Training Classifiers to Identify TCP Signatures in Scientific Workflows

George Papadimitriou, Mariam Kiran, Cong Wang, Anirban Mandal, Ewa Deelman

International Workshop on Innovating the Network for Data Intensive Science – INDIS 2019
November 17, 2019

Funded by the US Department of Energy under Grant #DE-SC0012636M
Machine learning (ML) for Performance Data
Panorama 360 (Performance Data Capture and Analysis for End-to-end Scientific Workflows)

- TCP used in science workflows
- Tstat tool (http://tstat.polito.it/)
 - Approx. 150 variables
 - Ip addresses, port nums, Average RTT, bytes sent, ACK sent/rec, completion time, when first ACK received, etc
 - Throughput = Bytes transmitted/Completion time

We will focus on network level data!
Our Objective: Recognize unique TCP behaviors when anomalies exist (loss, duplication and reordering)

• Multiple TCP congestion algorithms are being used
• Approaches explore anomaly detection using rule systems [1], or predicting throughput [2]
• Current approaches do not:
 • Differentiate elephant and mice flow behaviors
 • Focus on simple rule based approaches to classify
• Our approach:
 • Use supervised classification methods to identify behaviors as normal and abnormal across TCP CUBIC, RENO, HAMILTION, BBR
 • Elephant and mice flows
 • Scientific workflows

The Critiques: Why would we need this?

• Basic Tstat could help see if loss is happening (e.g. retransmits are high)
 • What about the other anomalies?
• Different TCP congestion algorithms behave differently
• Reduce work for us to check which TCP is being configured
• We build extensive “labeled” data sets (next slide)
Labeled data sets and Experiment setup

- Sftp to transfer, Linux traffic Control for adding anomalies, tstat at source
- TCP flows under “normal” conditions (>1000 flows)
- TCP flows when “loss” is added: Synthetic anomalies (>1000 flows)
 - Same for duplication and reordering

- Flow distribution:
 - Elephant: 1-1.2GB link bandwidth 100 Mbps
 - Mice: 80MB and 120MB link bandwidth 1Gbps
Training data collected

Number of flows (Mice-M, Elephant-E) using CUBIC, RENO, HAMILTON, BBR

<table>
<thead>
<tr>
<th>Type</th>
<th>TCP Congestion</th>
<th>Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cubic</td>
<td>Reno</td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>E</td>
</tr>
<tr>
<td>Normal</td>
<td>1000</td>
<td>300</td>
</tr>
<tr>
<td>Loss 0.1%</td>
<td>1000</td>
<td>300</td>
</tr>
<tr>
<td>Loss 0.5%</td>
<td>1000</td>
<td>300</td>
</tr>
<tr>
<td>Loss 1%</td>
<td>1000</td>
<td>300</td>
</tr>
<tr>
<td>Dupl. 1%</td>
<td>1000</td>
<td>300</td>
</tr>
<tr>
<td>Dupl. 5%</td>
<td>1000</td>
<td>300</td>
</tr>
<tr>
<td>Reord. 25%</td>
<td>1000</td>
<td>300</td>
</tr>
<tr>
<td>Reord. 50%</td>
<td>1000</td>
<td>300</td>
</tr>
</tbody>
</table>

TABLE II: Number of Mice and Elephant flows generated to train the classifiers under normal and anomalous conditions. M: Mice, E: Elephant.
Initial Analysis: Retransmits - Elephant

Cubic

Reno

Hamilton

BBR

https://panorama360.github.io
Initial Analysis: Retransmits - Mice

Elephant flows are long enough to reflect the loss, while mice are shorter flows.
Initial Analysis: Throughputs – Elephant

Cubic

Reno

Hamilton

BBR

https://panorama360.github.io
Initial Analysis: Throughputs – Mice

- While elephant flows have clear behavior, TCP slow start causes different behavior in mice flows.
Initial Analysis: Relationship with RTT

Elephant flows:
- High loss decreases Throughput, **no affect** on RTT
- High reorder increases RTT, **no affect** on Throughput

Mice flows:
- High loss decreases Throughput, **no affect** on RTT
- High reorder increases RTT and reduces **Throughput**

![Graph showing relationship between throughput and RTT](https://panorama360.github.io)
What we learn so far

• Elephant and mice flows behave differently - if we rely in just looking at retransmits and throughputs, this will not be enough

• Each TCP congestion algorithm behaves differently

• Critiques: We have a STRONG case for having a Classifier
Which ML to use?

