Enabling Network Visibility and Security through Tensor Analysis

INDIS 2017

Muthu Baskaran
David Bruns-Smith#
Thomas Henretty
James Ezick
Richard Lethin

Reservoir Labs

UC Berkeley (Work done at Reservoir Labs)

12 November 2017
Value Add to the Security Ecosystem

We have tools that excel at monitoring flows

- Signature-based tools that provide real-time alerts
- More advanced metadata collection tools enable deeper offline analysis

Challenges

- Rules can be anticipated and evaded
- Metadata analysis is a forensic activity
- Both require a known starting point

Question

- Can we supplement traditional incident-focused approaches to threat discovery with an approach that feeds metadata to a pattern-focused analytic?
Tensor Analysis and Tensor Decompositions

A New Paradigm for Network Analysis

Unsupervised learning

Detects unknown unknowns

Captures coherent patterns of activity spanning multiple dimensions

Regular time intervals
Single user PC

Network primary DNS server
The New York Times
IPv4 traffic
Tensor Analysis and Tensor Decompositions
A New Paradigm for Network Analysis

Lesser cognitive load for analyst
Looks at fewer components (indicating activities of interest)
Use the patterns of activity to guide further investigation
CANDID and ENSIGN: Context and Overview

CANDID: A tool for network security and traffic analysis
- Provides comprehensive and contextual insights into the network
 - Malicious and obfuscated network threats
 - Network state and network performance indicators
- Reduces the cognitive load of network analysts

ENSIGN: High-performance tensor analysis engine driving CANDID
- Tensor Toolbox with advanced mathematical methods for data analysis
- High performance, rich capability, easy usability

Successfully used in diverse operational environments
- Security Operations Center (SOC) for the SCinet network at SC16
- Reservoir Labs' Local Area Network (LAN)
CANDID : Tool workflow

CANDID

Splunk

Filtered
Pattern

Network Log

Network Traffic Patterns

Network Metadata

Tensor Output Interpret Module

Validated tensor analyses

Tensor Output Validate Module

Tensor analyses

Data Transform Module

Tensor analyses

ENSIGN Tensor Analysis Engine

CANDID Splunk App

Reservoir Labs

11.12.2017

INDIS 2017
CANDID on Reservoir Network Traffic

- Time: 9 am to 5 pm every day
 - Senders: Intern’s computers
 - Receivers: DNS servers
 - Requests: Google, Stack Overflow, various yale.edu websites

- Time: Constant and regular
 - Senders: Two business computers
 - Receiver: Broadcast address
 - Request: Faulty printer’s address (Request denied so repeated constantly)

- Time: Between 2 am and 5 am in the morning
 - Senders: Blacklisted Chinese IP addresses
 - Receiver: Reservoir code repository
 - Access denied
CANDID on SCinet Network

SCinet 2016 Analysis Highlights

- Network Research Exhibition (NRE)
- Metadata collected from 6 R-Scope boxes
- HPE Apollo 2000 running ENSIGN
- Data collected within specific time windows (8–24 hours)
- Data filtered by internal/external source/destination
- Binning applied by time interval, subnet, etc.
- Typical tensor ~106 non-zeros with >99% sparsity
- Typical 100 component decomposition required ~5 minutes
- Post-decomposition exploration with Splunk

Tensors formed from selected, binned metadata pulled from filtered R-Scope (Bro) logs

HPE Apollo 2000
12 Cores, 256 GB RAM utilized per tensor
Case Study #1: External Scanners

Indicator of a reconnaissance phase of an attack

Distributed network mapping and port scanning with likelihood of hostile intent

- Coordinated attempt by multiple external actors to find hosts on SCinet with particular services
Case Study #1: External Scanners

Confirmation of hostile intent

Further Investigation in Splunk

- Filtered search for successful connections
 - "focused" Splunk query guided by the component
- Confirmed the scanning
Case Study #1: External Scanners

Confirmation of evolution of an attack

3:07 pm: The time of the potential compromise

Later that day

Heavy activity resumes at 11 pm

Component 8: Weight: 37546.8

IDS had also flagged this machine as a bad actor

40,000 outgoing SSH connections: a very bad sign

Port 22

Confirmed the evolution of an attack using a later component

• Outgoing SSH connections from a compromised host
Case Study #2: Suspected Data Exfiltration

Isolating Suspicious DNS Traffic

Suspicious DNS Traffic
- Irregular spikes in time
- Suspicious destinations

Typical DNS Traffic
- Highly regular traffic between 9 am and 7 pm – the running hours of the conference
- Valid DNS server destination
Case Study #3: ICMP Tunneling

Anomalous ICMP is difficult to distinguish through

- Decompositions with fewer metadata attributes
 - IP addresses, port, connection state/time
Case Study #3: ICMP Tunneling

Anomalous ICMP easily distinguished through

- Decompositions with additional key metadata attributes
 - adding connection duration and number of bytes to analysis

![Component 24, Weight: 47200.9999988](image)

- 6 machines on SCinet all behaving the same way
- Many destinations – the top score is a blacklisted Russian IP
- Message type 0
- Duration in range 100s-10,000s
- Originator bytes: 1 – 100 KB
- ICMP
Case Study #4: NTP Amplification Attack

Another successful use case of decompositions with more metadata attributes
Using CANDID and ENSIGN Tensor Analysis...

We have uncovered and visualized patterns indicative of:

- Distributed port scans evolving to machine takeover
- Distributed denial of service attacks
- DNS-based data exfiltration/insider threat
- SSH password guessing (apart from scanning)
- Network policy violations
- Exploitation of application-specific port vulnerabilities
- Patterns of traffic indicative of scans for printers or IoT devices
- Broken or misconfigured network services
- Selective, persistent use of cryptographic methods in point-to-point communication
More Features in the Pipeline

Alternate and advanced methods for tensor decompositions

Support for streaming updates
Conclusion

Contact Reservoir Labs
- https://www.reservoir.com

Contact the Speaker
- baskaran@reservoir.com

Meet us at SCinet NRE Demo 2017

Other Recent Papers
- *Cyber Security Through Multidimensional Data Decompositions*
 D. Bruns-Smith, M. Baskaran, T. Henretty, J. Ezick, R. Lethin, in CYBERSEC, Apr 2016

- *Memory-efficient Parallel Tensor Decompositions*
 M. Baskaran, T. Henretty, D. Bruns-Smith, M. H. Langston, J. Ezick, R. Lethin, in IEEE HPEC, Sep 2017
 (Best Paper Award)

Tensor decompositions provide a fast, scalable linear algebra based solution to finding patterns in linked metadata