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Abstract — Extreme-scale scientific collaborations require 

high-performance wide-area end-to-end data transports to 

enable high data volumes. GridFTP is the de facto protocol for 

Grid-wide transfer of data.  Existing predominant network 

transport solutions such as TCP have serious limitations that 

consume significant CPU power and prevent GridFTP from 

achieving high throughput on long-haul networks. These 

limitations have caused underutilization of existing high-

bandwidth links in scientific and collaborative grids. To address 

this situation, we have enhanced Globus GridFTP, the most 

widely used GridFTP implementation, by developing transport 

offload engines such as UDT and iWARP on a programmable 

10GbE NIC. Our results show significant reduction in server 

utilization and full line-rate sustained bandwidth in high-latency 

networks, as measured for up to 100 ms of network latency. In 

our work, we also offload OpenSSL security on SmartNIC to 

reduce host utilization for secure file transfers. The offload 

engine can provide line-rate data channel encryption/decryption 

on top of UDT offload without consuming additional host CPU 

resources. Lower CPU utilization leads to increased server 

capacity, which allows data transfer nodes to support higher 

network and data-processing rates. Alternatively, smaller or 

fewer DTNs are needed for a particular data rate requirement. 

Keywords— Scientific Collaboration; GridFTP; UDT; Network 

Offload; RDMA 

I. INTRODUCTION  

Extreme-scale scientific computations, experiments, and 
collaborations require unprecedented wide-area end-to-end 
capabilities in the form of high-throughput data transports to 
enable the transfer of high data volumes between organizations 
or facilities. Such requirements arise in a number of science 
areas including climate, high energy physics, astrophysics, 
combustion, Nano-science, and genomics. The modeling of 
complex systems, such as climate or supernovae, at higher and 
higher fidelity generates proportionately larger volumes of data 
that must be visualized, examined, and analyzed by widely 
dispersed scientist teams looking for insight and discovery. 
Unfortunately, the amount of data being created by many 
computational codes faces significant transfer limitations, 
despite the available 10 Gbps and 100 Gbps capacities of grid 
network backbone connections. Supernovae simulation, 
genomics, and combustion modeling are some of the areas 
affected by such shortcomings.  

The current data transfer limitations are no longer an 
artifact of the limited capacity in the network backbone as 
originally surmised. Indeed, the 10Gbps and 100Gbps 
backbones of either the Energy Science Network (ESNet) ‎[3] 
or Internet2 ‎[15] can currently offer such capacity to connect 
pairs of sites for extended periods. These networks enable 
scientific applications to transfer extremely large data files, 
primarily by using high-performance data transfer protocols 
such as GridFTP ‎[2]. However, the fact that science users 
rarely see or use this bandwidth is symptomatic of much 
deeper challenges, which will only get worse with the next 
generation of multi-petascale and future exascale projects. 
Effectively utilizing the available bandwidth requires efficient 
underlying transport protocols and end-to-end implementations 
that can sustain a high bandwidth in high-latency transfers. 

Historically, wide-area data transport has been handled 
mostly by the Transmission Control Protocol (TCP), which has 
been the basis for the File Transfer Protocol (FTP), 
GridFTP ‎[2], bbcp ‎‎[4], and HyperText Transfer Protocol 
(HTTP). The unprecedented demands that extreme-scale 
applications place on data transport, and the geo-diversity of 
today’s‎ scientific‎ collaborations have pushed TCP beyond its 
useful envelope. The fundamental problem with TCP 
ultimately reduces to its treatment of bandwidth as a shared 
resource. A number of efforts have been made to develop high-
performance versions of TCP ‎[5]‎[36]‎[37], but with only limited 
success.  

Research shows that the UDT transport protocol ‎[8], a 
reliable user-level protocol on top of UDP, can achieve a much 
better throughput than a TCP connection can over a long-haul 
network ‎[24]. Nevertheless, the user-level processing incurred 
by UDT consumes many more resources than does a TCP 
connection (for the same data rate), effectively preventing the 
widespread realization of UDT benefits. In addition, host 
resource requirements are expected to limit the maximum 
achievable bandwidth of GridFTP, since on many systems the 
processing time required to process the UDT messages will be 
even larger than the data transfer time. Clearly needed, 
therefore, is a‎ means‎ to‎ achieve‎ near‎ “wire”‎ transfer‎ speeds,‎
while using fewer host resources, allowing for more host 
capacity. 

Another challenge is data transfer security. Many 
applications (e.g., medical, pharmaceutical, aerospace, and 
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security applications) require secure GridFTP communications. 
GridFTP offers options to secure data transfers. However, the 
resources required for performing operations such as 
encryption and decryption greatly reduce the achievable 
bandwidth. Therefore, users either must see greatly reduced 
throughput or risk sending unencrypted data ‎[35]. 

Besides the actual protocol processing, data transfer nodes 
(DTNs) ‎[16] at the edge of the networks are responsible for 
several other data-processing tasks. Such tasks include file 
integrity check by computing the checksum after the file is 
written to disk (as done by the Globus transfer service ‎[39]), 
data compression, and data reduction. Therefore, it is crucial to 
free some of the DTN’s processing power for these additional 
data-processing tasks without affecting the observed 
throughput. 

To address these challenges, we present a set of 
asynchronous network interface card (NIC) offload engines 
that improve the GridFTP long-range throughput and host 
resource utilization. Using a SmartNIC 10GbE card ‎[25], we 
examine the benefits of offloading UDT to allow for line-rate 
bandwidth on long-range networks. We also use the UDT 
engine as the underlying transport protocol for offloading the 
Remote Direct Memory Access (RDMA) and Secure Sockets 
Layer (SSL) protocols to further reduce resource consumption. 
Our experiments show that by using NIC offload, near-line-rate 
throughput can be achieved through a single data stream on 
high-performance long-haul networks such as ESNet, while 
offering a multifold reduction in host CPU utilization.  

