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Abstract—To empower scientists who are engaged in nation-
wide or global-scale collaborative projects for scientific discovery,
a large amount of scientific data needs to be visualized and then
shared among the scientists. Tiled Display Wall (TDW) systems
has been widely accepted and used for visualization of large-scale
scientific data. Scalable Adaptive Graphics Environment (SAGE)
has received attention from scientists as a middleware that
organizes multiple display monitors into a network-aware large
display monitor. Using a SAGE TDW, scientists can display
multiple visualized contents on a single display monitor, each of
which can be located at geographically distant site managed by
other organizations. However, SAGE does not have a mechanism
for managing multiple visualized data streams heading for a
single TDW. In a conventional network, data flows for a same
destination tend to share a same link, resulting in drop of
packets and therefore poor visual quality. Moreover, because
of the flexible nature of SAGE, rate of each visual data flows
may change dynamically as a result of user interaction on a
TDW, such as moving and resizing a visual window. For the
reason above, we propose and develop a dynamic route allocation
method that switches packet flows onto network links where
better performance is expected, in response to user-interaction
such as window movement and resizing. Technically, we have
leveraged OpenFlow, an implementation of Software Defined
Networking (SDN), to integrate network programmability into
SAGE. In this paper, we show how SAGE enhanced with the
proposed method succeeded in avoiding network congestion and
improving the quality of visualization on the tiled display wall
over the wide area OpenFlow network on the Internet.

I. INTRODUCTION

To understand the meaning of a large amount of analysis
results generated through modern scientific techniques such
as big data and data-intensive analysis, the results need to
be visualized in an intuitive manner. The visualized results
also need to be shared among multiple researchers. Modern
science deals with complex and challenging problems, and
collaborative researchers often from different universities and
institutes globally are essential. For example, to observe a
supernova explosion in astronomy, astronomers have organized
an international virtual observatory alliance to develop a fixed

point observation and visualization system using many differ-
ent observatories in the world [1].

To provide an intuitive understanding for large-scale scien-
tific data, high-resolution visualization is indispensable. Tiled
Display Wall (TDW) systems have been widely accepted for
this purpose because of their scalability in resolution. TDW
provides a single virtual large monitor composed of multiple
sets of computers and displays. The resolution can easily be
increased by adding other sets of computers and displays.
High-resolution visualization in the TDW also allows multiple
researchers to see a large display monitor simultaneously and
collaborate with each other.

There have been several TDW middleware such as
SAGE [2], COVICE [3] and CGLX [4]. SAGE, in particu-
lar, has gathered attention and concern from scientists. The
reason is that SAGE-based tiled display wall allows scientists
to receive multiple sets of visualized data streams, each of
which is generated on geographically-different administrative
domain, and display them on a single virtual monitor, while
the other middleware are designed to mainly work in a single
local environment. This feature of SAGE allows scientists to
easily share large visualized data over network and promote
global collaborations.

SAGE uses IP network to transfer visual data streams
from a sender to a receiver in a straightforward way. This
design choice contributes to achieve simplicity and ease of
use of SAGE. However, this architectural design may give
rise to some problems when we use SAGE over wide-area
network. Each network streaming may generate a large volume
of network traffic. To transfer a single full HD video with
30 fps, for example, approximately 1.4 Gbps traffic will be
generated. In addition, the streaming traffic will be changed
dynamically in volume depending on user-interaction such as
window movement and resizing. Therefore, user-interaction
to visualization on SAGE-based TDW sometimes results in
network congestion, which further leads to a decrease in
visualization quality caused from the frame rate drop.



We have developed a dynamic route allocation method that
controls packet flows to prevent links in a network from being
heavily congested. Technically, we have leveraged OpenFlow,
an implementation of Software Defined Networking, to in-
tegrate network programmability into SAGE. Our proposed
method optimizes network routing in response to external
events that may affect the balance of network flows, i.e. user-
interactions. In the demonstration of this research, we use JGN-
X/RISE [5][6][7], a network testbed provided by NICT, Japan.
We connect the JGN-X/RISE to SCinet to virtually construct a
global-wide OpenFlow testbed that spans from Japan to USA.

