number #DE-SC0002182 and #DE-FG02-

08ER86360.

security applications) require secure GridFTP communications.
GridFTP offers options to secure data transfers. However, the
resources required for performing operations such as
encryption and decryption greatly reduce the achievable
bandwidth. Therefore, users either must see greatly reduced
throughput or risk sending unencrypted data ‎[35].

Besides the actual protocol processing, data transfer nodes
(DTNs) ‎[16] at the edge of the networks are responsible for
several other data-processing tasks. Such tasks include file
integrity check by computing the checksum after the file is
written to disk (as done by the Globus transfer service ‎[39]),
data compression, and data reduction. Therefore, it is crucial to
free some of the DTN’s processing power for these additional
data-processing tasks without affecting the observed
throughput.

To address these challenges, we present a set of
asynchronous network interface card (NIC) offload engines
that improve the GridFTP long-range throughput and host
resource utilization. Using a SmartNIC 10GbE card ‎[25], we
examine the benefits of offloading UDT to allow for line-rate
bandwidth on long-range networks. We also use the UDT
engine as the underlying transport protocol for offloading the
Remote Direct Memory Access (RDMA) and Secure Sockets
Layer (SSL) protocols to further reduce resource consumption.
Our experiments show that by using NIC offload, near-line-rate
throughput can be achieved through a single data stream on
high-performance long-haul networks such as ESNet, while
offering a multifold reduction in host CPU utilization.

The rest of this paper is organized as follows. Section ‎II
provides a background on the protocols and tools used in this
work. Section ‎III expands on the motivations of our work.
Section ‎IV discusses the related state of the art. In Section ‎V,
we discuss our detailed design and implementation of NIC
offload engines. In Section ‎VI, we present experimental results,
followed by analysis and conclusion in Section ‎VII.

II. BACKGROUND

In this section, we briefly discuss GridFTP, UDT, and

RDMA, along with the SmartNIC user programmable card

used in this project.

A. GridFTP

GridFTP is a high-performance, secure and reliable data
transfer protocol optimized for high-bandwidth wide-area
networks ‎[2]. It is based on the Internet FTP protocol, with
extensions for high-performance operation and security.
GridFTP is the preeminent standard for science projects
requiring secure, robust, high-speed bulk data transport.

The GridFTP protocol is a backward-compatible extension
of the legacy RFC 959 FTP protocol ‎‎[18]. It maintains the
same command/response semantics introduced by RFC 959. It
also maintains the two-channel protocol semantics. The
separation of the control and data channels in GridFTP enables
third-party transfers, that is, the transfer of data between two
end hosts, mediated by a third host. This functionality made it
possible to develop hosted clients such as Globus Transfer ‎[39]
for GridFTP servers.

The de facto implementation of GridFTP is the Globus
distribution ‎[1]‎[26]. This implementation is used by thousands
of users with millions of data transfers per day. The Globus
implementation of GridFTP provides a software suite
optimized for a wide range of data access issues, from bulk file
transfer to the details of getting data out of complex storage
systems within sites.

Key features of GridFTP and its predominant
implementation (Globus) include the following:

1) Parallel TCP streams: GridFTP uses parallel streams to
overcome the inherent limitation in AIMD-based TCP
congestion control algorithm. Typically, it provides orders
of magnitude higher performance compared with that of
standard FTP.

2) Cluster-to-cluster data movement: GridFTP can do
coordinated data transfer by using multiple nodes and
streams at the source and destination. This approach can
increase performance by another order of magnitude.

3) Reliability: GridFTP provides support for reliable and
restartable data transfers.

4) Multiple security options: The Globus GridFTP
framework supports various security options, including
Grid Security Infrastructure (GSI) ‎[9], anonymous access,
username- and password-based security similar to that of
regular FTP servers, SSH-based security, and Kerberos.

5) Modularity: The XIO-based ‎[10] Globus GridFTP
framework makes it easy to plug in other transport
protocols. The Data Storage Interface (DSI) ‎[11] allows
for easier integration with various storage systems.

6) Third-party control: GridFTP also allows secure third-
party clients to initiate transfers between remote sites.

7) Partial file transfer: Scientists often want to download only
portions of a large file, instead of the entire file. GridFTP
supports this capability by specifying the byte position in
the file to begin the transfer.

8) Negotiation of TCP buffer/window sizes: GridFTP
employs FTP command and data channel extensions to
support both automatic and manual negotiation of TCP to
get optimal performance.

B. Alternative Transports in GridFTP – UDT and RDMA

UDT is a reliable messaging protocol developed by the
University of Illinois ‎[8]. It is built on the top of UDP with
reliability control and congestion control. With its congestion
control algorithm, UDT can efficiently utilize the high-speed
wide-area networks with a high bandwidth-delay product.

RDMA is one of the most significant breakthroughs in
efficient network data transfer. RDMA allows for direct
transfer of host buffers residing on distinct memory spaces
without intermediate copies, host CPU involvement, or
operating system overheads. The Internet Wide-Area RDMA
Protocol (iWARP) specification (proposed by the RDMA
Consortium ‎[38] to the IETF in 2002) defines a stack of
RDMA layers on top of standard TCP/IP over Ethernet. The
stack decouples the processing of Upper Layer Protocol (ULP)

data from the operating system and reduces the host CPU
utilization by avoiding copies during data transfer. In order to
achieve these goals, iWARP must be fully offloaded to an
RDMA-capable NIC (RNIC) on top of an offloaded transport
protocol. While standard iWARP specifies only TCP and
SCTP as the underlying protocols, it can be ported to other
transports, such as UDP ‎[22]‎[23] (with modifications) or UDT.

C. SmartNIC – The Network Offload Platform

The 10 Gbps Ethernet SmartNIC ‎[25] that we have used as
our offload platform in this project consists of a Cavium
OCTEON Plus CN5750 network processor ‎[27], with 12
cnMIPS64 cores running at 750 MHz. An on-board 2 GB
DRAM allows ample packet buffering space to enable deep
message inspection and large windows. The SmartNIC has a
PCIe x8 host connection and an SFP+ connector for the 10GbE
networking connection.