The rest of this paper is organized as follows. Section ‎II 
provides a background on the protocols and tools used in this 
work. Section ‎III expands on the motivations of our work. 
Section ‎IV discusses the related state of the art. In Section ‎V, 
we discuss our detailed design and implementation of NIC 
offload engines. In Section ‎VI, we present experimental results, 
followed by analysis and conclusion in Section ‎VII. 

II. BACKGROUND 

In this section, we briefly discuss GridFTP, UDT, and 

RDMA, along with the SmartNIC user programmable card 

used in this project. 

A. GridFTP 

GridFTP is a high-performance, secure and reliable data 
transfer protocol optimized for high-bandwidth wide-area 
networks ‎[2]. It is based on the Internet FTP protocol, with 
extensions for high-performance operation and security. 
GridFTP is the preeminent standard for science projects 
requiring secure, robust, high-speed bulk data transport. 

The GridFTP protocol is a backward-compatible extension 
of the legacy RFC 959 FTP protocol ‎‎[18]. It maintains the 
same command/response semantics introduced by RFC 959. It 
also maintains the two-channel protocol semantics. The 
separation of the control and data channels in GridFTP enables 
third-party transfers, that is, the transfer of data between two 
end hosts, mediated by a third host. This functionality made it 
possible to develop hosted clients such as Globus Transfer ‎[39] 
for GridFTP servers.   

The de facto implementation of GridFTP is the Globus 
distribution ‎[1]‎[26]. This implementation is used by thousands 
of users with millions of data transfers per day. The Globus 
implementation of GridFTP provides a software suite 
optimized for a wide range of data access issues, from bulk file 
transfer to the details of getting data out of complex storage 
systems within sites. 

Key features of GridFTP and its predominant 
implementation (Globus) include the following: 

1) Parallel TCP streams: GridFTP uses parallel streams to 
overcome the inherent limitation in AIMD-based TCP 
congestion control algorithm. Typically, it provides orders 
of magnitude higher performance compared with that of 
standard FTP.  

2) Cluster-to-cluster data movement: GridFTP can do 
coordinated data transfer by using multiple nodes and 
streams at the source and destination. This approach can 
increase performance by another order of magnitude. 

3) Reliability: GridFTP provides support for reliable and 
restartable data transfers. 

4) Multiple security options: The Globus GridFTP 
framework supports various security options, including 
Grid Security Infrastructure (GSI) ‎[9], anonymous access, 
username- and password-based security similar to that of 
regular FTP servers, SSH-based security, and Kerberos. 

5) Modularity: The XIO-based ‎[10] Globus GridFTP 
framework makes it easy to plug in other transport 
protocols. The Data Storage Interface (DSI) ‎[11] allows 
for easier integration with various storage systems. 

6) Third-party control: GridFTP also allows secure third-
party clients to initiate transfers between remote sites. 

7) Partial file transfer: Scientists often want to download only 
portions of a large file, instead of the entire file. GridFTP 
supports this capability by specifying the byte position in 
the file to begin the transfer. 

8) Negotiation of TCP buffer/window sizes: GridFTP 
employs FTP command and data channel extensions to 
support both automatic and manual negotiation of TCP to 
get optimal performance. 

B. Alternative Transports in GridFTP – UDT and RDMA 

UDT is a reliable messaging protocol developed by the 
University of Illinois ‎[8]. It is built on the top of UDP with 
reliability control and congestion control. With its congestion 
control algorithm, UDT can efficiently utilize the high-speed 
wide-area networks with a high bandwidth-delay product. 

RDMA is one of the most significant breakthroughs in 
efficient network data transfer. RDMA allows for direct 
transfer of host buffers residing on distinct memory spaces 
without intermediate copies, host CPU involvement, or 
operating system overheads. The Internet Wide-Area RDMA 
Protocol (iWARP) specification (proposed by the RDMA 
Consortium ‎[38] to the IETF in 2002) defines a stack of 
RDMA layers on top of standard TCP/IP over Ethernet. The 
stack decouples the processing of Upper Layer Protocol (ULP) 



data from the operating system and reduces the host CPU 
utilization by avoiding copies during data transfer. In order to 
achieve these goals, iWARP must be fully offloaded to an 
RDMA-capable NIC (RNIC) on top of an offloaded transport 
protocol. While standard iWARP specifies only TCP and 
SCTP as the underlying protocols, it can be ported to other 
transports, such as UDP ‎[22]‎[23] (with modifications) or UDT. 

C. SmartNIC – The Network Offload Platform 

The 10 Gbps Ethernet SmartNIC ‎[25] that we have used as 
our offload platform in this project consists of a Cavium 
OCTEON Plus CN5750 network processor ‎[27], with 12 
cnMIPS64 cores running at 750 MHz. An on-board 2 GB 
DRAM allows ample packet buffering space to enable deep 
message inspection and large windows. The SmartNIC has a 
PCIe x8 host connection and an SFP+ connector for the 10GbE 
networking connection. 

The OCTEON network processors contain hardware 
processing units to accelerate common networking related 
functions, deep packet inspection, compression, data 
deduplication, RAID, security, DMA, and packet scheduling. 
The C-based programmability of the OCTEON enables the 
SmartNIC to be easily programmed with software both during 
development and by the end user. 