The remainder of this paper is organized as follows. Section
2 provides the technological background of this research. Sec-
tion 3 will briefly describe our previous work, fault avoidance
network functionality with SAGE and OpenFlow, and technical
issues to be addressed in this research. Section 4 illustrates
our proposed method, the dynamic route allocation method, in
detail. In Section 5, we present some experimental results in
our local environment, we conclude our research and suggest
future work in Section 6.

II. TECHNOLOGICAL BACKGROUND

In order for better understandings on the remaining part of
this paper, we briefly introduce the technologies leveraged in
this paper.

A. SAGE

SAGE (Scalable Adaptive Graphic Environment) is a TDW
middleware originally developed by the electronic visualization
laboratory, University of Illinois at Chicago, to realize a
scalable visualization [2]. SAGE allows users to stream the
pixels of each application over the network. It is designed
so that users can freely move and resize each application’s
window over a TDW at run time. SAGE consists of Free
Space Manager, SAGE Application Interface Library (SAIL),
SAGE Receiver, and SAGE UI (User Interface), as illustrated
in Fig. 1. The Free Space Manager (fsManager) controls
pixel streams between SAIL and the SAGE Receivers. SAIL
captures output pixels from applications, and streams them to
appropriate SAGE Receivers. A SAGE Receiver can receive
multiple pixel streams from different applications, and can
display streamed pixels on the displays connected to the SAGE
Receiver.

The Free Space Manager works similarly to a window
manager in X11 window system. It handles the layout and
placement of application windows on a TDW. Based on the
information on the window layout, the Free Space Manager
informs the SAIL linked with each application of how it
should split the application images and where it should send
the divided images. SAIL remembers how incoming images
should be divided so that it can continuously send divided
images to SAGE Receivers without communicating anything
to the Free Space Manager. This direct access architecture from
SAIL to SAGE Receivers is the core design concept in SAGE,
which produces the scalability on SAGE.

SAGE UI is a graphical user interface that allows users
to move and resize each application window on a TDW.
SAGE UI connects to a Free Space Manager and delivers user
commands (e.g. move, resize, etc.) to the Free Space Manager.

Fig. 1. Architecture of SAGE

Fig. 2. Overview of OpenFlow Architecture

Window layout modification through SAGE UI is immediately
informed to the SAIL of the corresponding application and
then SAIL may change the destination of each data stream
to another SAGE receiver, if necessary. This may also cause
drastic changes in network traffic when applications are de-
ployed globally. User-interactions through SAGE UI therefore
sometimes results in network congestion and as a result leads
to decrease of visualization quality caused by the frame rate
drop.

B. Software Defined Networking

Software Defined Networking (SDN) is an emerging con-
cept that introduces programmability into the network and
makes the network more flexible, easier to operate and manage,
and be able to respond to changing application and network
conditions. SDN decouples the network control plane from
the data/forwarding planes, enabling a centralized control of
the network layer. OpenFlow is a network protocol designed
to actualize the concept of SDN and used in communication
between the network control plane (OpenFlow controller) and
data planes (OpenFlow switches) [8][9].

Figure 2 gives an overview of OpenFlow architecture. A
typical OpenFlow network consists of a centralized OpenFlow
controller and OpenFlow switches. Each OpenFlow switch
has a flow table, which is similar to the routing table in a
network router. The flow table contains flow entries, each
of which is defined by several packet matching rules (e.g.
packets with a specific MAC address, IP address and protocol
type) and a set of actions (e.g. forward, modify and queue).



Fig. 3. Network Failure Avoidance Mechanism built into SAGE using
OpenFlow

Incoming packets to an OpenFlow switch are compared to
the flow entries, and if the packet matches a packet matching
rule in a flow entry, the set of actions associated with the
flow entry are performed. Packets that do not match any
flow entry are sent to the OpenFlow controller, and then
the OpenFlow controller decides how the packets should be
handled and the OpenFlow controller can modify the flow
tables. This centralization of the network intelligence is the
key concept of SDN. In this research, we let the OpenFlow
controller respond to the requests from SAGE and optimize
network routing dynamically based on requests by employing
the programmability of OpenFlow.