The OCTEON network processors contain hardware
processing units to accelerate common networking related
functions, deep packet inspection, compression, data
deduplication, RAID, security, DMA, and packet scheduling.
The C-based programmability of the OCTEON enables the
SmartNIC to be easily programmed with software both during
development and by the end user.

III. MOTIVATIONS

Several shortcomings prevent applications from achieving
high throughput on long-range grid connections. Besides TCP
throughput issues, network processing overhead can limit the
overall throughput a DTN node can provide, leading to
deployment of more high-end servers to support the required
throughput. While data transfer may be the main job of a DTN,
other data-processing tasks are also expected to be performed
on the data, which require extensive CPU power on the DTN.
Unfortunately, when the amount of host-based network
protocol processing is high, little CPU power will be left to
perform other data operations. These shortcomings serve as the
main motivations for our work presented in this paper.

The TCP protocol is not designed for high-throughput,
high-latency links. Therefore, a TCP-based protocol stack
cannot achieve good utilization in such circumstances. Because
of its RTT bias problem ‎[12]‎[13], which can lead to a drop or
fluctuation in the observed throughput, it cannot efficiently
handle data transfers over computational grids. Processing the
entire TCP-based networking stack can also consume a large
percentage of host resources. For example, a TCP message on
a 10Gbps Ethernet link can easily consume most of the CPU
cycles using a 2.2 GHz Opteron CPU ‎‎[5].

InfiniBand (IB) ‎[6] was introduced as an alternative to
Ethernet and TCP/IP, revolving around RDMA technology, to
reduce host overheads and increase maximum achievable
throughput. However, IB has received limited adoption among
networks interconnecting scientific grids. It was originally
designed for short-range data transfers typically between high-
performance storage and computing systems. Devices such as
Longbow ‎[7] extend the reach of IB over wide-area
connections, but with limited market. Efforts such as porting
IB transport over an Ethernet link layer (e.g., RoCE ‎[28]) have
also received limited use, partially because of the lack of

support for wide-area networks
1
. Therefore, traditional TCP/IP

protocols are still the predominant choice for scientific data
transfers.

Using UDT as the transport protocol, GridFTP has seen a
much higher percentage of the available bandwidth.
Nevertheless, while UDT has proven to be a better alternative
for sustaining higher throughput over high-latency
networks ‎[24], its CPU usage can be prohibitive, causing
limited practical use in high-speed data transfer applications.
With such limitations, a hardware offloading of UDT to the
NIC seems to be inevitable, in order to achieve both high
network throughput and higher server capacity.

Data security is another bottleneck. GridFTP is a
command/response protocol. GridFTP, like any FTP, uses two
channels: a control channel and a data channel. The control
channel is used for sending commands and responses and is
encrypted for security reasons. The data channel is used for
transferring the actual data of interest. By default, the data
channel is authenticated at connection time, but no integrity
checking or encryption is performed because of performance
overheads. Enabling encryption or integrity protection can
greatly reduce the throughput, sometimes by 90%. Despite
having accelerated encryption instructions in modern Intel
processors (i.e., AES-NI and vector instructions), the
processing requirements for data channel security are still high
(as we discuss later). These issues have led many application
users not to enable encryption or integrity checking on
GridFTP data channel. Here is where NIC offload can help,
significantly improving the observed throughput.

IV. RELATED WORK

Several attempts have been made to improve the
performance of GridFTP file transfers over scientific grids. We
discuss some of these in this section.

Bresnahan et al. compared the performance and system
resources utilized for GridFTP-TCP and GridFTP-UDT
transfers ‎[24]. The experiments, which were conducted on the
TeraGrid ‎[14] network between Argonne and Oak Ridge
national laboratories, showed that while UDT can achieve
higher throughput than TCP can on a long-haul network, the
CPU utilization for TCP transfers was lower, in the range of
30–50%, compared with that of UDT transfers, which was
around 80%.

Kissel and Swany ‎[21] presented an RDMA XIO driver for
GridFTP, which uses revolving sender- and receiver-side
queues for buffering RDMA messages over an emulated long-
haul network based on RoCE. They showed how RDMA can
sustain line-rate throughput over their emulated network. In an
earlier attempt, Subramoni et al. ‎[34] extended GridFTP to
support RDMA over InfiniBand. The experiments were done
using Longbow WAN routers ‎[7], and close to line-rate
throughput was demonstrated for short- to medium-range
network latencies.

1
 RoCEv2, under development, can support WANs using IPv6 routing.

Gunter et al. ‎[33] investigated the benefits of using parallel
networks, one IP-based and one circuit-based network between
two endpoints, to increase the overall throughput of GridFTP.

Vardoyan et al. ‎[35] investigated file transfer bottlenecks in
GridFTP especially when security processing is involved. They
demonstrated a threaded mechanism with which multiple
transfer threads can utilize system resources effectively for
protocol and security processing.

While these projects have significantly contributed to the
file transfer performance of GridFTP using various transport
protocol techniques, our work in this paper utilizes
programmable NICs for offloading CPU-intensive protocol
processing to achieve higher performance and lower
utilization. Besides improving the observed file transfer
throughput over long-haul networks, this method increases the
available processing power for the GridFTP server host,
allowing for higher data handling and transfer capacity.

V. NIC OFFLOAD ENGINES

In this section, we discuss the design and implementation

of our NIC offload engines.

A. UDT (Reliable UDP)

We have ported the UDT v4 implementation ‎[29] to the
SmartNIC, with substantial modifications to make it work
efficiently on OCTEON processors. The NIC-resident
firmware leverages the OCTEON’s‎ unique‎
Schedule/Synchronization/Order (SSO) unit, hardware timers
(TIM), locking mechanisms, atomic operations, and network
accelerators for parallelization and workload partitioning ‎[41].
Here we highlight some features of the implementation.