III. MOTIVATIONS 

Several shortcomings prevent applications from achieving 
high throughput on long-range grid connections. Besides TCP 
throughput issues, network processing overhead can limit the 
overall throughput a DTN node can provide, leading to 
deployment of more high-end servers to support the required 
throughput. While data transfer may be the main job of a DTN, 
other data-processing tasks are also expected to be performed 
on the data, which require extensive CPU power on the DTN. 
Unfortunately, when the amount of host-based network 
protocol processing is high, little CPU power will be left to 
perform other data operations. These shortcomings serve as the 
main motivations for our work presented in this paper. 

The TCP protocol is not designed for high-throughput, 
high-latency links. Therefore, a TCP-based protocol stack 
cannot achieve good utilization in such circumstances. Because 
of its RTT bias problem ‎[12]‎[13], which can lead to a drop or 
fluctuation in the observed throughput, it cannot efficiently 
handle data transfers over computational grids. Processing the 
entire TCP-based networking stack can also consume a large 
percentage of host resources. For example, a TCP message on 
a 10Gbps Ethernet link can easily consume most of the CPU 
cycles using a 2.2 GHz Opteron CPU ‎‎[5].  

InfiniBand (IB) ‎[6] was introduced as an alternative to 
Ethernet and TCP/IP, revolving around RDMA technology, to 
reduce host overheads and increase maximum achievable 
throughput. However, IB has received limited adoption among 
networks interconnecting scientific grids. It was originally 
designed for short-range data transfers typically between high-
performance storage and computing systems. Devices such as 
Longbow ‎[7] extend the reach of IB over wide-area 
connections, but with limited market. Efforts such as porting 
IB transport over an Ethernet link layer (e.g., RoCE ‎[28]) have 
also received limited use, partially because of the lack of 

support for wide-area networks
1
. Therefore, traditional TCP/IP 

protocols are still the predominant choice for scientific data 
transfers. 

Using UDT as the transport protocol, GridFTP has seen a 
much higher percentage of the available bandwidth. 
Nevertheless, while UDT has proven to be a better alternative 
for sustaining higher throughput over high-latency 
networks ‎[24], its CPU usage can be prohibitive, causing 
limited practical use in high-speed data transfer applications. 
With such limitations, a hardware offloading of UDT to the 
NIC seems to be inevitable, in order to achieve both high 
network throughput and higher server capacity.  

Data security is another bottleneck. GridFTP is a 
command/response protocol. GridFTP, like any FTP, uses two 
channels: a control channel and a data channel. The control 
channel is used for sending commands and responses and is 
encrypted for security reasons. The data channel is used for 
transferring the actual data of interest. By default, the data 
channel is authenticated at connection time, but no integrity 
checking or encryption is performed because of performance 
overheads. Enabling encryption or integrity protection can 
greatly reduce the throughput, sometimes by 90%. Despite 
having accelerated encryption instructions in modern Intel 
processors (i.e., AES-NI and vector instructions), the 
processing requirements for data channel security are still high 
(as we discuss later). These issues have led many application 
users not to enable encryption or integrity checking on 
GridFTP data channel. Here is where NIC offload can help, 
significantly improving the observed throughput. 

IV. RELATED WORK 

Several attempts have been made to improve the 
performance of GridFTP file transfers over scientific grids. We 
discuss some of these in this section.  

Bresnahan et al. compared the performance and system 
resources utilized for GridFTP-TCP and GridFTP-UDT 
transfers ‎[24]. The experiments, which were conducted on the 
TeraGrid ‎[14] network between Argonne and Oak Ridge 
national laboratories, showed that while UDT can achieve 
higher throughput than TCP can on a long-haul network, the 
CPU utilization for TCP transfers was lower, in the range of 
30–50%, compared with that of UDT transfers, which was 
around 80%.  

Kissel and Swany ‎[21] presented an RDMA XIO driver for 
GridFTP, which uses revolving sender- and receiver-side 
queues for buffering RDMA messages over an emulated long-
haul network based on RoCE. They showed how RDMA can 
sustain line-rate throughput over their emulated network. In an 
earlier attempt, Subramoni et al. ‎[34] extended GridFTP to 
support RDMA over InfiniBand. The experiments were done 
using Longbow WAN routers ‎[7], and close to line-rate 
throughput was demonstrated for short- to medium-range 
network latencies.  

                                                           
1
 RoCEv2, under development, can support WANs using IPv6 routing. 



Gunter et al. ‎[33] investigated the benefits of using parallel 
networks, one IP-based and one circuit-based network between 
two endpoints, to increase the overall throughput of GridFTP. 

Vardoyan et al. ‎[35] investigated file transfer bottlenecks in 
GridFTP especially when security processing is involved. They 
demonstrated a threaded mechanism with which multiple 
transfer threads can utilize system resources effectively for 
protocol and security processing. 

While these projects have significantly contributed to the 
file transfer performance of GridFTP using various transport 
protocol techniques, our work in this paper utilizes 
programmable NICs for offloading CPU-intensive protocol 
processing to achieve higher performance and lower 
utilization. Besides improving the observed file transfer 
throughput over long-haul networks, this method increases the 
available processing power for the GridFTP server host, 
allowing for higher data handling and transfer capacity. 

V. NIC OFFLOAD ENGINES 

In this section, we discuss the design and implementation 

of our NIC offload engines. 

A. UDT (Reliable UDP) 

We have ported the UDT v4 implementation ‎[29] to the 
SmartNIC, with substantial modifications to make it work 
efficiently on OCTEON processors. The NIC-resident 
firmware leverages the OCTEON’s‎ unique‎
Schedule/Synchronization/Order (SSO) unit, hardware timers 
(TIM), locking mechanisms, atomic operations, and network 
accelerators for parallelization and workload partitioning ‎[41]. 
Here we highlight some features of the implementation. 