III. PREVIOUS WORK AND REMAINING CHALLENGE

We have been working on improvements of the networking
feature of SAGE. Our previous work focused on the avoidance
of network failure using OpenFlow technology [10]. In the
paper, we presented how our proposed system can detect
network failure and discover an alternative route to avoid
the failure. The architecture of the network failure avoidance
system built into SAGE is shown in Fig. 3. The key concept of
the previous work is to detect network failure in the application
layer and directly inform the OpenFlow controller of the
failure. More specifically, in our previous system, the SAGE
Receivers keep monitoring the frame rate of pixel streaming
from the applications, if they encounter sudden frame drops,
the SAGE Receivers asked the OpenFlow controller to search
for an alternative route for the pixel streaming. This kind of
quick recovery is hard to be achieved with traditional failure
detection methods in the network layer.

In the previous work, we did not focus on dynamic changes
of network traffic caused by user-interaction in SAGE. As
mentioned in Section 1 such dynamic changes of network
traffic may result in network congestion and then lead to a
decrease in visualization quality. This problem can be also
addressed by leveraging the direct interaction between the

application layer and the network layer as proposed in the
previous work. In SAGE, dynamic changes of network traffic
are caused by 1) starting a new application, 2) moving an
application window, and 3) resizing an application window.
These events can be detected by the Free Space Manager
of SAGE. Focusing on the network problem triggered by
user-interaction, we propose an interface on the OpenFlow
controller so that it can accept requests from the Free Space
Manager and dynamically reroute the network path.

IV. PROPOSED METHOD

In this paper, we present our extended version of SAGE
middleware with a dynamic route allocation method in re-
sponse to user-interactions such as opening, closing, moving
and resizing windows. Figure 4 shows an overview of our
proposed system and how the system works.

To respond to the transition of network condition triggered
by user interaction, routing measurement of the amount of
packets in each flow is essential. Furthermore, this measure-
ment must be performed immediately after any user interaction
occurs. The measurement of the amount of packets in flow is
recorded for each physical port on OpenFlow switches. These
records are aggregated to a database built on an OpenFlow
controller.

Our proposed method is assumed to run in the same
environment as our previous work does. The control logic in
our proposed method can be summarized as the following two
workflows: the background workflow and the user-interaction
workflow. The background workflow contains the T1 and T2
brown arrows as shown in Fig. 4.

T1 The controller obtains the information (e.g. num-
ber of packets, amount of data, etc. for both
incoming and outgoing directions) on links that
composes of an entire network from OpenFlow
switches.

T2 T1 information is periodically recorded and up-
dated on the database on the controller.

The user-interaction workflow responds to user operations
and network routing. The main tasks of this workflow is
represented by the blue arrows labeled S1–S6, as shown in
Fig. 4. The following is the step-by-step description how this
workflow functions when a user operations (such as moving
and resizing) are delivered into an application window:

S1 When a user operates a SAGE application win-
dow on an application node, the application node
notifies the fsManager of the operational infor-
mation and application information via the SAIL
interface. The fsManager of operation information
includes window size, vertical and horizontal co-
ordinate.

S2 If the fsManager is informed of any user’s op-
erational event occurred on the application node,
the fsManager sends a message to the OpenFlow
controller to request the OpenFlow controller to
discover and assign a route for pixel streams of
the corresponding application so that it avoids the
network collisions.



TABLE I. APPLICATION SPECIFICATION FOR THE FIRST SCENARIO

Application #1 & #2

Name Atlantis (shipped with SAGE)

Resolution 1600 × 900

Frame rate 30 frame/s

Bandwidth requirement 1Gbps

S3 For route selection, the routing module in the
OpenFlow controller needs to retrieve network
topology information from the database.

S4 The routing module determines a route for net-
work optimization so that a network collision
on the network between the display node and
application node does not occur.

S5 The fsManager sends a message of the route
assignment to the OpenFlow controller.

S6 The application node connects to the display node
via the optimized path.

To find an alternative path for a better throughput, we have
adopted Dijkstra’s algorithm where the cost parameter on each
link is given from its packet count. Dijkstra’s algorithm with
a length which is assumed from existing flow packet count is
selected here as an optimization algorithm because it is faster
than another algorithms in finding the smallest packet count
(shortest path) in all routes between the application node and
the display node.