Network Processing of Data Flow: ‎Fig. 1 depicts the
arrangement of the OCTEON cores for network stack
processing, including UDT, SSL, and RDMA. Blue (dark)
boxes represent OCTEON integer cores, which are logically
divided into a send and a receive side. Note that 10 cores
participate in different data-processing tasks, including send
and receive, in a data-flow model. They process work requests
submitted by the OCTEON Packet Order and Work (POW)
unit ‎[41] upon network or host arrival. The remaining 2 cores
are dedicated for asynchronous sending of UDT messages and
UDT timing control. The asynchronous arrangement of
protocol processing steps increases the utilization of the
OCTEON cores, resulting in higher capacity for packet
processing, as rarely is a core left idling for synchronization.

At the send side, data are pushed by the host through PCIe
interface‎ and‎ OCTEON’s‎ Packet‎ Input‎ Processing‎ (PIP)‎
unit ‎[41]. Messages are then sent, using DMA, to the card and
put on the UDT send queue. A dedicated asynchronous send
core transfers the UDT data (through the lower network layers)
to the link.

At the receive side, the UDT receive queue is integrated
with the existing control loop that terminates incoming
network data. Upon arrival and after initial checking and time
management, any UDT packet is placed on the receive queue
for delivery to the upper layer protocols.

Each UDT socket has a callback function, which is invoked
by using asynchronous timers after initial processing of the
incoming data in the asynchronous receive. The callback
function is assigned based on the upper layer protocol that
receives the UDT data. The UDT protocol data (belonging to
host-based UDT sockets) are pushed up to the host receive
rings by this callback (using DMA, through OCTEON’s‎Packet
Output – PKO – engine ‎[41]). Configurable interrupts
generated by the NIC inform the host of the arrival of the UDT
packets.

Fig. 1. Transport offload packet processing dataflow on SmartNIC

Zero-Copy Processing: All protocol processing on the
SmartNIC is performed without data copies (zero copy). Packet
data is not being copied to NIC memory buffers in any of the
processing stages. The same packet buffers that are allocated
by the hardware at ingress are re-chained and forwarded to the
egress path. This approach saves a significant amount of
processing power and latency, while allowing for line-rate
throughput. At the host side, however, a travel through the
kernel and a single copy is inevitable for UDT sockets, to
transfer the data out of the kernel’s‎socket buffers into the user
space and vice versa (for non-RDMA cases).

B. iWARP and RDMA

A version of iWARP that runs over UDT has been designed
for SmartNIC. RDMA Protocol (RDMAP) and Direct Data
Placement (DDP) layers are offloaded to the card, while the
verbs layer, including queue pair processing, is partially
managed at the host.

DDP Layer: DDP enables a ULP to send data to a data
sink without requiring an intermediate buffering. A TCP-based
DDP is typically implemented on top of the Marker PDU
Aligned (MPA) framing protocol. One can, however,
implement DDP on top of any protocol that follows the
reliability requirements set forth in RFC 5041 ‎[19]. Using
datagram-based UDT releases the requirement of using the
MPA layer, thus removing both latency and bandwidth
overheads associated with using markers. DDP uses special
callbacks for asynchronous transfer of data to the host using
OCTEON’s‎ DMA‎ engines,‎ to‎ help‎ increase‎ the‎ overall‎
capacity of the NIC.

RDMAP Layer: The RDMAP firmware is layered
immediately on top of offloaded DDP. RDMAP relies on the
DDP layer for transmission and placement of data into tagged

Kernel Recv.
Rings (SKB)

Async. Recv.

Sync. Recv.

Async.

Send. Core

Timer Core

UDT Recv.
Queues

UDT Send
Queues

NIC

HOST

RDMA

data

Host Memory

Sync. Send

Recv

Flow

Send
Flow
Side

 Octeon Core

SSL Decrypt

SSL Encrypt

PHY

buffers and the passing of untagged buffers. This
implementation of RDMAP is based on the specification
described by RFC 4296 ‎[20]. RDMAP is generally a thin layer
that uses DDP header fields for different RDMA operations.
Our current implementation of RDMAP supports RDMA send,
receive, and write operations; and we are planning to add
RDMA read operation in the future.

iWARP Driver Implementation: The host driver
implementation is compatible with the Open Fabrics Alliance’s
OFED ‎[30]. The SoftiWARP software stack ‎[31] is used as a
base for our host- side iWARP support, in which the software
processing of RDMAP and DDP are bypassed to the card. We
have modified the base OFED SoftiWARP software to support
the SmartNIC offload engines.

RDMA Connection Manager (CM) is an essential piece to
transparently support IB and iWARP networks using the same
OFED API. SoftIWARP implements a version of RDMA CM
that utilizes TCP/IP. We have modified this implementation to
perform over the offloaded UDT protocol. When establishing
an RDMA connection, a pre-connected UDT socket that has
been offloaded to the card is registered to the RDMAP and
DDP layers. At this stage the socket is considered to be “in‎
RDMA‎mode”‎ and‎ all‎ its data will be processed by the NIC
iWARP layers.

C. Security Offload and OpenSSL

SSL is one of the essential standards utilized by GridFTP
for security processing. GSI is built on SSL/TLS for encryption
and mutual authentication. GridFTP-Lite ‎[40] also uses SSL
for its security purposes. OpenSSL is an open-source SSL/TLS
toolkit utilized by GridFTP.

Cavium has provided the core functionality for card-side
SSL, in an API that offers base functions for context
management, encryption/decryption, digital signature, and so
forth, utilizing OCTEON’s‎per-core security coprocessors. We
have created an API that utilizes this functionality for
OpenSSL security processing in an asynchronous data-flow
fashion on the NIC.

The base functions are inefficient, since they essentially use
only one OCTEON core and perform several data copies,
causing the overall throughput to be very low. The low
performance is partially due to‎ the‎ library’s‎ internal‎
mechanism for handling SSL sequence numbers that is non-
scalable and serializes the process, not allowing multiple
blocks to be processed in parallel. We modified the library to
handle SSL sequence numbers outside of the core functions,
using OCTEON’s‎ powerful‎ atomic‎ operations.‎ With this
optimization, since we can concurrently utilize up to 10 cores
on the 12-core OCTEON processor for a single SSL stream,
we are able to fully parallelize the cryptography process on
independent blocks, increasing the observed throughput by
eight to nine times.