Network Processing of Data Flow: ‎Fig. 1 depicts the 
arrangement of the OCTEON cores for network stack 
processing, including UDT, SSL, and RDMA. Blue (dark) 
boxes represent OCTEON integer cores, which are logically 
divided into a send and a receive side. Note that 10 cores 
participate in different data-processing tasks, including send 
and receive, in a data-flow model. They process work requests 
submitted by the OCTEON Packet Order and Work (POW) 
unit ‎[41] upon network or host arrival. The remaining 2 cores 
are dedicated for asynchronous sending of UDT messages and 
UDT timing control. The asynchronous arrangement of 
protocol processing steps increases the utilization of the 
OCTEON cores, resulting in higher capacity for packet 
processing, as rarely is a core left idling for synchronization. 

At the send side, data are pushed by the host through PCIe 
interface‎ and‎ OCTEON’s‎ Packet‎ Input‎ Processing‎ (PIP)‎
unit ‎[41]. Messages are then sent, using DMA, to the card and 
put on the UDT send queue. A dedicated asynchronous send 
core transfers the UDT data (through the lower network layers) 
to the link. 

At the receive side, the UDT receive queue is integrated 
with the existing control loop that terminates incoming 
network data. Upon arrival and after initial checking and time 
management, any UDT packet is placed on the receive queue 
for delivery to the upper layer protocols.  

Each UDT socket has a callback function, which is invoked 
by using asynchronous timers after initial processing of the 
incoming data in the asynchronous receive. The callback 
function is assigned based on the upper layer protocol that 
receives the UDT data. The UDT protocol data (belonging to 
host-based UDT sockets) are pushed up to the host receive 
rings by this callback (using DMA, through OCTEON’s‎Packet 
Output – PKO – engine ‎[41]). Configurable interrupts 
generated by the NIC inform the host of the arrival of the UDT 
packets.  

 

Fig. 1. Transport offload packet processing dataflow on SmartNIC 

Zero-Copy Processing: All protocol processing on the 
SmartNIC is performed without data copies (zero copy). Packet 
data is not being copied to NIC memory buffers in any of the 
processing stages. The same packet buffers that are allocated 
by the hardware at ingress are re-chained and forwarded to the 
egress path. This approach saves a significant amount of 
processing power and latency, while allowing for line-rate 
throughput. At the host side, however, a travel through the 
kernel and a single copy is inevitable for UDT sockets, to 
transfer the data out of the kernel’s‎socket buffers into the user 
space and vice versa (for non-RDMA cases).  

B. iWARP and RDMA 

A version of iWARP that runs over UDT has been designed 
for SmartNIC. RDMA Protocol (RDMAP) and Direct Data 
Placement (DDP) layers are offloaded to the card, while the 
verbs layer, including queue pair processing, is partially 
managed at the host.  

DDP Layer: DDP enables a ULP to send data to a data 
sink without requiring an intermediate buffering. A TCP-based 
DDP is typically implemented on top of the Marker PDU 
Aligned (MPA) framing protocol. One can, however, 
implement DDP on top of any protocol that follows the 
reliability requirements set forth in RFC 5041 ‎[19]. Using 
datagram-based UDT releases the requirement of using the 
MPA layer, thus removing both latency and bandwidth 
overheads associated with using markers. DDP uses special 
callbacks for asynchronous transfer of data to the host using 
OCTEON’s‎ DMA‎ engines,‎ to‎ help‎ increase‎ the‎ overall‎
capacity of the NIC.  

RDMAP Layer: The RDMAP firmware is layered 
immediately on top of offloaded DDP. RDMAP relies on the 
DDP layer for transmission and placement of data into tagged 
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buffers and the passing of untagged buffers. This 
implementation of RDMAP is based on the specification 
described by RFC 4296 ‎[20]. RDMAP is generally a thin layer 
that uses DDP header fields for different RDMA operations. 
Our current implementation of RDMAP supports RDMA send, 
receive, and write operations; and we are planning to add 
RDMA read operation in the future. 

iWARP Driver Implementation:  The host driver 
implementation is compatible with the Open Fabrics Alliance’s 
OFED ‎[30].  The SoftiWARP software stack ‎[31] is used as a 
base for our host- side iWARP support, in which the software 
processing of RDMAP and DDP are bypassed to the card. We 
have modified the base OFED SoftiWARP software to support 
the SmartNIC offload engines.  

RDMA Connection Manager (CM) is an essential piece to 
transparently support IB and iWARP networks using the same 
OFED API. SoftIWARP implements a version of RDMA CM 
that utilizes TCP/IP. We have modified this implementation to 
perform over the offloaded UDT protocol. When establishing 
an RDMA connection, a pre-connected UDT socket that has 
been offloaded to the card is registered to the RDMAP and 
DDP layers. At this stage the socket is considered to be “in‎
RDMA‎mode”‎ and‎ all‎ its data will be processed by the NIC 
iWARP layers. 

C. Security Offload and OpenSSL 

SSL is one of the essential standards utilized by GridFTP 
for security processing. GSI is built on SSL/TLS for encryption 
and mutual authentication. GridFTP-Lite ‎[40] also uses SSL 
for its security purposes. OpenSSL is an open-source SSL/TLS 
toolkit utilized by GridFTP.  

Cavium has provided the core functionality for card-side 
SSL, in an API that offers base functions for context 
management, encryption/decryption, digital signature, and so 
forth, utilizing OCTEON’s‎per-core security coprocessors. We 
have created an API that utilizes this functionality for 
OpenSSL security processing in an asynchronous data-flow 
fashion on the NIC.  

