Towards Bridging the Gap between Peak and Average Loads on Science Networks

Raj Kettimuthu
Argonne National Laboratory & University of Chicago

Sam Nickolay, University of Chicago
Eun-Sung Jung, Hongik University
Ian Foster, Argonne and University of Chicago
Data Deluge

Cosmology

Light Source Facilities
Science Workflows

Experimental/Observational/Computational Facility

- Local cluster
 - Analysis
- Storage
- Data Acquisition

Remote Facility

- Supercomputer
 - Analysis
- Archival
- Replication/Distribution

network
On-demand Transfers

PNNL
- cii.velo.pnnl.gov
- Visus Converter
- ciiвин.pнl.gov
- Custom Analysis Apps
 - IDL
 - AmeriCT
 - Biofilm Viewer
 - Visus
- dtн.pнl.gov

PIC Lustre FS
/пiс/prоjесtѕ/cii

Remote Desktop

ssh

ANL Instrument Node

APS

Custom Analysis Apps
- IDL
- AmeriCT
- Biofilm Viewer
- Visus

Visus Converter

ssh
GridFTP Usage Data for Top Servers

Figure 2: Network Demand for \(\text{trace}_1, \text{trace}_2, \text{trace}_3, \text{trace}_4 \).
Simulation Study

- Keeping the capacity of (overprovisioned) network constant, study the impact of increasing load on transfers
- Used 4 trace logs from Globus GridFTP servers
 - Varying peak (5.7Gbps - 16.0Gbps) and mean throughput (1.4Gbps - 2.5Gbps)
 - All have a mean throughput between 10% and 25% of the peak
- Simulate transfers in the logs in online fashion
 - 24-hour logs and scheduling interval in simulation is 1 second
- Group transfers into on-demand and best-effort
- Use slowdown metric

\[
BS = \frac{\text{Waittime} + \max(\text{Simulation Runtime}, \text{Bound})}{\max(\text{Log Runtime}, \text{Bound})}
\]
Simulation Variables

- % OD transfers – \{10\%, 30\%, 50\%, 70\%\}

- % OD bandwidth – absolute values depended on % OD transfers
 - \{\% OD transfers, \% OD transfers +10\%, \% OD transfers +20\%, 100\%\}

- Transfer Load Ratio – \{1.0x, 1.5x, 2.0x, 2.5x\}
 - Although ratios are the same for all trace logs, the resulting loads are different

- 64 different configurations for each trace log

- Baseline control Experiments – 100\% BE transfers, 0\% OD transfers
 - Used to compare the relative performance of our scheduling algorithm
Average Slowdown for Trace 1
Max Slowdown for Trace 1
Average Slowdown for Trace 2
Average Slowdown for Trace 3
Load Variation

- Trace 2 has a higher mean demand, peak demand, and mean to peak ratio than Trace 3
- Trace 2 - Mean: 2.5 Gbps, Peak: 11.2 Gbps, Mean to peak ratio: 0.22
- Trace 3 - Mean: 1.7 Gbps. Peak: 10.6 Gbps, Mean to peak ratio: 0.16)
- Trace 2 has lower OD and BE slowdown values
- Trace 3 is bursty
 - Concurrency and throughput coefficient of variations for Trace 2 were 0.67 and 0.69
 - For Trace 3, they were 0.87 and 1.07 respectively.
Summary

- Study to motivate measures to reduce the huge gap between peak and average loads in research and education networks.
- Using real world logs, simulated high transfer loads by keeping capacity at current levels and studied the impact.
- Showed current network capacity can handle up to 2x the current load with minimal impact to the data transfers
 - When the peak load is 5x or more than the average load
- When transfers are categorized into on-demand and best-effort, impact on on-demand transfers can be made negligible
 - Keeping the impact on best-effort transfers minimal
Questions