We have further improved the SSL offload performance by
removing data copies and enabling concurrency in SSL API
processing on the card. We have eliminated memory copies
that happen on the card, both in our library and in‎Cavium’s‎
base crypto library. Note that the inherent data touch in the
security processing is inevitable, where the data is read from

the source packet buffer, and the encrypted/decrypted data is
written into the destination packet buffer). We also use cache
prefetching and aligned buffers to improve the memory access
time for the one-time data touch. Prefetching and buffer
alignment further improved the SSL throughput by ~20%.

To reduce firmware complexity, we keep the buffer size
equal to a packet buffer size (currently near 9 KB). This helps
avoid extra copies for moving the entire data in an intermediate
contiguous buffer for cryptography, as the card side packet
buffers belonging to a ULP data unit are not necessarily
contiguous in memory.

D. GridFTP over NIC Offload Engines

To enable the Globus GridFTP to use the offloaded
transport protocols, we use XIO (eXtendible Input/Output
System) drivers. XIO in GridFTP ‎[10] provides a modular
framework in which different communication protocols can be
utilized by using a common standard interface supporting
operations such as open/close/read/write. The XIO interface
connects to the communication protocol using a driver
structure, in which multiple drivers for supported protocols can
be used by the GridFTP server/client.

We have used two XIO drivers for UDT and RDMA. The
UDT XIO driver in GridFTP works on top of UDT offload
engine on the card. For RDMA, we have used the XIO-RDMA
driver developed as part of Phoebus project ‎[21], as the base
for our iWARP (RDMA) XIO driver on top of the SmartNIC
iWARP stack. This driver uses multiple threads at server and
client sides for performing RDMA operations. RDMA
Send/Recv operations are used for control purposes. We have
modified this driver to support both Send/Recv and RDMA
Write for data transfer.

A socket-based channel is used in the original RDMA XIO
driver for handshaking and control. Since RDMA Write
operations are one-sided, the server and client need a separate
mechanism to inform the data sink (receiver) of the completion
of an RDMA Write operation. The control messages need to
complete only after the data transfer is completed on the
RDMA write channel. The original driver uses a separate non-
RDMA socket for control-channel completion notifications.
We have moved the control messages over to the RDMA
channel to allow for guaranteed completion sequence. In fact,
two mechanisms are used for completion checking:

 Destination buffer checking/polling (using a small header
and‎ footer‎ around‎ the‎ data‎ in‎ XIO‎ driver’s‎ internal‎ SLAB‎
buffers). These checks are intermittent, in order to avoid high
CPU utilization.

 Two-sided (Send/Recv) RDMA operations to inform the
data sink of a completed RDMA Write (recommended by the
standard).

At completion, the data sink sends a TCP or RDMA
Send/Recv based receipt to the data source, indicating the full
reception of data, so that source SLAB resources can be freed.
Our performance results are best when using the first
completion method; however, this method is nonstandard and
may not be used on systems where memory placement of
network data can be out of order.

For increased performance, we also modified the XIO
driver to send larger data chunks of up to a certain size to the
card. The best RDMA performance on OCTEON is gained
when the data is pushed from the host (using the scatter/gather-
based DMA capabilities of OCTEON’s IPD/PIP unit) instead
of asking the OCTEON cores to initiate DMA operations. Such
data-pushing operations however are limited to no more than
14 user buffers; and since we are dealing with 4 KB user pages
as the largest buffer size in the RDMA scenario, our DMA size
is limited to less than 56 KB. Note that this does not negatively
affect performance or functionality and is completely opaque
to the GridFTP user.

VI. EXPERIMENTAL RESULTS

To evaluate the offload engines and their benefits for
throughput and host CPU utilization, we begin with some
microbenchmark results for several offload engines, including
UDT, RDMA, and SSL offload. We then present GridFTP
results over an emulated long-delay network. To further verify
our findings, we also present results for GridFTP over UDT on
a long-haul 10GbE link reservation on ESNet.

A. Experimental Platform

The tests were performed on two platforms:

1) RNET_P is a cluster, each node with two quad-core

Intel Xeon E5620 processors running at 2.4 GHz and 12 GB

of RAM. The nodes run CentOS 5.3, Linux kernel 2.6.18-128.

We use synthetic delay insertion on a middle node to emulate

a long-haul network with various latency numbers.

2) UC_P is a two-node configuration at the

Argonne/University of Chicago Computation Institute. Each

node has a quad-core Intel Xeon E5504 processor running at 2

GHz, with 4 MB of cache. The nodes have 4 GB of RAM and

run RedHat Enterprise Linux 6 with kernel version 2.6.32-

358. We use an OSCARS ‎[17] 10GbE virtual circuit

reservation over ESNet (~96 ms latency), when using this

platform.
On both platforms, each node has an RNET 10GbE card

(SmartNIC) installed in an x8 PCIe slot. We turn off CPU
frequency scaling and processor c-state switching to allow for
maximum host performance.

B. Microbenchmark Results over the LAN

In this section, we present results from benchmarking the

UDT, RDMA and SSL offload engines using simple

throughput microbenchmarks.

1) UDT Offload Engine: In the UDT microbenchmark, a

one-way stream of messages is transferred from one node to

the other one, and a final small acknowledgment is sent back.

The card is set to coalesce interrupts in order to reduce the

burden on the host, an approach that has a positive effect on

throughput. Jumbo frames are used, and the user-level API

chunks the data in 16 KB pieces. The UDT offload single-

stream test can reach up to 9.8 Gbps.
We use the mpstat tool in Linux to report CPU utilization.