The base functions are inefficient, since they essentially use 
only one OCTEON core and perform several data copies, 
causing the overall throughput to be very low. The low 
performance is partially due to‎ the‎ library’s‎ internal‎
mechanism for handling SSL sequence numbers that is non-
scalable and serializes the process, not allowing multiple 
blocks to be processed in parallel. We modified the library to 
handle SSL sequence numbers outside of the core functions, 
using OCTEON’s‎ powerful‎ atomic‎ operations.‎ With this 
optimization, since we can concurrently utilize up to 10 cores 
on the 12-core OCTEON processor for a single SSL stream, 
we are able to fully parallelize the cryptography process on 
independent blocks, increasing the observed throughput by 
eight to nine times. 

We have further improved the SSL offload performance by 
removing data copies and enabling concurrency in SSL API 
processing on the card. We have eliminated memory copies 
that happen on the card, both in our library and in‎Cavium’s‎
base crypto library. Note that the inherent data touch in the 
security processing is inevitable, where the data is read from 

the source packet buffer, and the encrypted/decrypted data is 
written into the destination packet buffer). We also use cache 
prefetching and aligned buffers to improve the memory access 
time for the one-time data touch. Prefetching and buffer 
alignment further improved the SSL throughput by ~20%. 

To reduce firmware complexity, we keep the buffer size 
equal to a packet buffer size (currently near 9 KB). This helps 
avoid extra copies for moving the entire data in an intermediate 
contiguous buffer for cryptography, as the card side packet 
buffers belonging to a ULP data unit are not necessarily 
contiguous in memory. 

D. GridFTP over NIC Offload Engines 

To enable the Globus GridFTP to use the offloaded 
transport protocols, we use XIO (eXtendible Input/Output 
System) drivers. XIO in GridFTP ‎[10] provides a modular 
framework in which different communication protocols can be 
utilized by using a common standard interface supporting 
operations such as open/close/read/write. The XIO interface 
connects to the communication protocol using a driver 
structure, in which multiple drivers for supported protocols can 
be used by the GridFTP server/client. 

We have used two XIO drivers for UDT and RDMA. The 
UDT XIO driver in GridFTP works on top of UDT offload 
engine on the card. For RDMA, we have used the XIO-RDMA 
driver developed as part of Phoebus project ‎[21], as the base 
for our iWARP (RDMA) XIO driver on top of the SmartNIC 
iWARP stack. This driver uses multiple threads at server and 
client sides for performing RDMA operations. RDMA 
Send/Recv operations are used for control purposes. We have 
modified this driver to support both Send/Recv and RDMA 
Write for data transfer.  

A socket-based channel is used in the original RDMA XIO 
driver for handshaking and control. Since RDMA Write 
operations are one-sided, the server and client need a separate 
mechanism to inform the data sink (receiver) of the completion 
of an RDMA Write operation. The control messages need to 
complete only after the data transfer is completed on the 
RDMA write channel. The original driver uses a separate non-
RDMA socket for control-channel completion notifications. 
We have moved the control messages over to the RDMA 
channel to allow for guaranteed completion sequence. In fact, 
two mechanisms are used for completion checking:  

 Destination buffer checking/polling (using a small header 
and‎ footer‎ around‎ the‎ data‎ in‎ XIO‎ driver’s‎ internal‎ SLAB‎
buffers). These checks are intermittent, in order to avoid high 
CPU utilization. 

 Two-sided (Send/Recv) RDMA operations to inform the 
data sink of a completed RDMA Write (recommended by the 
standard). 

At completion, the data sink sends a TCP or RDMA 
Send/Recv based receipt to the data source, indicating the full 
reception of data, so that source SLAB resources can be freed. 
Our performance results are best when using the first 
completion method; however, this method is nonstandard and 
may not be used on systems where memory placement of 
network data can be out of order.  



For increased performance, we also modified the XIO 
driver to send larger data chunks of up to a certain size to the 
card. The best RDMA performance on OCTEON is gained 
when the data is pushed from the host (using the scatter/gather-
based DMA capabilities of OCTEON’s IPD/PIP unit) instead 
of asking the OCTEON cores to initiate DMA operations. Such 
data-pushing operations however are limited to no more than 
14 user buffers; and since we are dealing with 4 KB user pages 
as the largest buffer size in the RDMA scenario, our DMA size 
is limited to less than 56 KB. Note that this does not negatively 
affect performance or functionality and is completely opaque 
to the GridFTP user. 

VI. EXPERIMENTAL RESULTS 

To evaluate the offload engines and their benefits for 
throughput and host CPU utilization, we begin with some 
microbenchmark results for several offload engines, including 
UDT, RDMA, and SSL offload. We then present GridFTP 
results over an emulated long-delay network. To further verify 
our findings, we also present results for GridFTP over UDT on 
a long-haul 10GbE link reservation on ESNet. 

A. Experimental Platform  

The tests were performed on two platforms:  

1) RNET_P is a cluster, each node with two quad-core 

Intel Xeon E5620 processors running at 2.4 GHz and 12 GB 

of RAM. The nodes run CentOS 5.3, Linux kernel 2.6.18-128. 

We use synthetic delay insertion on a middle node to emulate 

a long-haul network with various latency numbers. 

2) UC_P is a two-node configuration at the 

Argonne/University of Chicago Computation Institute. Each 

node has a quad-core Intel Xeon E5504 processor running at 2 

GHz, with 4 MB of cache. The nodes have 4 GB of RAM and 

run RedHat Enterprise Linux 6 with kernel version 2.6.32-

358. We use  an OSCARS ‎[17] 10GbE virtual circuit 

reservation over ESNet (~96 ms latency), when using this 

platform. 
On both platforms, each node has an RNET 10GbE card 

(SmartNIC) installed in an x8 PCIe slot. We turn off CPU 
frequency scaling and processor c-state switching to allow for 
maximum host performance. 