- We have labeled data sets
- We experimented with unsupervised classification techniques, but results were not promising:
 - difficult to understand how the classifier was making the decision
- Supervised classification techniques: Decision tree and random forest
 - White box techniques
 - Outputs all the rules the classifier learns from the training data
- Results here are presented using Random forest tree
Building the Test Dataset: Experiment Setup

• We used HTCondor and Pegasus WMS to execute a data intensive workflow that processes data from the 1000 Genome project.
• Transfers were carried out by the Globus transfer service.
• To create our experimental environment we used the ExoGENI Testbed.

• Capacity on the links was 500Mbit.
• And anomalies were introduced at both Master and Data nodes.
Test data collected: 1000Genome - TCP transfers

<table>
<thead>
<tr>
<th>Type</th>
<th>TCP Congestion Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cubic</td>
</tr>
<tr>
<td>Normal</td>
<td>257</td>
</tr>
<tr>
<td>Loss 1%</td>
<td>273</td>
</tr>
<tr>
<td>Loss 3%</td>
<td>281</td>
</tr>
<tr>
<td>Loss 5%</td>
<td>285</td>
</tr>
<tr>
<td>Dupl. 1%</td>
<td>265</td>
</tr>
<tr>
<td>Dupl. 5%</td>
<td>265</td>
</tr>
<tr>
<td>Reord. 25%</td>
<td>265</td>
</tr>
<tr>
<td>Reord. 50%</td>
<td>269</td>
</tr>
</tbody>
</table>
Overall architecture

• We construct 4 different classifiers: Cubic, Reno, Hamilton and BBR
• Hyperparameter tuning: each tree tuned separately for optimal results
Problem found: Data leakage

• Classifier is generalizable?
 • Get 100% classification results on test elephant and mice flows
 • This is bad: not generalizable to workflow transfers
• Data leakage: One feature using a simple rule in responsible for recognizing a class, e.g.:
 • Retransmits > 10,000 -> loss (might not be true in other workflow transfers)
• To make classifier generalizable:
 • Add randomness to the training data
 • Turn pure to Impure training data: improve accuracy
Predictions
Elephant and Mice flows
Accuracy of Classifier – Mice and Elephant Flows

- Recognize anomalies in mice flows better than elephant
- Rules recognized for Elephant flows:
 - Duplication not recognized in Cubic and Reno
 - Reordering behavior:
 - Retransmits from Server side (s_bytes_retx) are less
 - First ACK received (c_first_ask) high
Predicting Anomalous Workflow Transfers

• Testing on unseen 1000 Genome flows
• Using Globus to transfer (4 parallel streams):
 • Classifiers recognize them as mice flows

<table>
<thead>
<tr>
<th>Recognized?</th>
<th>Cubic</th>
<th>Reno</th>
<th>Hamilton</th>
<th>BBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>50% recognized</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Loss</td>
<td>60% recognized</td>
<td>50% recognized</td>
<td>80% recognized</td>
<td>20% recognized</td>
</tr>
<tr>
<td>Duplication</td>
<td>30% recognized</td>
<td>X</td>
<td>60% recognized</td>
<td>X</td>
</tr>
<tr>
<td>Reordering</td>
<td>Y</td>
<td>Y</td>
<td>40% recognized</td>
<td>80% recognized</td>
</tr>
</tbody>
</table>
Predictions
Scientific Workflow Data
Accuracy for Workflow Test Data

- Hamilton Classifier performs better
- Issue:
 - Need more flows with mixed characteristics to improve classifier
Future Work Extensions

• Classifier is learning unique behaviors of TCP congestion algorithm
• Improve this by improving the training data used (more diverse flow distributions)
• ML approach: Random forest is a rule-based approach on features
 • Not learning feature relationships
• Solution: Exploring Deep Neural Network may improve results
 • Learn weights among the features rather than values (prevent data leakage)