Based on the measurements, offloaded UDT requires nearly
50% of a core power at the sender side and nearly 80% of a
CPU core power at the receiver side to reach line-rate

throughput. The CPU utilization for UDT shows that at the
sender side, CPU is consumed mostly in system calls, which
are due to the UDT driver handling send requests. At the
receiver side, almost all the consumed CPU cycles are in soft
IRQ (interrupt) processing for the arrived data. We have
moved a significant portion of the host-side processing to the
interrupt bottom half (soft IRQ), where the socket buffers
containing arrived data are posted into work queues for user-
space processing. Eliminating multiple sender-side and
receiver-side copies at the host has helped reduce the overall
CPU utilization. Most of the CPU utilizations observed are due
to kernel-space socket buffer processing and polling activities
to check for the availability of data; no UDT protocol
processing occurs at the host side.

2) RDMA Engine: To measure RDMA throughput, we use

RDMA Write (memory semantics) in a one-way stream of

data, terminated by a final acknowledgment message from the

receiver. The observed one-way streaming throughput is over

9.8 Gbps; and the CPU utilization is low, due to using

offloaded processing and direct memory transfer into user-

space buffers. The sender-side CPU utilization is ~11% of a

CPU core, spent mostly in system calls to post data to the card.

The receiver-side CPU utilization is negligible (less than 2% of

a CPU core), since no CPU involvement is required in order to

place the data in user space. The small CPU power consumed

is to periodically check the arrival of data.

3) SSL Offload Engine: For benchmarking the SSL

offload, we have used an emulated HTTPS server/client, where

a one-way stream of HTTPS data is sent and finalized by a

final response from the receiver to end the session. Using this

benchmark, we observe 6.2 Gbps throughput in a single flow

of OpenSSL-based data transfer (‎Fig. 2).

The main reason for not reaching line rate in full OpenSSL
processing on the card is OCTEON’s relatively low
performance of MD5 hash processing. The MD5 engine
performance is about 1.3 Gbps per core. If we skip the card-
side MD5 calculations (and leave the final integrity check of
the file data to the host), the‎ card’s‎ capacity‎ will‎ increase,‎
making the total single-stream observed throughput to reach
9.9 Gbps using offloaded encryption. With the next generation
4-port SmartNIC, which is based on a 32-core OCTEON II
processor at 1.2 GHz, up to 27 Gbps of full OpenSSL
throughput is expected.

Undoubtedly, the main benefit for SSL offload is reduced
host CPU utilization. The offloaded SSL implementation
consumes no more CPU cycles than does a UDT offload
(essentially getting free security processing). This is due to the
fact that SSL data essentially pass through the same data path
that UDT data do, with little extra processing. We discuss
OpenSSL CPU utilization in the next section, where we also
present long-delay network results.

Fig. 2. SSL offload vs. host throughput

C. GridFTP with Offload Support

Here we present the results for benchmarking Globus
GridFTP over SmartNIC offload engines in a local-area
network setting. We run our benchmark with and without an
injected network delay. We focus on GridFTP throughput and
CPU utilization when using UDT and RDMA. OpenSSL
integration with GridFTP is under way, for which in this
section we present further microbenchmark results.

The TCP stack is tuned based on the TCP performance
tuning recommendations by ESNet ‎[32]. We also use 4 MB
GridFTP block sizes, jumbo frames, and H-TCP congestion
control (that shows a better throughput over long delays). For
host-based UDT, 8 KB maximum segment sizes are used,
similar to those for the offloaded UDT (this is different from
upper layer buffer sizes of 4 MB used for the GridFTP
software).

No-Delay Network Results: We first measured GridFTP
memory-to-memory file transfer throughput over the local-area
network with a ~500 µs RTT. The leftmost side of ‎Fig. 3
shows the observed throughput for the local-area network with
no injected delay. Except for host-based UDT, other transports
are able to saturate the link. While host-based UDT takes close
to a minute to reach its maximum throughput, offload UDT
takes only about 4–5 seconds.

Fig. 3. GridFTP throughput over emulated long-delay network

‎Fig. 4 shows CPU utilization at sender (data source) and
receiver (data sink) of a GridFTP file transfer session, when
using any of the above transports. We measure the total host
CPU utilization and calculate the average amount of one CPU

core power that is utilized for 1 Gbps of throughput. As
expected, RDMA transport shows the lowest CPU utilization
for GridFTP, because of little CPU involvement in data
transfer (especially at the receiver side). After RDMA, the
UDT offload shows the next lowest CPU utilization at both
sides. Clearly, host-side UDT has the highest CPU utilization.
Regardless of how we bind the processes to CPU cores, one
core is completely saturated in host UDT case; hence lower
than line-rate bandwidth is saturated for host-side UDT.

Table 1 shows CPU usage of different processing
operations for various transports (shown as percentage of their
total CPU utilization). The numbers are presented in the form
of sender-side/receiver-side values. The majority of offloaded
UDT time is spent in system calls; negligible time is spent in
user space. In contrast, the host UDT spends a large portion of
its sender time in user space. At the receiver side, a significant
part of offload UDT processing is spent in IRQ processing,
which includes checking for data arrival and handling packet
buffers. We plan to improve this portion by using kernel-
assisted wait queues and reduced kernel-side polling. For TCP,
most of the processing at both sides occurs in system calls and
soft IRQ processing.

Fig. 4. GridFTP CPU utilization with different transports over RNET_P

TABLE 1 - CPU UTILIZATION FOR TCP AND UDT

GridFTP
Transport

IRQ % Syscall % User space%

TCP (4 stream) 45 / 60 51 / 35 4 / 5

Host UDT 21 / 43 31 / 16 48 / 41

Offload UDT 16 / 71 81 / 26 3 / 3

Long-Delay Network Setup: One of the main expected
benefits of using UDT as the underlying transport is its ability
to sustain high throughput over long-haul networks, that is,
wide-area networks with high latencies. To examine the
GridFTP performance with various network latencies, we used
an emulated long-delay network, where the latency is induced
by a middle node, as depicted in ‎Fig. 5. The middle node has a
two-port OCTEON Plus 10GbE card and uses OCTEON’s‎
timers to schedule each arrived message at its ingress port for
forwarding at the egress port at a requested later time, inducing
an artificial delay. This method of injecting artificial delay also
introduces a small amount of jitter, where less than 10% of the

packets experience a delay variance higher than 20%. In
addition, the setup also introduces a mild (less than 10%)
packet reordering. These characteristics are reasonable for
emulating a long-haul network, where mild jitter and
reordering are present. Little to no packet drops are present in
this experiment. We are planning to examine the effects of
various packet drop scenarios using artificial packet drops in
our future experiments.