B. Microbenchmark Results over the LAN 

In this section, we present results from benchmarking the 

UDT, RDMA and SSL offload engines using simple 

throughput microbenchmarks. 

1) UDT Offload Engine: In the UDT microbenchmark, a 

one-way stream of messages is transferred from one node to 

the other one, and a final small acknowledgment is sent back. 

The card is set to coalesce interrupts in order to reduce the 

burden on the host, an approach that has a positive effect on 

throughput. Jumbo frames are used, and the user-level API 

chunks the data in 16 KB pieces. The UDT offload single-

stream test can reach up to 9.8 Gbps.  
We use the mpstat tool in Linux to report CPU utilization. 

Based on the measurements, offloaded UDT requires nearly 
50% of a core power at the sender side and nearly 80% of a 
CPU core power at the receiver side to reach line-rate 

throughput. The CPU utilization for UDT shows that at the 
sender side, CPU is consumed mostly in system calls, which 
are due to the UDT driver handling send requests. At the 
receiver side, almost all the consumed CPU cycles are in soft 
IRQ (interrupt) processing for the arrived data. We have 
moved a significant portion of the host-side processing to the 
interrupt bottom half (soft IRQ), where the socket buffers 
containing arrived data are posted into work queues for user-
space processing. Eliminating multiple sender-side and 
receiver-side copies at the host has helped reduce the overall 
CPU utilization. Most of the CPU utilizations observed are due 
to kernel-space socket buffer processing and polling activities 
to check for the availability of data; no UDT protocol 
processing occurs at the host side. 

2) RDMA Engine: To measure RDMA throughput, we use 

RDMA Write (memory semantics) in a one-way stream of 

data, terminated by a final acknowledgment message from the 

receiver. The observed one-way streaming throughput is over 

9.8 Gbps; and the CPU utilization is low, due to using 

offloaded processing and direct memory transfer into user-

space buffers. The sender-side CPU utilization is ~11% of a 

CPU core, spent mostly in system calls to post data to the card. 

The receiver-side CPU utilization is negligible (less than 2% of 

a CPU core), since no CPU involvement is required in order to 

place the data in user space. The small CPU power consumed 

is to periodically check the arrival of data. 

3)  SSL Offload Engine: For benchmarking the SSL 

offload, we have used an emulated HTTPS server/client, where 

a one-way stream of HTTPS data is sent and finalized by a 

final response from the receiver to end the session. Using this 

benchmark, we observe 6.2 Gbps throughput in a single flow 

of OpenSSL-based data transfer (‎Fig. 2).  

The main reason for not reaching line rate in full OpenSSL 
processing on the card is OCTEON’s relatively low 
performance of MD5 hash processing. The MD5 engine 
performance is about 1.3 Gbps per core. If we skip the card-
side MD5 calculations (and leave the final integrity check of 
the file data to the host), the‎ card’s‎ capacity‎ will‎ increase,‎
making the total single-stream observed throughput to reach 
9.9 Gbps using offloaded encryption. With the next generation 
4-port SmartNIC, which is based on a 32-core OCTEON II 
processor at 1.2 GHz, up to 27 Gbps of full OpenSSL 
throughput is expected.  

Undoubtedly, the main benefit for SSL offload is reduced 
host CPU utilization. The offloaded SSL implementation 
consumes no more CPU cycles than does a UDT offload 
(essentially getting free security processing). This is due to the 
fact that SSL data essentially pass through the same data path 
that UDT data do, with little extra processing. We discuss 
OpenSSL CPU utilization in the next section, where we also 
present long-delay network results. 



 

Fig. 2. SSL offload vs. host throughput 

C. GridFTP with Offload Support 

Here we present the results for benchmarking Globus 
GridFTP over SmartNIC offload engines in a local-area 
network setting. We run our benchmark with and without an 
injected network delay. We focus on GridFTP throughput and 
CPU utilization when using UDT and RDMA. OpenSSL 
integration with GridFTP is under way, for which in this 
section we present further microbenchmark results. 

The TCP stack is tuned based on the TCP performance 
tuning recommendations by ESNet ‎[32]. We also use 4 MB 
GridFTP block sizes, jumbo frames, and H-TCP congestion 
control (that shows a better throughput over long delays). For 
host-based UDT, 8 KB maximum segment sizes are used, 
similar to those for the offloaded UDT (this is different from 
upper layer buffer sizes of 4 MB used for the GridFTP 
software).  

No-Delay Network Results: We first measured GridFTP 
memory-to-memory file transfer throughput over the local-area 
network with a ~500 µs RTT. The leftmost side of ‎Fig. 3 
shows the observed throughput for the local-area network with 
no injected delay. Except for host-based UDT, other transports 
are able to saturate the link. While host-based UDT takes close 
to a minute to reach its maximum throughput, offload UDT 
takes only about 4–5 seconds. 

 

Fig. 3. GridFTP throughput over emulated long-delay network 

‎Fig. 4 shows CPU utilization at sender (data source) and 
receiver (data sink) of a GridFTP file transfer session, when 
using any of the above transports. We measure the total host 
CPU utilization and calculate the average amount of one CPU 

core power that is utilized for 1 Gbps of throughput. As 
expected, RDMA transport shows the lowest CPU utilization 
for GridFTP, because of little CPU involvement in data 
transfer (especially at the receiver side). After RDMA, the 
UDT offload shows the next lowest CPU utilization at both 
sides. Clearly, host-side UDT has the highest CPU utilization. 
Regardless of how we bind the processes to CPU cores, one 
core is completely saturated in host UDT case; hence lower 
than line-rate bandwidth is saturated for host-side UDT. 