V. EVALUATION AND DISCUSSION

In this section, we report the evaluation results of our
proposed method. We have conducted experiments in two
scenarios in order to confirm the effectiveness of the dynamic
route allocation method. In the first scenario, we observed
the fluctuation of throughput when multiple applications were
deployed simultaneously. In the second scenario, we observed
the fluctuation of throughput when we moved the location of
an application displayed on a TDW in the case that another
application also exists.

A. Multiple Application Streams

The first scenario was conducted to confirm the effec-
tiveness of our proposed method when a new application
is appeared on a TDW that where another application was
displayed. The setup of the application used in this scenario
is described in Table. I. Without our dynamic route allocation
method, the two streams from different applications tend to
share the same link, which as a result will cause network
congestion and lead to frame rate drop. On the other hand,
with our proposed method, the use of each link is monitored
and the OpenFlow controller allocates appropriate route for
each application stream.

Figure 5 shows a logical network topology for the first
scenario. NEC UNIVERGE PF5240 as an OpenFlow switch
was used with an OpenFlow controller framework, Trema [11],
in this evaluation. We divided the OpenFlow switch into five
virtual switches numbered from 0xd1 to 0xd5. The topology
shown in Fig. 5 is analogous to a wide-area network. Two
application nodes and display nodes were connected to differ-
ent switches, switch 0xd1, 0xd2, and 0xd5, respectively. These

Fig. 8. Frame Rate Drops on the TDW during Network Congestion

switches can be considered as edge switches for each different
administrative domain site. These switches are then connected
with multiple paths to each other. The numbers beside the
switches represent physical port numbers on the OpenFlow
switch. These port numbers later to show the results of the
network throughput.

First, we launched application #1 on application node A1.
The window of this application was specified to be displayed
on the monitor of display node D2. While application #1 kept
sending a pixel stream to D2, we launched another application
#2 on application node A2 at the time of T=60. The application
window of application #2 was specified to be displayed on the
monitor of the display node D1. In the later part of this section,
allocated paths and throughput are presented in cases with and
without our proposed method.

1) Case 1: Without our proposed method: Without our
proposed method, the shortest route in terms of hop count from
the source to the destination is assigned for each packet flow
and therefore an identical link of the network tends to be shared
by two applications even if there is still available bandwidth on
other links. Figure 6 snapshots the allocated routes for each
application in this case. In this case, a link between switch
0xd4 and 0xd5 was shared by the two applications. Figure 7
shows packet count per second for both transmitted packets
(TX) and received packets (RX) on each port on the OpenFlow
switch.

As observed in Fig. 7, RX on port 44 was fully loaded
during this case without our proposed method. However, the
use of ports 21, 36 and 41 were reduced after application #2
was launched. This fact means that network congestion took
place on the link between port 38 and port 44. Reduced packets
were forwarded through the switch 0xd5 from the application
#1. Figure 8 also shows frame rate drops on the two display
nodes when the network congestion occurred.

2) Case 2: With our proposed method: With our proposed
method, the congested route was not assigned. As shown in
Fig. 9, the two packet flows for the two applications were
completely isolated. All network flows were also very stable,
as shown in Fig. 10. In addition, the frame rate also keeps the
high frame rate stable (Fig. 11).



Fig. 4. Overview of System Architecture

Fig. 5. Network Topology Model for the First Scenario

Fig. 6. Congested Route Assignment without Our Proposed Method

B. Dynamic Traffic Changes caused by User-Interaction

The next scenario was conducted to confirm the effective-
ness of our proposed method when the network congestion
caused by application window movement. The setup of the
application used in this scenario is described in Table II. With-
out our dynamic route allocation method, the new application
stream caused by user-interaction kept using an heavy-loaded

TABLE II. THE APPLICATION SPECIFICATION FOR THE 2ND SCENARIO

Applications #1 & #2

Name Atlantis (shipped with SAGE)

Resolution 1100 × 620

Frame rate 30 frame/s

Bandwidth requirement 500Mbps



Fig. 7. Packet Count Per Second on Each Virtual Switch

Fig. 9. Route Assignment with Our Proposed Method

Fig. 10. Packet Count Per Second on Each Virtual Switch with Our Proposed Method

link, which leads to frame rate drops. With our proposed
method, the route assignment is always recalculated when the
user-interaction affects on network traffic.