In order to sustain 10 Gbps, the middle node needs to have
buffering space for the bandwidth-delay product of the
network. For example, for 10 ms latency, we need to have
 of buffering. This includes
buffering at the UDT protocol level, mainly the space for the
arrived packet buffers, before being forwarded. Due to the
elimination of card side copies for UDT processing, the only
data-dependent buffering required is the amount of packet
buffers held in buffers during the delay. For RDMA to be able
to‎sustain‎ this‎capability,‎beside‎UDT’s‎ internal‎buffering,‎we‎
also need to have enough buffering at the‎XIO‎driver’s‎SLAB‎
interface for a message’s‎ acknowledgment to arrive from
receiver to sender, before we discard the message at the sender
side. For this purpose, we use a SLAB buffer with 2,048
partitions of up to 64 KB each.

‎Fig. 3 presents the GridFTP file transfer throughput over
several transports using various injected delays. The delays are
shown as round-trip latencies in milliseconds and the
performance is the maximum reached (over a long window to
ensure stability). Offloaded UDT and RDMA on top of it are
the only transports that can offer a sustained near-line-rate
throughput for GridFTP. On the other hand, both host-based
TCP and UDT suffer significantly from long delays, and even
multistream TCP is not able to compensate, despite improving
TCP throughput. The other observation is that TCP-based
transfers take minutes to reach their maximum throughput,
while UDT offload takes less than five seconds.

Fig. 5. Injecting long delays to emulate a long-haul network

OpenSSL Results over Long-Delay Network: We run the
OpenSSL microbenchmark over the emulated long-delay
network, with the aim of comparing throughput and CPU
utilization for the single-stream offloaded OpenSSL with host-
based OpenSSL over TCP when using multiple TCP streams.
For the multistream TCP test, we use multiple independent
process pairs and utilize MPI calls to synchronize among them.
We run the test for multiple consecutive windows (transferring
near 8 Gb of data in each window), until the throughput
converges. For TCP we use 1 MB buffer sizes.

In ‎Fig. 6(a) we present the throughput under various
network delays. As one can see, multistream TCP-based SSL
can do better than single-stream offloaded SSL over UDT in a

no-delay case. The reason is that the processing power of the
current-generation SmartNIC limits the throughput to about 6.2
Gbps of OpenSSL + UDT, as also shown in ‎Fig. 2. As the
network delay increases, however, while there is about 10%
drop in SSL offload throughput (sustained regardless of the
amount of network latency), the multistream TCP throughput
drops more dramatically, falling by up to 50% to about 3 Gbps.

‎Fig. 6(b), which depicts normalized CPU utilization, clearly
shows that using offloaded SSL can significantly benefit host
CPU usage, decreasing it by 80% or higher. Using two
SmartNIC boards, we can expect near twice the observed
offload performance (over 11 Gbps) over a long-delay network
while utilizing the power of less than 2 host cores (less than
20% of the host power). Conversely, for a host-based TCP
solution to achieve 10 Gbps, the power of 5 to 6 host cores
(~70% of the host power in our RNET_P platform) is required.

(a)

(b)

Fig. 6. SSL streaming performance over long-delay network: (a) throughput,

(b) host core utilization per 1 Gbps throughput

D. GridFTP Results over ESNet Long-Haul Connection

To verify the benefits of using offloaded UDT-based file-
transfer over real networks, we examined our implementation
on a long-haul scientific grid connection over ESNet. ESNet is
a high-performance grid network run by the U.S. Department
of Energy, connecting hundreds of research institutions,
facilitating their scientific collaboration.

As shown in ‎Fig. 7, in this setup the UC_P platform nodes
at the University of Chicago are connected through a loop-back
long-range network that travels through ESNet to a switch

Data source

SmartNIC
Middle node

2-port Cavium

board injecting

delay

Data sink

SmartNIC

residing at NERSC in Berkeley, California. The total round-
trip latency is ~96 ms.

Fig. 7. Long-haul loopback network set-up at UChicago through ESNet

(a)

(b)

Fig. 8. GridFTP test results on UC_P: (a) maximum throughput on back-to-

back connection and ESNet long-haul network, (b) CPU utilization

‎Fig. 8(a) shows the maximum observed throughput of
GridFTP file transfer using offloaded UDT, compared with that
of host-based TCP and UDT. The results are presented for both
a back-to-back connection and the long-haul network. TCP
performance tuning similar to those on the RNET_P platform
were performed. We can see that only the offloaded UDT can
nearly saturate the link under high latency. Our investigations
show that the link introduces jitter and some mild reordering of
packets,‎ which‎ contribute‎ to‎ TCP’s‎ poor‎ performance. The
amount of packet drops over this link is negligible.

Increasing UDT’s‎internal‎bandwidth estimation window as
well as increasing the next packet expected time improved its
sustained throughput and helped UDT avoid fluctuations in the
observed throughput. We note that such parameters should be
adjusted based on network conditions (such as RTT and jitter),
which could be a potential burden on the user.

Despite the tuning efforts, host-based UDT is unable to
saturate the link in either case (no-delay and long delay).
However, it still shows significantly less throughput drop
compared to that of TCP, when going from no-delay (back-to-
back connection) to the long-haul network. The reason both
host-based UDT and TCP are not able to saturate the link even
when the nodes are connected back-to-back is that the UC_P
nodes are less capable than the RNET_P nodes and the
interrupt processing fully saturates a CPU core. This situation
results despite using interrupt coalescing, larger packet push-up
from the card (4 KB instead of 1536 B), presence of the IRQ-
balance tool (to spread IRQ processing), and jumbo frames.

‎Fig. 8(b) shows the CPU utilization of UDT and TCP on
UC_P, in terms of the utilization of one CPU core per 1 Gbps
of data transfer throughput. The measurements show twofold to
threefold improvement in the CPU utilization when using the
offloaded vs. host-based UDT.