Table 1 shows CPU usage of different processing 
operations for various transports (shown as percentage of their 
total CPU utilization). The numbers are presented in the form 
of sender-side/receiver-side values. The majority of offloaded 
UDT time is spent in system calls; negligible time is spent in 
user space. In contrast, the host UDT spends a large portion of 
its sender time in user space. At the receiver side, a significant 
part of offload UDT processing is spent in IRQ processing, 
which includes checking for data arrival and handling packet 
buffers. We plan to improve this portion by using kernel-
assisted wait queues and reduced kernel-side polling. For TCP, 
most of the processing at both sides occurs in system calls and 
soft IRQ processing. 

 

Fig. 4. GridFTP CPU utilization with different transports over RNET_P 

TABLE 1 - CPU UTILIZATION FOR TCP AND UDT 

GridFTP 
Transport 

IRQ % Syscall % User space% 

TCP (4 stream) 45 / 60 51 / 35 4 / 5 

Host UDT 21 / 43 31 / 16 48 / 41 

Offload UDT 16 / 71 81 / 26 3 / 3 
 

Long-Delay Network Setup: One of the main expected 
benefits of using UDT as the underlying transport is its ability 
to sustain high throughput over long-haul networks, that is, 
wide-area networks with high latencies. To examine the 
GridFTP performance with various network latencies, we used 
an emulated long-delay network, where the latency is induced 
by a middle node, as depicted in ‎Fig. 5. The middle node has a 
two-port OCTEON Plus 10GbE card and uses OCTEON’s‎
timers to schedule each arrived message at its ingress port for 
forwarding at the egress port at a requested later time, inducing 
an artificial delay. This method of injecting artificial delay also 
introduces a small amount of jitter, where less than 10% of the 



packets experience a delay variance higher than 20%. In 
addition, the setup also introduces a mild (less than 10%) 
packet reordering. These characteristics are reasonable for 
emulating a long-haul network, where mild jitter and 
reordering are present. Little to no packet drops are present in 
this experiment. We are planning to examine the effects of 
various packet drop scenarios using artificial packet drops in 
our future experiments. 

In order to sustain 10 Gbps, the middle node needs to have 
buffering space for the bandwidth-delay product of the 
network. For example, for 10 ms latency, we need to have 
                  of buffering. This includes 
buffering at the UDT protocol level, mainly the space for the 
arrived packet buffers, before being forwarded. Due to the 
elimination of card side copies for UDT processing, the only 
data-dependent buffering required is the amount of packet 
buffers held in buffers during the delay. For RDMA to be able 
to‎sustain‎ this‎capability,‎beside‎UDT’s‎ internal‎buffering,‎we‎
also need to have enough buffering at the‎XIO‎driver’s‎SLAB‎
interface for a message’s‎ acknowledgment to arrive from 
receiver to sender, before we discard the message at the sender 
side. For this purpose, we use a SLAB buffer with 2,048 
partitions of up to 64 KB each. 

‎Fig. 3 presents the GridFTP file transfer throughput over 
several transports using various injected delays. The delays are 
shown as round-trip latencies in milliseconds and the 
performance is the maximum reached (over a long window to 
ensure stability). Offloaded UDT and RDMA on top of it are 
the only transports that can offer a sustained near-line-rate 
throughput for GridFTP. On the other hand, both host-based 
TCP and UDT suffer significantly from long delays, and even 
multistream TCP is not able to compensate, despite improving 
TCP throughput. The other observation is that TCP-based 
transfers take minutes to reach their maximum throughput, 
while UDT offload takes less than five seconds. 

 
Fig. 5. Injecting long delays to emulate a long-haul network 

OpenSSL Results over Long-Delay Network: We run the 
OpenSSL microbenchmark over the emulated long-delay 
network, with the aim of comparing throughput and CPU 
utilization for the single-stream offloaded OpenSSL with host-
based OpenSSL over TCP when using multiple TCP streams. 
For the multistream TCP test, we use multiple independent 
process pairs and utilize MPI calls to synchronize among them. 
We run the test for multiple consecutive windows (transferring 
near 8 Gb of data in each window), until the throughput 
converges. For TCP we use 1 MB buffer sizes. 

In ‎Fig. 6(a) we present the throughput under various 
network delays. As one can see, multistream TCP-based SSL 
can do better than single-stream offloaded SSL over UDT in a 

no-delay case. The reason is that the processing power of the 
current-generation SmartNIC limits the throughput to about 6.2 
Gbps of OpenSSL + UDT, as also shown in ‎Fig. 2. As the 
network delay increases, however, while there is about 10% 
drop in SSL offload throughput (sustained regardless of the 
amount of network latency), the multistream TCP throughput 
drops more dramatically, falling by up to 50% to about 3 Gbps. 

‎Fig. 6(b), which depicts normalized CPU utilization, clearly 
shows that using offloaded SSL can significantly benefit host 
CPU usage, decreasing it by 80% or higher. Using two 
SmartNIC boards, we can expect near twice the observed 
offload performance (over 11 Gbps) over a long-delay network 
while utilizing the power of less than 2 host cores (less than 
20% of the host power). Conversely, for a host-based TCP 
solution to achieve 10 Gbps, the power of 5 to 6 host cores 
(~70% of the host power in our RNET_P platform) is required. 