Figure 12 shows the logical network topology in the second
scenario. In this experiment, we divided the OpenFlow switch
into four virtual switches numbered from 0xd1 to 0xd4. Two
application nodes and display nodes are connected to different
switches, switch 0xd1, 0xd3 and 0xd2 respectively. These

switches can be considered edge switches in each different
administrative domain site. In this experiment, we imposed a
bandwidth limitation on the intermediate links connecting the
edge switches to emulate a wide area network. In this way, we
assume that the local links presented as bold lines are available
with 1 Gbps bandwidth, and that the global links presented as
thin lines are limited up to 500Mbps.

Under this setting and configuration, we first launched both



Fig. 12. Network Topology Model for the Second Scenario

Fig. 11. Frame Rate with Our Proposed Method

Fig. 15. Frame Rate Drops on the TDW during Network Congestion

applications #1 and #2 on the application node A2, and both
application windows were configured to be displayed on the
monitor of display node D1. Next, we moved the window of
the application #2 to the center of displays D1 and D2. This
generated another new pixel stream from A2 to D2. Finally,
we moved the window of the application #2 to the display
D2 completely. In the following section, allocated paths and
throughput are also presented in the case of with and without
our proposed method.

1) Case 1: Without our proposed method: Without our
proposed method, as shown in the previous experiment, a
shortest route from the source to the destination is assigned

Fig. 18. Frame Rate with Our Proposed Method

to each packet flow and an identical link may be shared
by multiple applications. Figure 13 snapshots the allocated
routes for each application stream. All application streams
were assigned into the same route from switch 0xd3 to 0xd2
and caused network congestion. Figure 14 shows packet count
per second on each physical port on the OpenFlow switch.

As illustrated in Fig. 14, RX on port 16 was fully loaded
throughout the experiment. In this case, port 21 could have
consumed a more bandwidth. However, all streams got stacked
at port 16 and could not fully utilize the local link. Fig. 15
shows how the frame rate drops as caused by network conges-
tion. From this figure, the change in the network use caused
by application window movement can be observed.

2) Case 2: with our proposed method: With our proposed
method, the route assignment is always recalculated when
the use of the network is changed by any user-interaction.
Figure 16 shows the route assignments when we moved the
window of application #2 in the center of displays D1 and
D2. The blue line indicates the pixel stream of application #1,
and the red and green lines indicates the two pixel streams
of application #2. The user-interaction created another new
stream and we had three application streams in total. However,
our proposed method has succeeded to assign an appropriate
route to each application stream.

As shown in Fig. 17, port 21 was fully used compared to
the case without our proposed method. The incoming traffic on



Fig. 13. Congested Route Assignment without Our Proposed Method

Fig. 14. Packet Count Per Second on Each Virtual Switch

Fig. 16. Route Assignment with Our Proposed Method

the port 16 which delivers the stream for application #1 was
stable even if we launched another application and moved the
application window on TDW. Also, Fig. 18 shows how both
application frame rates succeeded to keep the high frame rate
steady.

VI. CONCLUSION

In this research, we proposed a method to avoid network
congestion when high-quality visual data streams are received

and displayed on a network-aware tiled display wall (TDW)
via wide-area network. One of the technical challenges here
was to allocate appropriate network routes to each data stream
when a new application was launched. The another challenge
was to rearrange network routes of existing data streams when
users’ interaction with TDW was triggered, which may cause
unbalance in network traffic and consequently degradation of
visualization quality. Our experimental results show that our
proposed method can successfully avoid network congestion.



Fig. 17. Packet Count Per Second on Each Virtual Switch with Our Proposed Method

For future work, we will apply our method to a real wide-area
network and consider the influence of network delay beyond
the Internet. Finally, consider to apply our proposed method
to visual contents in higher resolution, such as 4K and 8K.
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