To have a better insight into the transient behavior of these
transport protocols on the long-haul connection, we also
examined the observed instant file transfer throughput (as
reported by GridFTP) over a 100-second window (‎Fig. 9). In
this window of time, offloaded UDT is able to transfer over
113 GB of data, whereas the amount for host-based UDT and
4-stream TCP is only 59 GB and 24 GB, respectively. We also
observe that GridFTP over offloaded UDT is able to sustain the
maximum throughput over the long run. On the other hand,
significant throughput variation is observed for TCP-based
transfers.

The initial warm-up time for offloaded UDT, as observed
in the beginning of the graph, is longer than expected,
particularly longer than what we observe on the RNET_P
platform, as reported in Section ‎VI.‎C. The cause is most
probably related to the UDT parameter settings, which we are
currently investigating.

Fig. 9. Instant throughput of GridFTP long-range file transfer over a 100-

second window of data transfer

VII. CONCLUSIONS AND FUTURE WORK

In this paper we demonstrated how long-haul secure and
regular file transfers can benefit from using an alternative
transport protocol such as UDT that is offloaded to the network
interface card. The benchmarks show how the UDT protocol
offload can reduce the processing burden on DTNs, allowing
for more communication capacity or data-processing
capability. GridFTP over offloaded UDT can achieve over
60% reduction in host CPU usage, while near-line-rate
throughput can be sustained over high-latency high-
performance networks. Moreover, CPU usage can reach near-
zero when utilizing RDMA over UDT. The results also show
that high-throughput secure data transfer over long delays can
be achieved by using SSL and UDT protocol offloading, while
freeing the host processors for other purposes.

In addition to the above, many applications can now opt for
secure data transfers, something significantly CPU-intensive
when using a host-based approach on a DTN. The freed host
resources can be utilized for various use-cases, including
higher network capacity (using more network ports), data
compression, and, more importantly, end-to-end file integrity
check, which is a resource-intensive task. Moreover, the
observed reduction in DTN processing requirements (up to 6
times for the same throughput in the case of SSL) can lead to
significantly smaller or fewer DTNs.

In our next experiments we will examine the effect of
packet loss on long haul data transfers using UDT and TCP.
We also plan to complete the integration of offload engines,
particularly SSL, with a production GridFTP release.
Moreover, we plan to examine the potential usage of OpenSSL
over RDMA that could further reduce the observed host
utilization. We also plan to run our experiments over other
scientific grids such as Internet2 or SCinet. To further examine
the benefits of network offloading for increasing the capacity
of a data transfer node, we plan to utilize multiple SmartNIC
(and next-generation SmartNIC II) cards, and simultaneously
perform other operations on the DTN, such as file integrity
check or compression.

ACKNOWLEDGMENT

We thank the Argonne/University of Chicago Computation
Institute, as well as Starlight Networks and ESNet, for
providing the resources for long-haul network tests.

REFERENCES

[1] W. Allcock, J. Bresnahan, R. Kettimuthu,‎ and‎M.‎ Link,‎ “The‎ Globus‎
striped GridFTP framework and server,”‎ in Proceedings of the SC05,
page 54. IEEE Computer Society, 2005.

[2] W.‎Allcock,‎T.Perelmutov,‎ “GridFTP‎v2‎ protocol description,”‎Global‎
Grid Forum, May 2005.

[3] Energy Science Network (ESNet), Available: http://www.es.net.

[4] A.‎ Hanushevsky,‎ “Peer-To-Peer secure fast copy – bbcp,”‎ SLAC,‎
Available: http://www.slac.stanford.edu/~abh/bbcp/

[5] W. Feng, P. Balaji, C. Baron, L. N. Bhuyan, and D. K. Panda,
“Performance‎ characterization of a 10-Gigabit‎ Ethernet‎ TOE,”‎ in Hot
Interconnect (HOTI), August 2005.

[6] InfiniBand Trade Association, Available: http://infinibandta.org/.

[7] Longbow Infiniband Range Extenders. Obsidian Strategies, Available:
http://www.obsidianresearch.com/products/longbow/index.html.

[8] Y. Gu and R. L. Grossman, “UDT: UDP-based data transfer for high-
speed wide area networks,”‎Comput.‎Netw.,‎51(7):1777–1799, 2007.

[9] I. Foster, C. Kesselman,‎ G.‎ Tsudik,‎ and‎ S.‎ Tuecke,‎ “A‎ security
architecture for computational grids,”‎ in‎ CCS‎ ’98:‎ Proceedings of the
5th ACM conference on Computer and communications security, pages
83–92, New York, NY, USA, 1998. ACM.

[10] W.‎ Allcock,‎ J.‎ Bresnahan,‎ R.‎ Kettimuthu,‎ and‎ J.‎ Link,‎ “The‎ Globus‎
eXtensible Input/Output System (XIO): A protocol-independent I/O
system for the grid,”‎in High- Performance Grid Computing and High-
Level Parallel Programming Models in conjunction with IPDPS, 2005.

[11] R.‎ Kettimuthu,‎ J.‎ Link,‎ J.‎ Bresnahan,‎ and‎ W.‎ Allcock,‎ “Globus‎ data
storage interface (DSI) – enabling easy access to grid datasets,”‎in First
DIALOGUE Workshop: Applications-Driven Issues in Data Grids,
2005.

[12] J. Padhye, V. Firoiu, D. Towsley, J. Kurose,‎ “Modeling TCP
throughput: a simple model and its empirical validation,” in ACM
SIGCOMM, 1998.

[13] P. Prakash, A. Dixit, Y. Hu, and R. Kompella,‎ “The TCP outcast
problem: exposing unfairness in data center networks,”‎ in Proceedings
of the 9th USENIX Conference on Networked Systems Design and
Implementation, 2012.

[14] TeraGrid. Available: https://www.xsede.org/tg-archives.

[15] Internet2. Available: http://www.internet2.edu/.