 
(a) 

 
(b)    

Fig. 6. SSL streaming performance over long-delay network: (a) throughput, 

(b) host core utilization per 1 Gbps throughput 

D. GridFTP Results over ESNet Long-Haul Connection 

To verify the benefits of using offloaded UDT-based file-
transfer over real networks, we examined our implementation 
on a long-haul scientific grid connection over ESNet. ESNet is 
a high-performance grid network run by the U.S. Department 
of Energy, connecting hundreds of research institutions, 
facilitating their scientific collaboration. 

As shown in ‎Fig. 7, in this setup the UC_P platform nodes 
at the University of Chicago are connected through a loop-back 
long-range network that travels through ESNet to a switch 

Data source 

SmartNIC 
Middle node  

2-port Cavium 

board injecting 

delay 

Data sink 

SmartNIC 



residing at NERSC in Berkeley, California. The total round-
trip latency is ~96 ms.  

 

Fig. 7. Long-haul loopback network set-up at UChicago through ESNet 

  
(a) 

 
(b) 

Fig. 8. GridFTP test results on UC_P: (a) maximum throughput on back-to-

back connection and ESNet long-haul network, (b) CPU utilization 

‎Fig. 8(a) shows the maximum observed throughput of 
GridFTP file transfer using offloaded UDT, compared with that 
of host-based TCP and UDT. The results are presented for both 
a back-to-back connection and the long-haul network. TCP 
performance tuning similar to those on the RNET_P platform 
were performed. We can see that only the offloaded UDT can 
nearly saturate the link under high latency. Our investigations 
show that the link introduces jitter and some mild reordering of 
packets,‎ which‎ contribute‎ to‎ TCP’s‎ poor‎ performance. The 
amount of packet drops over this link is negligible. 

Increasing UDT’s‎internal‎bandwidth estimation window as 
well as increasing the next packet expected time improved its 
sustained throughput and helped UDT avoid fluctuations in the 
observed throughput. We note that such parameters should be 
adjusted based on network conditions (such as RTT and jitter), 
which could be a potential burden on the user.  

Despite the tuning efforts, host-based UDT is unable to 
saturate the link in either case (no-delay and long delay). 
However, it still shows significantly less throughput drop 
compared to that of TCP, when going from no-delay (back-to-
back connection) to the long-haul network. The reason both 
host-based UDT and TCP are not able to saturate the link even 
when the nodes are connected back-to-back is that the UC_P 
nodes are less capable than the RNET_P nodes and the 
interrupt processing fully saturates a CPU core. This situation 
results despite using interrupt coalescing, larger packet push-up 
from the card (4 KB instead of 1536 B), presence of the IRQ-
balance tool (to spread IRQ processing), and jumbo frames. 

‎Fig. 8(b) shows the CPU utilization of UDT and TCP on 
UC_P, in terms of the utilization of one CPU core per 1 Gbps 
of data transfer throughput. The measurements show twofold to 
threefold improvement in the CPU utilization when using the 
offloaded vs.  host-based UDT. 

To have a better insight into the transient behavior of these 
transport protocols on the long-haul connection, we also 
examined the observed instant file transfer throughput (as 
reported by GridFTP) over a 100-second window (‎Fig. 9). In 
this window of time, offloaded UDT is able to transfer over 
113 GB of data, whereas the amount for host-based UDT and 
4-stream TCP is only 59 GB and 24 GB, respectively. We also 
observe that GridFTP over offloaded UDT is able to sustain the 
maximum throughput over the long run. On the other hand, 
significant throughput variation is observed for TCP-based 
transfers.  

The initial warm-up time for offloaded UDT, as observed 
in the beginning of the graph, is longer than expected, 
particularly longer than what we observe on the RNET_P 
platform, as reported in Section ‎VI.‎C. The cause is most 
probably related to the UDT parameter settings, which we are 
currently investigating. 

 
Fig. 9. Instant throughput of GridFTP long-range file transfer over a 100- 

second window of data transfer 



VII. CONCLUSIONS AND FUTURE WORK 

In this paper we demonstrated how long-haul secure and 
regular file transfers can benefit from using an alternative 
transport protocol such as UDT that is offloaded to the network 
interface card. The benchmarks show how the UDT protocol 
offload can reduce the processing burden on DTNs, allowing 
for more communication capacity or data-processing 
capability. GridFTP over offloaded UDT can achieve over 
60% reduction in host CPU usage, while near-line-rate 
throughput can be sustained over high-latency high-
performance networks. Moreover, CPU usage can reach near-
zero when utilizing RDMA over UDT. The results also show 
that high-throughput secure data transfer over long delays can 
be achieved by using SSL and UDT protocol offloading, while 
freeing the host processors for other purposes.  

In addition to the above, many applications can now opt for 
secure data transfers, something significantly CPU-intensive 
when using a host-based approach on a DTN. The freed host 
resources can be utilized for various use-cases, including 
higher network capacity (using more network ports), data 
compression, and, more importantly, end-to-end file integrity 
check, which is a resource-intensive task. Moreover, the 
observed reduction in DTN processing requirements (up to 6 
times for the same throughput in the case of SSL) can lead to 
significantly smaller or fewer DTNs.  

In our next experiments we will examine the effect of 
packet loss on long haul data transfers using UDT and TCP. 
We also plan to complete the integration of offload engines, 
particularly SSL, with a production GridFTP release. 
Moreover, we plan to examine the potential usage of OpenSSL 
over RDMA that could further reduce the observed host 
utilization. We also plan to run our experiments over other 
scientific grids such as Internet2 or SCinet. To further examine 
the benefits of network offloading for increasing the capacity 
of a data transfer node, we plan to utilize multiple SmartNIC 
(and next-generation SmartNIC II) cards, and simultaneously 
perform other operations on the DTN, such as file integrity 
check or compression.  
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