[16] “Science‎DMZ:‎data transfer node,”‎Energy Science Network (ESNet),
Available: http://fasterdata.es.net/science-dmz/DTN/

[17] C. Guok, D. Robertson, M. Thompson, J. Lee, B. Tierney, and W.
Johnston,‎ “Intra‎ and‎ interdomain circuit provisioning using the
OSCARS reservation system,”‎ in 3rd International Conference on
Broadband Communications, Networks, and Systems, 2006.

[18] J. Postel‎ and‎ J.‎ Reynolds,‎ “File‎ transfer protocol (FTP),”‎ IETF,‎ RFC‎
959, 1985.

[19] H.‎Shah,‎J.‎Pinkerton,‎R.‎Recio,‎P.‎Culley,‎“DDP‎- direct data placement
over reliable transports,”‎ IETF‎ Network‎ Working‎ Group,‎ RFC‎ 5041,‎
October 2007.

[20] S.‎Bailey,‎T.‎Talpey,‎“The‎architecture of direct data placement (DDP)
and remote direct memory access (RDMA) on Internet protocols,”‎IETF‎
Network Working Group, RFC 4296, December 2005.

[21] E.‎Kissel,‎M.‎Swany,‎ “Evaluating‎ high performance data transfer with
RDMA-based protocols in wide-area networks,”‎ IEEE‎ HPCC-ICESS
2012, Liverpool, UK, June 25-27, 2012. IEEE Computer Society.

[22] R.‎Grant,‎M.‎Rashti,‎A.‎Afsahi,‎P.‎Balaji,‎“RDMA capable iWARP over
datagrams,”‎ in‎ Proceedings of International Parallel & Distributed
Processing Symposium (IPDPS), IEEE Computer Society, 2011.

[23] M. J. Rashti, R. E. Grant,‎P.‎Balaji,‎and‎A.‎Afsahi,‎“iWARP redefined:
scalable connectionless communication over high-speed‎Ethernet,” 17th
International Conference on High Performance Computing (HiPC
2010), Goa, India, December 19-22, 2010.

[24] J. Bresnahan, M. Link, R. Kettimuthu and I. Foster,‎ “UDT as an
alternative transport protocol for GridFTP,”‎ in Proceedings of the 7th
PFLDNeT Workshop, Tokyo, Japan, May 2009.

[25] RNET’s‎User‎Programmable‎10Gigabit‎‎Ethernet‎SmartNIC.‎Available:‎
http://www.rnet-tech.com/us/products/2-specialities/2-smartnic.

[26] Globus GridFTP. Available: http://toolkit.globus.org/toolkit/docs/latest-
stable/gridftp/.

[27] Cavium CN57XX Octeon Plus Network Processor. Available:
http://www.cavium.com/OCTEON-Plus_CN57XX.html.

[28] Infiniband‎Trade‎Association,‎“RDMA‎over‎converged Ethernet,”‎Press‎
release, 2010. Available:

http://www.infinibandta.org/content/pages.php?pg=press_room_item&r
ec_id=663

[29] Y.‎ Gu,‎ “UDT: breaking the data transfer bottleneck,”‎ Available:
http://udt.sourceforge.net/.

[30] OpenFabrics‎ Alliance.,‎ “OpenFabrics‎ enterprise distribution (OFED),”‎
Available: http://www.opernfabrics.org.

[31] B. Metzler, F. Neezer, P. Frey, “A software iWARP driver for
OpenFabrics,”‎OpenFabrics‎Spring SONOMA Workshop, 2009.

http://www.internet2.edu/
http://www.rnet-tech.com/us/products/2-specialities/2-smartnic
http://toolkit.globus.org/toolkit/docs/latest-stable/gridftp/
http://toolkit.globus.org/toolkit/docs/latest-stable/gridftp/
http://www.cavium.com/OCTEON-Plus_CN57XX.html
http://www.infinibandta.org/content/pages.php?pg=press_room_item&rec_id=663
http://www.infinibandta.org/content/pages.php?pg=press_room_item&rec_id=663
http://udt.sourceforge.net/
http://www.opernfabrics.org/

[32] Tips for tuning Linux & TCP for high performance long-haul networks.
ESNet, Available: http://fasterdata.es.net/host-tuning/linux/.

[33] D. Gunter, R. Kettimuthu, E. Kissel, M. Swany and J. Zurawski,
“Exploiting network parallelism for improving data transfer
performance,”‎IEEE/ACM Annual SuperComputing Conference (SC12)
Companion Volume, Nov. 2012.

[34] H. Subramoni, P. Lai, R. Kettimuthu, D.K. Panda, “High performance
data transfer in grid environment using GridFTP over InfiniBand,”‎
Proceedings of the 10th IEEE/ACM CCGrid Symposium, May 2010.

[35] G. Vardoyan, R. Kettimuthu, S. Tuecke and M. Link,‎ “Characterizing
throughput bottlenecks for secure GridFTP transfers,”‎ International
Conference on Computing, Networking and Communications, Internet
Services and Applications Symposium, Jan. 2013.

[36] S‎ Floyd,‎ “HighSpeed TCP for large congestion windows,”‎ IETF‎RFC
3649, 2003.

[37] D.‎ Leith,‎ R.‎ Shorten,‎ “H-TCP: TCP congestion control for high
bandwidth-delay product paths,”‎IETF‎Draft,‎‎draft-leith-tcp-htcp-06.txt,
2008.

[38] RDMA Consortium,‎ “Architectural specifications for RDMA over
TCP/IP,”‎Available:‎http://www.rdmaconsortium.org/

[39] Globus Transfer Service, Available: https://www.globus.org/file-
transfer

[40] Globus GridFTP-Lite, Available:

http://toolkit.globus.org/toolkit/data/gridftp/quickstart.html.

[41] “OCTEON‎ Programmer’s‎ Guide,‎ The‎ Fundamentals”,‎ Cavium‎
Networks, 2010.

http://fasterdata.es.net/host-tuning/linux/
http://www.rdmaconsortium.org/
http://toolkit.globus.org/toolkit/data/gridftp/quickstart.html

